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Abstract

Because of the oft-cited ‘curse of dimensionality’, high-dimensional indexes do not work to effi-

ciently access very large multi-dimensional databases. A potential solution is to utilize index selection

tools to generate multiple lower dimensional indexes. However, tools developed to perform this func-

tion are time-consuming to run and are therefore run statically at times determined by a database

administrator. As such, these tools are not responsive to changes in query workload patterns, and if

the sets of attributes queried evolve so that they differ from the sets of attributes in the index set,

query performance will significantly degrade. To address these issues, we introduce a parameterizable

technique to statically and dynamically adjust indexes as the underlying query workload changes. We

incorporate a query pattern change detection mechanism to determine when the access patterns have

changed enough to warrant either the introduction of a new index, the replacement of an existing index,

or the construction of an entirely new index set. By adjusting analysis parameters, we trade off analysis

speed against analysis resolution. We perform experiments with a number of data sets, query sets, and

parameters to show the effect that varying these characteristics has on analysis results. We also track

query performance over query sets that change distribution over time, to measure the effectiveness of

the query pattern change detection and dynamic index recommendation algorithm.

I. I NTRODUCTION

An increasing number of database applications, such as business data warehouses and scientific

data repositories, deal with high dimensional data sets. As the number of dimensions/attributes

and overall size of data sets increase, it becomes essential to efficiently retrieve specific queried

data from the database in order to effectively utilize the database. High dimensional indexing and

dimensionality reduction have been two popular approaches to handle query processing in high

dimensional databases. Even the most effective approaches of these categories suffer from inher-

ent problems. Performance of index structures is subject to Bellman’s curse of dimensionality

[4] and degrades rapidly as the number of dimensions increases. The dimensionality reduction

approaches are mostly based on data statistics, and perform poorly especially when the data is

not highly correlated. They also introduce a significant overhead in the processing of queries.

Novel directions are needed to effectively access data from a high dimensional database without

suffering from the inherent dimensionality problems.

Our approach is based on the observation that in many high dimensional database applications,

only a small subset of the overall data dimensions are popular for a majority of queries and
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recurring patterns of dimensions queried occur. For example, Large Hadron Collider (LHC)

experiments generate data with up to 500 attributes at the rate of 20 to 40 per second [34].

However, the search criterion typically consists of 10 to 30 parameters. Another example is High

Energy Physics (HEP) experiments [39] where sub-atomic particles are accelerated to nearly the

speed of light, forcing their collision. Each such collision generates on the order of 1-10MBs of

raw data, which corresponds to 300TBs of data per year consisting of 100-500 million objects.

The queries are predominantly range queries and involve mostly around 5 dimensions out of a

total of 200.

We address the high dimensional database indexing problem by selecting a set of lower

dimensional indexes based on joint consideration of query patterns and data statistics. This

approach is also analogous to dimensionality reduction with the novelty that the reduction is

specifically designed for reducing query response times, rather than maintaining data energy

as is the case in traditional approaches. Our reduction considers data and access patterns, and

results in multiple and potentially overlapping sets of dimensions, rather than a single set. The

new set of low dimensional indexes is designed to address a large portion of expected queries.

Several researchers have addressed the indexing problem by developing tools that recommend

a set of indexes based on a query workload. However, query access patterns may change over

time becoming completely disjoint from the patterns on which the low dimensional indexes were

determined. There are many common reasons why query patterns change. Pattern change could

be the result of periodic time variation (e.g. different database uses at different times of the

month or day), a change in the focus of user knowledge discovery (e.g. a researcher discovery

spawns new query patterns), a change in the popularity of a search attribute (e.g. current events

cause an increase in queries for certain search attributes), or simply random variation of query

attributes. When the current query patterns are substantially different from the query patterns

used to recommend the database indexes, the system performance will degrade drastically since

incoming queries do not benefit from the existing indexes. To make this approach practical in

the presence of query pattern change, the index set should evolve with the query patterns. For

this reason, we introduce a dynamic mechanism to detect when the access patterns have changed

enough that either the introduction of a new index, the replacement of an existing index, or the

construction of an entirely new index set is beneficial.

Because of the need to proactively monitor query patterns and query performance quickly,
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the index selection technique we have developed uses an abstract representation of the query

workload and the data set that can be adjusted to yield faster analysis. We generate this abstract

representation of the query workload by mining patterns in the workload. The query workload

representation consists of a set of attribute sets that occur frequently over the entire query set

that have non-empty intersections with the attributes of the query, for each query. To estimate

the query cost, the data set is represented by a multi-dimensional histogram where each unique

value represents an approximation of data and contains a count of the number of records that

match that approximation. For each possible index for each query, the estimated cost of using

that index for the query is computed.

Static index selection occurs by traversing the query workload representation and determining

which frequently occurring attribute set results in the greatest benefit over the entire query set.

This process is iterated until some indexing constraint is met or no further improvement is

achieved by adding additional indexes. Analysis speed and granularity is affected by tuning the

resolution of the abstract representations. The number of potential indexes considered is affected

by adjusting data mining support level. The size of the multi-dimensional histogram affects the

accuracy of the cost estimates associated with using an index for a query.

In order to facilitate dynamic index selection, we propose a control feedback system with two

loops, a fine grain control loop and a coarse control loop. As new queries arrive, we monitor the

ratio of potential performance to actual performance of the system in terms of cost and based

on the parameters set for the control feedback loops, we make major or minor changes to the

recommended index set.

The contributions of this paper can be summarized as follows:

1) Introduction of a flexible index selection technique that uses an abstract representation of

the data set and query workload. The resolution of the abstract representation can be tuned

to achieve either a high ratio of index-covered queries for static index selection or fast

index selection to facilitate online index selection.

2) Introduction of a technique using control feedback to monitor when online query access

patterns change and to recommend index set changes. To the best of our knowledge, this is

the first paper that incorporates control feedback to affect dynamic index selection under

query workload changes.

3) Presentation of a novel data quantization technique optimized for query workloads.
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4) Presentation of a partial solution to the ‘curse of dimensionality’ using a dimensionality

reduction technique based on query workloads.

5) Experimental analysis showing the effects of varying abstract representation parameters on

static and online index selection performance and showing the effects of varying control

feedback parameters on change detection response.

The rest of the paper is organized as follows. Section II presents the related work in this area.

Section III explains our proposed index selection framework. Section IV presents the empirical

analysis. We conclude in Section V.

II. RELATED WORK

A. Dimensionality Reduction

A common approach for dimensionality reduction is to use linear-algebraic methods, such

as Karhunen-Loeve Transformation (KLT) or SVD [25], [28], [21], [38], or applications of

mathematical transforms such as the Discrete Fourier (DFT), Discrete Cosine (DCT), or Wavelet

Transforms [32], [23], [7], and to keep a small subset of transformed dimensions [1]. These

transforms and other similar transforms are used in several application areas including signal

and image processing [20], [40], [37], [46], [31], [15], time-series databases [35], [36], [47],

[26], approximate query processing [24], [8], [44], [18], selectivity estimation [29], [27], and

data streams [30], [33]. All these techniques are based on the distribution of the data and do not

take advantage of the query patterns.

B. Index Selection

The index selection problem has been identified as a variation of the Knapsack Problem

and several papers proposed designs for index recommendations [19], [45], [3], [16], [12], [6]

based on optimization rules. These earlier designs could not take advantage of modern database

systems’ query optimizer. Currently, almost every commercial Relational Database Management

System (RDBMS) provides the users with an index recommendation tool based on a query

workload and using the query optimizer to obtain cost estimates. A query workload is a set of

SQL data manipulation statements. The query workload should be a good representative of the

types of queries an application supports.
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Microsoft SQL Server’s AutoAdmin tool [9], [10], [2] selects a set of indexes for use with

a specific data set given a query workload. In the AutoAdmin algorithm, an iterative process is

utilized to find an optimal configuration. First, single dimension candidate indexes are chosen.

Then a candidate index selection step evaluates the queries in a given query workload and

eliminates from consideration those candidate indexes which would provide no useful benefit.

Remaining candidate indexes are evaluated in terms of estimated performance improvement and

index cost. The process is iterated for increasingly wider multi-column indexes until a maximum

index width threshold is reached or an iteration yields no improvement in performance over

the last iteration. MAESTRO (METU Automated indEx Selection Tool)[14] was developed

on top of Oracle’s DBMS to assist the database administrator in designing a complete set

of primary and secondary indexes by considering the index maintenance costs based on the

valid SQL statements and their usage statistics automatically derived using SQL Trace Facility

during a regular database session. The SQL statements are classified by their execution plan

and their weights are accumulated. The cost function computed by the query optimizer is used

to calculate the benefit of using the index. For DB2, IBM has developed the DB2Adviser [42]

which recommends indexes with a method similar to AutoAdmin with the difference that only

one call to the query optimizer is needed since the enumeration algorithm is inside the optimizer

itself.

C. Automatic Index Selection

The idea of having a database that can tune itself by automatically creating new indexes as

the queries come has been proposed [22], [13]. In [22] a cost model is used to identify beneficial

indexes and decide when to create or drop an index at runtime. [13] proposes an agent-based

database architecture to deal with automatic index creation.

D. Dynamic Frequent Itemset Mining

Many algorithms have been developed recently to addressed the problem of incrementally

mining frequent itemsets [41], [43], [11], [17]. The abstract representation of the query set we

use allows us to apply incremental frequent itemset mining to perform query pattern change

detection. We are using the ZIGZAG approach [43] with update rate of 1.

May 3, 2006 DRAFT



8

III. A PPROACH

A. Approach Goals

The overall goal of this work is to develop a flexible index selection framework that can be

tuned to achieve effective static and online index selection. For the application of static index

selection, when our tool has no constraints applied, we want to recommend the best possible

index for each query in a workload for any query thatcan benefit from an index. When we

constrain the number of indexes that our system recommends, we want to recommend a set

of indexes within the constraint, such that the overall query set in the workload achieves the

greatest benefit. In order to be able to operate in time-constrained situations, we would like the

ability to adjust analysis parameters to increase the speed of analysis.

In terms of online index selection, we are striving to develop a system that can recommend

an evolving set of indexes for incoming queries over time, such that the benefit of index set

changes outweighs the cost of making the index set changes. Therefore, we want a dynamic index

selection system that differentiates between low-cost index set changes and higher cost index

set changes and also can make decisions about index set changes based on different cost-benefit

thresholds.

B. Approach Overview

Like existing tools, our technique uses a cost-based function to evaluate the benefits of using

a potential index on a set of queries. Our technique differs from other tools in the method we

use to determine the potential set of indexes to evaluate and in the quantization-based technique

we use to estimate query costs. These differences allow the analysis to be tuned to affect the

speed and accuracy of the analysis.

We apply one abstraction to the query workload to convert each query into the set of attributes

referenced in the query. We perform frequent itemset mining over this abstraction and only

consider those sets of attributes that meet a certain support level to be potential indexes. By

varying this support level, we affect the speed of index selection and the ratio of queries that

are covered by potential indexes.

Instead of using the query optimizer to estimate query cost, we conservatively estimate the

number of matches associated with using a given index by using a multi-dimensional histogram
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abstract representation of the dataset. The cost associated with an index is calculated based on

the number of estimated matches and the dimensionality of the index. Increasing the size of

the multi-dimensional histogram enhances the accuracy of the estimate at the cost of abstract

representation size.

All of the commercial index wizards work in design time. The Database Administrator (DBA)

has to decide when to run this wizard and over which workload. The assumption is that the

workload is going to remain static over time and in case it does change, the DBA would collect

the new workload and run the wizard again. The flexibility afforded by the abstract representation

we use allows it to be used for infrequent, accurate index selection or frequent, online index

selection.

C. Proposed Solution for Index Selection

Figure 1 shows a flow diagram of the index selection framework. Details about the steps and

the dataflow follow:

Initialize Abstract Representations

The initialization step uses a query history file and the dataset to produce a set of Potential

IndexesP , a Query SetQ, and a Multi-dimensional HistogramH, according to the support and

histogram size specified by the user. The description of the outputs and how they are generated

is given below.

Potential Index Set P

The potential index setP is a collection of attribute sets thatcould be beneficial as an index

for the queries in the inputquery history file. This set is computed using traditional data mining

techniques. Considering the attributes involved in each query from the inputquery history file

to be a single transaction,P consists of the sets of attributes that occur together in a transaction

at a ratio greater than the inputsupport. So, if the input support level is 10%, and attributes 1

and 2 are queried together in greater than 10 percent of the queries, then a representation of the

set of attributes{1,2} will be included as a potential index. As the inputsupport is decreased,

the number of potential indexes increases. Note that our particular system is built independently

from a query optimizer, but the sets of attributes appearing in the predicates from query optimizer

log could just as easily be substituted for thequery history filein this step.

Query Set Q
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An abstract representation of thequery history fileis constructed by including the potential

indexes thatcould be beneficial for each query. These are the indexes in the potential index set

P that share at least one common attribute with the query. At the end of this step, each query

has an identified set of possible indexes for that query.

Multi-Dimensional Histogram H

An abstract representation of the data set is created in order to estimate the query cost

associated with using each query’s possible indexes to answer that query. This representation is

in the form of a multi-dimensional histogramH. The inputhistogram sizedictates the number of

bits used to represent each unique bucket in the histogram. These bits are designated to represent

the single attributes that met the inputsupportin the inputquery history file. The number of bits

that each of the attributes gets is proportional to the log of that attribute’s support. This gives

more resolution to those attributes that occur more frequently in thequery history file. Data for

an attribute that has been assignedb bits is divided into2b buckets. In order to handle data sets

with uneven data distribution, we define the ranges of each bucket so that each bucket contains

roughly the same number of points. The histogram is built by converting each record in the

data set to its representation in bucket numbers. As we go through records, we only aggregate

the count of records with each unique bucket representation because we are just interested in

estimating query cost. Note that the multi-dimensional histogram is based on a scalar quantizer

designed on data and access patterns, as opposed to just data in the traditional case. A higher

accuracy in representation is achieved by using more bits to quantize the attributes that are more

frequently queried.

For illustration, Table I shows a simple multi-dimensional histogram example. This histogram

covers 3 attributes and uses 1 bit to quantize attributes 2 and 3, and 2 bits to quantize attribute 1,

assuming it is queried more frequently than the other attributes. In this example, for attributes 2

and 3 values from 1-5 quantize to 0, and values from 6-10 quantize to 1. For attribute 1, values

1 and 2 quantize to 00, 3 and 4 quantize to 01, 5-7 quantize to 10, and 8 and 9 quantize to 11.

The .’s in the ’value’ column denote attribute boundaries (i.e. attribute 1 has 2 bits assigned to

it).

Note that we do not maintain any entries in the histogram for bit representations that have no

occurrences. So we can not have more histogram entries than records and will not suffer from

exponentially increasing the number of histogram records for high-dimensional histograms.
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Sample Dataset Histogram

A1 A2 A3 Encoding Value Count

2 5 5 0000 00.0.0 2

4 8 3 0110 00.0.1 1

1 4 3 0000 01.0.0 1

6 7 1 1010 01.1.0 1

3 2 2 0100 01.1.1 1

2 2 6 0001 10.1.0 2

5 6 5 1010 11.0.0 1

8 1 4 1100 11.0.1 1

3 8 7 0111

9 3 8 1101

TABLE I

HISTOGRAM EXAMPLE

Calculate Query Cost Using Index

Once generated, the abstract representations of the query setQ and the multi-dimensional

histogramH are used to estimate the cost of answering each query using each of that query’s

possible indexes. For a given query-index pair, we aggregate the number of matches we find in

the multi-dimensional histogram looking only at the attributes in the query that also occur in the

index (bits associated with other attributes are considered to be don’t cares in the query matching

logic). To estimate the query cost, we then apply a cost function based on the number of matches

we get using the index and the dimensionality of the index. At the end of this step, our abstract

query set representation has estimated costs for each possible index for each query. For each

query in the query set representation, we also keep a current cost field, which we initialize to

the cost of performing the query using sequential scan. At this point, we also initialize an empty

set of suggested indexesS.

Cost Function

A cost function is used to estimate the cost associated with using a certain index for a query.

The cost function can be varied to accurately reflect a cost model for the database system. For

example, one could apply a cost function that amortized the cost of loading an index over a
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certain number of queries or use a function tailored to the type of index that is used. We derived

a formula to estimate cost for partial match queries forR-trees from the cost model proposed

in [5] for expected number of page accesses for range queries forR-trees. The formula we use

for multi-dimensional index cost is(d(1/2) ∗m(1/d))d whered is the dimensionality of the index

andm is the number of matches returned using that index. This function takes advantage of the

potential lower number of matches associated with higher dimension indexes while penalizing

for the additional overhead caused by the increase in index dimensionality.

The cost function could be more complicated in order to more accurately model query costs.

It could model query cost with greater accuracy, for example by crediting complete attribute

coverage for coverage queries. It could also reflect the appropriate index structures used in the

database system, such as B+-trees. We used this particular cost model because the index type

was appropriate for our data and query sets, and we assumed that we would retrieve data from

disk for all query matches.

Index Selection Loop

After initializing the index selection data structures and updating query costs for each query-

index pair, we use a greedy algorithm to iteratively select indexes that would be appropriate for

the given query history file and data set. For each index in the potential index setP , we traverse

the queries in query setQ and accumulate the improvement associated with using that index for

that query. The improvement for a given query-index pair is the difference between the cost for

using the index and the query’s current cost. If the index does not provide any positive benefit

for the query, no improvement is accumulated. The potential indexi that yields the highest

improvement over the query setQ is considered to be the best index. Indexi is removed from

potential index setP and is added to suggested index setS. For the queries that benefit fromi,

the current query cost is replaced by the improved cost.

After each i is selected, a check is made to determine if the index selection loop should

continue. The inputindexing constraintsprovides one of the loop stop criteria. The indexing

constraint could be any constraint such as the number of indexes, total index size, or total

number of dimensions indexed. If no potential index yields further improvement, or theindexing

constraintshave been met, then the loop exits. The set of suggested indexesS contains the

results of the index selection algorithm.

Throughout this loop, where possible, we prune the complexity of the abstract representations
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Fig. 1. Index Selection Flowchart

in order to make the analysis more efficient. This includes actions such as eliminating potential

indexes that do not provide better cost estimates than the current cost for any query and not

considering queries whose best index is already a member of the set of suggested indexes. The

overall speed of this algorithm is coupled with the number of potential indexes analyzed, so the

analysis time can be reduced by increasing thesupport level.

D. Proposed Solution for Dynamic Index Selection

We use control feedback to monitor the performance of the current index set for incoming

queries and to determine when adjustments should be made to the index set. In a typical control

feedback system, the output of a system is monitored and based on some function involving

the input and output, the input to the system is readjusted through a control feedback loop.

Our situation is analogous but more complex than the typical electrical circuit control feedback

system in several ways:

1) Our system input is a set of indexes and a set of incoming queries rather than a simple

input, such as an electrical signal.

2) The system output must be some parameter that we can measure and use to make deci-

sions about changing the input. Query performance is the obvious parameter to monitor.

However, because lower query performance could be related to other aspects rather than

the index set, our decision making control function must necessarily be more complex

than a basic control system.

3) We do not have a predictable function to relate system input and output because of the

non-determinism associated with new incoming queries. For example, we may have a set

of attributes that appears in queries frequently enough that our system indicates that it

May 3, 2006 DRAFT



14

is beneficial to create an index over those attributes, but there is no guarantee that those

attributes will ever be queried again.

Control feedback systems can fail to be effective with respect to response time. The control

system can be too slow to respond to changes, or it can respond too quickly. If the system is

too slow, then it fails to cause the output to change based on input changes in a timely manner.

If it responds too quickly, then the output overshoots the target and oscillates around the desired

output before reaching it. Both situations are undesirable and should be designed out of the

system.

Figure 2 represents our implementation of dynamic index selection. Our system input is a

set of indexesand a set of incoming queries. Our system simulates and estimates costs for

the execution of incoming queries. System output is the ratio of potential system performance

to actual system performance in terms of database page accesses to answer the most recent

queries. We implement two control feedback loops. One is for fine grain control and is used to

recommend minor, inexpensive changes to the index set. The other loop is for coarse control

and is used to avoid very poor system performance by recommending major index set changes.

Each control feedback loop has decision logic associated with it.

System Input

The system input is made up of new incoming queries and the current set of indexesI, which

is initialized to be the suggested indexesS from the output of the static index selection algorithm.

System

The system simulates query execution over a number of incoming queries. The abstract

representation of the lastw queries stored asW , wherew is an adjustable window size parameter.

W is used to estimate performance of a hypothetical set of indexesInew against the current index

setI. This representation is similar to the one kept for query setQ in the static index selection.

In this case, when a new queryq arrives, we determine which of the current indexes inI most

efficiently answers this query and replace the oldest query inW for the abstract representation

of q. We also incrementally compute the attribute sets that meet the inputsupportover the last

w queries. This information is used in the control feedback loop decision logic. The system also

keeps track of the current potential indexesP , and the current multi-dimensional histogramH.

System Output
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In order to monitor the performance of the system, we compare the query performance using

the current set of indexesI to the performance using a hypothetical set of indexesInew. The

query performance usingI is simply the summation of the costs of queries using the best index

from I for the given query. Consider the possible new indexesPnew to be the set of attribute sets

that currently meet the inputsupportover the lastw queries. The hypothetical cost is calculated

differently based on the comparison ofP andPnew, and the identified best indexi from P or

Pnew for the new incoming query:

1) P = Pnew and i is in I. In this case we bypass the control loops since we could do no

better for the system by changing possible indexes.

2) P = Pnew and i is not in I. We recompute a new set of suggested indexesInew over the

last w queries. The hypothetical cost is the cost over the lastw queries usingInew.

3) P 6= Pnew and i is in I. In this case we bypass the control loops since we could do no

better for the system by changing possible indexes.

4) P 6= Pnew and i is not in I. We traverse the lastw queries and determine those queries

that could benefit from using a new index fromPnew. We compute the hypothetical cost

of these queries to be the real number of matches from the database. Hypothetical cost

for other queries is the same as the real cost.

The ratio of the hypothetical cost, which indicates potential performance, to the actual per-

formance is used in the control loop decision logic.

Fine Grain Control Loop

The fine grain control loop is used to recommend low cost, minor changes to index set. This

loop is entered in case 2 as described above when the ratio of hypothetical performance to

actual performance is below some inputminor change threshold. Then the indexes are changed

to Inew, and appropriate changes are made to update the system data structures. Increasing the

input minor change thresholdcauses the frequency of minor changes to also increase.

Coarse Control Loop

The coarse control loop is used to recommend more costly, but changes with greater impact on

future performance to index set. This loop is entered in case 4 as described above when the ratio

of hypothetical performance to actual performance is below some inputmajor change threshold.

Then the static index selection is performed over the lastw queries, abstract representations

are recomputed, and a new set of suggested indexesInew is generated. Appropriate changes
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Fig. 2. Dynamic Index Analysis Framework

are made to update the system data structures to the new situation. Increasing the inputmajor

change thresholdincreases the frequency of major changes.

IV. EMPIRICAL ANALYSIS

A. Experiment Objectives

We had several goals for the experiments. First, we wanted to show that our static index

selection algorithm yields reasonable results in terms of the indexes selected and the analysis

time. We also wanted to show that the algorithm is flexible and could be tailored based on

the constraints of the application, whether the constraints are related to index storage space or

computational time. Finally, we wanted to show that the change detection and dynamic index

selection algorithm yields consistent performance over query access patterns that evolve over

time.

B. Experimental Setup

Data Sets

We used several data sets during the performance of experiments. The variation in data sets is

intended to show the applicability of our algorithm to a wide range of data sets and to measure

the effect that data correlation has on results. Data sets used include:

• random - a set of 100,000 records consisting of 100 dimensions of uniformly distributed

integers between 0 and 999. The data is not correlated.
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• stocks- a set of 6500 records consisting of 360 dimensions of daily stock market prices.

This data is extremely correlated.

• mlb - a set of 33619 records of major league pitching statistics from between the years of

1900 and 2004 consisting of 29 dimensions of data. Some dimensions are correlated with

each other, while others are not at all correlated.

Analysis Parameters

We analyzed the effect of varying several analysis input parameters including support, multi-

dimensional histogram size, and online indexing control feedback decision thresholds.

Query Workloads

At this point, we wish to explore the general behavior of database interactions and do not want

to inadvertently observe the coupling associated with using a specific query history on the same

database. Therefore, we generated query workload files by merging synthetic query histories and

query histories from real-world applications with different data sets. We merge these by taking

a random record from our data set and the numbers of the attributes involved in the synthetic or

historical query in order to generate a point query. So, if a historical query involved the 3rd and

5th attribute, and we randomly selected thenth record from our data set, we would generate a

SELECT type query from our data set where the 3rd attribute is equal to the value of the 3rd

attribute of thenth record and the 5th attribute is equal to the value of 5th attribute of thenth

record. This gives a query workload that reflects the attribute correlations within queries, and

has a variable query selectivity.

These query histories form the basis for generating the query workloads used in our experi-

ments:

1) synthetic - 500 randomly generated queries. The distribution of the queries over the first

200 queries is 20% involve attributes{1,2,3,4} together, 20%{5,6,7}, 20%, {8,9}, and

the remaining queries involve between 1 and 5 attributes that could be any attribute. Over

the last 300 queries, the distribution shifts to 20%{11,12,13,14}, 20% {15,16,17}, 20%

{18,19}, and the remaining 40% are between 1 to 5 attributes that could be any attribute.

2) clinical - 659 queries executed from a clinical application. The query distribution file has

64 distinct attributes.

3) hr - 35,860 queries executed from a human resources application. The query distribution
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Fig. 3. Costs for Ideal, Sequential Scan and Our Index Selection Technique using Relaxed Constraints

file has 54 attributes. Due to the size of this query set, we only use some initial portion

of the queries in some experiments.

C. Experimental Results

1) Index Selection with Relaxed Constraints:Figure 3 shows how accurately our static index

selection technique can perform. For this scenario, we have used a low support value, 0.01,

have placed no constraints on the number of indexes we can select, and use 256 bits for the

multi-dimension histogram. In the graph, we show the cost of performing a sequential scan over

100 queries using the indicated data sets, the estimated cost of using our recommended indexes,

and the true number of answers for the set of queries. The cost for sequential scan is discounted

to account for the fact that sequential access is significantly cheaper than random access. We

used a factor of 10 as the ratio of random access cost to sequential access cost, but regardless

of any reasonable factor used, the graph will show the cost of using our indexes much closer to

the ideal number of page accesses than the cost of sequential scan.

Table II compares our index selection algorithm with relaxed constraints against SQL Server’s

index selection tool, AutoAdmin [9], using the data sets and query workloads indicated.

For thestockdataset using both theclinical andhr workloads, both algorithms suggest indexes

which will improve all of the queries. Since the selectivity of these queries is low (the queries

return a low number of matches using any index that contains a queried attribute), the amount of
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Data Set/ Analysis % Queries Number of

Workload Tool Time(s) Improved Indexes

stock/ AutoAdmin 450 100 23

clinical Ours 110 100 18

stock/ AutoAdmin 338 100 20

hr Ours 160 100 16

mlb/ AutoAdmin 15 0 0

clinical Ours 522 87 16

TABLE II

COMPARISON OF OUR INDEX SELECTION ALGORITHM WITHAUTOADMIN IN TERMS OF ANALYSIS TIME AND % QUERIES

IMPROVED

the query improvement will be very similar using either recommended index set. Our algorithm

executes in less time and generates indexes which are closer to the query patterns in the workload.

For example, the most common query in theclinical workload is to query over both attributes 11

and 44 together. SQL Server’s index recommendations are all single-dimension indexes for all

attributes that appear in the workload. However, our first index recommendation is a 2-dimension

index built on attributes 11 and 44.

For themlb dataset, SQL Server quickly recommended no indexes. Our index selection takes

longer in this instance, but finds indexes that improve 87 % of the queries. These are all the

queries that have selectivities low enough that an index can be beneficial.

2) Baseline Online Indexing Results:Figures 4 through 7 show a baseline comparison of using

the query pattern change detection and modifying the indexes against making no change to the

initial index set for a number of data set, query history combinations. The baseline parameters

used are 5% support, 128 bits for each multi-dimension histogram entry, a window size of 100,

an indexing constraint of 10 indexes, a major change threshold of 0.9 and a minor change

threshold of 0.95.

Figure 4 shows the comparison for therandomdata set using thesyntheticquery workload.

At query 200, this workload drastically changes, and this is evident in the query cost for the

static system. The performance gets much worse and does not get better for the static system.

For the online system, the performance degrades a little when the query patterns are changing
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Fig. 4. Baseline Comparative Cost of Online versus Static Indexing,randomDataset,syntheticQuery Workload

and then improve again once the indexes have changed to match the new query patterns.

The syntheticquery workload was generated specifically to show the effect of a changing

query pattern. Figure 5 shows a comparison of performance for therandomdata set using the

clinical query workload. This real query workload also changes substantially before reverting

back close to the query patterns on which the static index selection was performed. Performance

for the static system degrades substantially when the patterns change until the point that they

change back. The online system is better able to absorb the change.

Figure 6 shows the comparison for thestockdata set using thesyntheticquery workload. It

is interesting to note that the shape of this graph and the graph for therandom data set are

nearly identical. This indicates that when the selectivity of the queries is low, the performance

of change detection is more a function of the changing query patterns rather than of the data

itself.

Figure 7 shows the comparison for thestockdata set using the first 2000 queries of thehr

query workload. The online system shows consistently lower cost than the static system and in
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Fig. 5. Baseline Comparative Cost of Online versus Static Indexing,randomDataset,clinical Query Workload

Fig. 6. Baseline Comparative Cost of Online versus Static Indexing,stockDataset,clinical Query Workload
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Fig. 7. Baseline Comparative Cost of Online versus Static Indexing,stockDataset,hr Query Workload

places significantly lower cost for this real query workload.

3) Online Index Selection versus Parametric Changes:Changing online index selection pa-

rameters changes the adaptive index selection in the following ways:

Support - decreasing the support level has the effect of increasing the potential number of

times the index set will be recalculated. It also makes the recalculation of the indexes themselves

more complicated and less conducive in an online setting. Figure 8 shows the effect of changing

support on the online indexing results for therandomdata set andsyntheticquery workload,

while figure 9 shows the effect on thestock data set using the first 600 queries ofhr query

workload. These graphs were generated using the baseline parameters and varying support levels.

As expected, lower support levels translate to lower initial costs. For thesyntheticquery workload,

when the patterns changed, but do not change again, lower support levels translated to better

performance. However, for thehr query workload, in some areas the 10% support line shows

better performance than the 6% and 8% lines. The frequent itemsets change more frequently

for lower support levels, and these changes dictate when decisions occur. These runs made

decisions at points that turned out to be poor decisions, such as eliminating an index that ended
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Fig. 8. Comparative Cost of Online Indexing as Support Changes,randomDataset,syntheticQuery Workload

up being valuable. Little improvement in cost performance is achieved between 4% support and

2% support. Over-sensitive control feedback can degrade actual performance, independent of the

extra overhead that oversensitive control causes.

Online Indexing Control Feedback Decision Thresholds - increasing the thresholds

decreases the response time of affecting change when query pattern change does occur. It also

has the effect of increasing the number of times the costly reanalysis occurs. In a real system,

one would need to balance the cost of continued poor performance against the cost of making

an index set change. Figure 10 shows the effect of varying the major change threshold in the

coarse control loop for therandomdata set andsyntheticquery workload. Figure 11 shows the

effect of changing the major change threshold for thestock data set andhr query workload.

These graphs were generated using the baseline parameters (except that therandomgraph uses

a support of 10%), and only varying the major change threshold in the coarse control loop. The

major change threshold is varied between 0 and 1. Here, a value of 0 translates to never making

a change, and a value of 1 means making a change whenever improvement is possible. The
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Fig. 9. Comparative Cost of Online Indexing as Support Changes,stockDataset,hr Query Workload

graphs show no real benefit once the major change threshold increases (and therefore frequency

of major changes) beyond 0.6. Figure 10 shows that a value of 1 or 0.9 are best in terms of

response time when a change occurs, but a value of 0.3 shows the best performance once the

query patterns have stabilized. This indicates that this value should be carefully tuned based on

the expected frequency of query pattern changes.

Multi− dimensional Histogram Size - increasing the number of bits improves analysis

accuracy at the cost of histogram generation time and space. In our experiments we found that

for a given analysis setup, there was a number of bits which gave us very close to ideal results,

and increasing this value beyond this point had very little impact on the analysis accuracy.

Figure 12 shows the effect of varying the multi-dimensional histogram size. We show a much

higher cost for using a 32 bit size for each unique histogram bucket, than larger sizes. One

reason for this is that we are artificially calculating higher than actual costs because of the lower

histogram resolution. We also do not recommend some beneficial index changes because we

do not accurately estimate costs in the analysis. As the size of the histogram increases beyond

the point where we estimate the number of matches for a query fairly well, we gain very little
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Fig. 10. Comparative Cost of Online Indexing as Major Change Threshold Changes,randomDataset,syntheticQuery Workload

Fig. 11. Comparative Cost of Online Indexing as Major Change Threshold Changes,stockDataset,hr Query Workload
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Fig. 12. Comparative Cost of Online Indexing as Multi-Dimensional Histogram Size Changes,randomDataset,syntheticQuery

Workload

benefit.

V. CONCLUSIONS

We have introduced a flexible technique for index selection that can be tuned to achieve

different levels of constraints and analysis complexity. A low constraint, more complex analysis

can lead to more accurate index selection over stable query patterns. A higher constraint, less

complex analysis is more conducive for online index selection for evolving query patterns. The

technique uses our own generated multi-dimension histogram to estimate cost, and as a result is

not coupled to the idiosyncrasies of a query optimizer, which may not be able to take advantage

of knowledge about correlations between attributes.

These experiments have shown great opportunity for improved performance using adaptive

indexing over real query patterns. We introduce a control feedback technique for measuring

performance and indicating when the database system could benefit from an index change.

By changing the threshold parameters in the control feedback loop, we can tune the analysis
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time/pattern change recognition tradeoff. The foundation provided here will be used to explore

this tradeoff and to develop an improved utility for real-world applications.

Current index selection tools are based on the assumption that the query workload of the

future will approximate the query workload of the past. Our technique affords the opportunity

to adjust indexes to new query patterns. A limitation of our approach is that if query pattern

changes occur more frequently than we make index set changes to respond to them, this control

feedback can not be used to consistently affect positive change. However, we can address this

by adjusting control sensitivity or by changing control sensitivity over time as we learn more

about the query patterns.

From initial experimental results, it seems that the best application for this approach is to

apply the more time consuming no-constraint analysis in order to determine an initial index set

and then apply a lightweight and low control sensitivity analysis for the online query pattern

change detection in order to avoid or make the user aware of situations where the index set is

not at all effective for the new incoming queries.

In this paper, we have affected the frequency of index set change through the use of the

online indexing control feedback thresholds. Alternatively, we could adjust the frequency that

we monitor the output to achieve similar results and to appropriately tune the sensitivity of the

system. This monitoring frequency could be in terms of either a number of incoming queries or

elapsed time.

We introduced an online change detection system that utilized two control feedback loops in

order to differentiate between inexpensive and more time consuming system changes. In practice,

the fine grain control threshold was not triggered unless we contrived a situation such that it

would be triggered. The kinds of low cost changes that this threshold would trigger are not the

kinds of changes that make enough impact to be that much better than the existing index set.

This would change if the indexing constraints were very low, and one potential index is now

more valuable than a suggested index.

Index creation is quite time-consuming. It is not feasible to perform real-time analysis of

incoming queries and generate new indexes when the patterns change. Potential indexes could

be generated prior to receiving new queries, and when indicated by online analysis, moved to

active status. This could mean moving an index from local storage to main memory, or from

remote storage to local storage depending on the size of the index. Additionally, the analysis
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could prompt a server to create a potential index as the analysis becomes aware that such an

index is useful, and once it is created, it could be called on by the local machine.
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