
The VLDB Journal manuscript No.
(will be inserted by the editor)

Michael Gibas · Guadalupe Canahuate · Hakan Ferhatosmanoglu

Indexes for Databases with Missing Data

Received: date / Accepted: date

Abstract Incomplete databases, that is, databases that
are missing data, are present in many research and indus-
try domains. It is important to derive techniques to ac-
cess these databases efficiently. We first show that known
indexing techniques for multi-dimensional data search
break down in terms of performance when indexed at-
tributes contain missing data. This paper utilizes two
popularly employed classes of indexing techniques, bitmaps
and quantization, to correctly and efficiently answer queries
in the presence of missing data. Query execution and in-
terval evaluation are formalized for the indexing struc-
tures based on the traditional query semantics of whether
missing data is considered to be a query match or not
for each attribute. Query selectivity in the presence of
missing data when different subsets of attributes may be
required to contain data is explored. The performance of
bitmap indexes and quantization based indexes is evalu-
ated and compared over a variety of analysis parameters
for real and synthetic data sets. Insights into the condi-
tions and applications for which to use each technique
are provided.

Michael Gibas
The Ohio State University
Department of Computer Science and Engineering
Columbus, OH, USA
Tel.: +614-292-5813
Fax: +614-292-2911
E-mail: gibas@cse.ohio-state.edu

Guadalupe Canahuate
The Ohio State University
Department of Computer Science and Engineering
Columbus, OH, USA
Tel.: +614-292-5813
Fax: +614-292-2911
E-mail: canahuat@cse.ohio-state.edu

Hakan Ferhatosmanoglu
The Ohio State University
Department of Computer Science and Engineering
Columbus, OH, USA
Tel.: +614-292-5813
Fax: +614-292-2911
E-mail: hakan@cse.ohio-state.edu

Keywords Incomplete Databases · Indexing · Bitmaps ·
VA-Files · Query Selectivity Estimation

1 Introduction

Real world applications using databases with missing
data are common. Databases with missing data occur
in a wide range of research and industry domains. Some
examples of these are:

1. A census database that allow null values for some
attributes

2. A survey database where answers to one question
cause other questions to be skipped

3. A medical database that relates human body ana-
lyte (a substance that can be measured in the blood
or urine) measurements to a number of diseases, or
patient risk factors to a specific disease

In each of these cases, there can be valid reasons for
a record to contain missing data and the fact that data
is missing for a given attribute value may be relevant
to database users. As users and researchers in many do-
mains are faced with the issue of querying databases with
missing data, the goal of this paper is to provide tech-
niques that access databases efficiently in the presence
of missing data while preserving the knowledge that the
data is missing.

There are a variety of reasons why databases may be
missing data. The data may not be available at the time
the record was populated or it was not recorded because
of equipment malfunction or adverse conditions. Data
may have been unintentionally omitted or the data is not
relevant to the record at hand. The allowance for and use
of missing data may be intentionally designed into the
database. In some application domains, the missingness
of data is not important to answering the queries and
missingness is ignorable. In some applications, the data
can be ‘completed” using regression or other statistical
models and treated as if it was never missing. However,



2 Michael Gibas et al.

if the data are missing as a function of some other vari-
able, a complete treatment of missing data would have
to include a model that accounts for missing data. Con-
sider the example of the analyte-disease database where
diseases are the records and analyte ranges are the at-
tributes. This database contains values for analyte ranges
if they are relevant for a specific disease, or null values if
the analyte readings are not important in the diagnosis
of that disease. We may query such a database with a
patient’s analyte readings to get a list of potential di-
agnoses. We do not want to discount diseases that do
not have a value for an analyte included in the query,
because the act of taking an analyte’s measurement has
no bearing on if a patient has a disease that is not rele-
vant to that particular analyte. So in this case, missing
data should be interpreted as a query match for that at-
tribute. Alternatively, the intent of a query may not be
to return records that could match query criteria, but to
only return records that definitely match query criteria.
In this case any missing data for a record that occurs
in an attribute specified by the query search key means
that the record does not match the query. An example
of this is a survey results query where the query asks for
a count of respondents that answered question 5 with
answer “A” and question 8 with answer “C”.

This paper deals with data where missingness is not
ignorable, in other words whether a data value is miss-
ing or not is important and we want to be able to dis-
tinguish between the real values and the absence of such
values. In order to achieve this, we could assign a spe-
cific value for missing fields that is not in the domain of
that particular attribute. For example, if the domain of
an attribute is the positive integers, a value of -1 may
be used to denote missing data. Then the transformed,
complete multi-dimensional database could be indexed
using traditional hierarchical multi-dimensional indexing
techniques. However, this solution for indexing databases
with missing data experiences significant performance is-
sues when applied to hierarchical indexing techniques.
To illustrate this point, we performed a set of experi-
ments on two-dimensional data sets that are identical
except that they vary with respect to their percentage
of missing data. We built an R-tree index on the differ-
ent datasets and executed 2-dimensional queries with a
global selectivity of 25%. Figure 1 shows the effect on
query execution time as missing data probability varies.

The graph shows time performance of a query using
an R-tree built on the different data sets, normalized to
the time to perform the query on a complete data set.
This graph shows that even for a data set and index that
is only two dimensions, we get far worse performance
when the database contains missing data. Even when
there is only 10% missing data for each attribute, the
time performance is 23 times worse than if the data set
were complete.

Multi-dimensional indexing techniques work best when
records are mapped to non-overlapping hypercubes. When

Fig. 1 Normalized Query Execution Time versus Percent
Missing Data, Query Selectivity = 25%, 2-D Data Set

missing data are mapped to a single value, the overlaps
associated with the index structure increase. One tech-
nique to deal with this issue is to somehow randomize the
values assigned to missing data so pruning potential re-
sults when traversing the index structure is not compro-
mised. However, it becomes necessary to transform the
initial query involving k attributes into 2k subqueries.
This is because there are 2k possible combinations of
missing and non-missing values among the k attributes
in the search key. Therefore there are 2k subspaces where
query matching data can reside, and all of them must be
searched. This fact causes query execution performance
to become exponentially worse with respect to query di-
mensionality. Lastly, as described in [14] all hierarchical
multi-dimensional index structures break down after a
certain number of dimensions indexed.

Space partitioning multi-dimensional indexing tech-
niques would also suffer from the same weaknesses in the
presence of missing data. Records with missing data val-
ues would get mapped to lesser-dimensioned spaces, and
the full benefit of data space partitioning would not be
realized. Again, partitioning the data space beyond a cer-
tain number of dimensions has limitations as discussed
in [14].

Data repositories need techniques for indexing multi-
dimensional data that work well in the presence of miss-
ing data. Further benefit is derived if the techniques also
work for databases with higher dimensionality than can
be achieved effectively using hierarchical or data parti-
tioning indexes. The objective of this paper is to facil-
itate efficient access to and define query execution for
databases with missing data in a way that even works
well when the database dimensionality is high. The tech-
niques introduced are evaluated in terms of performance
against a number of parameters including database di-
mensionality, missing data frequency, query selectivity,



Indexes for Databases with Missing Data 3

and query semantics (whether missing data indicates a
query match or not).

Contributions of this paper include the following:

1. Demonstrates that missing data not only causes se-
mantic problems but also degradation in the perfor-
mance of queries.

2. Introduces techniques to efficiently index databases
with missing data using variations of bitmaps and
VA-Files.

3. Formalizes query processing operations for the pro-
posed techniques in the presence of missing data.

4. Provides insights into the environments and appli-
cations appropriate for each proposed technique. Al-
though bitmaps and quantization (VA-Files) have been
extensively studied, and their applications are simi-
lar, we know of no work that compares and contrasts
them.

5. Covers a variety of query level semantics when a query
answer set can contain missing data. At a query at-
tribute level this entails treating missing data as ei-
ther a query match for that attribute or a non-match
for the attribute. At a query level, this includes the
combinatorial possibilities of the attribute level se-
mantics.

6. Provides methods for query selectivity estimation for
the possible query level semantics when the database
includes missing data.

The rest of this paper is organized as follows: Section
2 discusses related work, Section 3 defines the problem
addressed in this paper, Section 4 describes the proposed
solutions and Section 5 presents query level semantics
and techniques for query selectivity estimation. Section
6 describes and provides experimental results. Finally, we
conclude in Section 7 and provide directions for future
work.

2 Related Work

Missing Data. Although in practice databases com-
monly contain missing data, relatively little work has
been performed for this topic. Formal definitions for im-
perfect databases, of which databases with missing data
is a subset, and database operations are provided in [20].
Two techniques for indexing databases with missing data
are introduced and evaluated in [11]. This is the only
paper we are aware of that focuses on indexing miss-
ing data. These are the bitstring augmented method and
the multiple one-dimensional one-attribute indexes tech-
nique, called MOSAIC.

For the bitstring-augmented index, the average of the
non-missing values is used as a mapping function for the
missing values. The goal is to avoid skewing the data by
assigning missing values to several distinct values. How-
ever, by applying this method it becomes necessary to
transform the initial query involving k attributes into

2k subqueries, making the technique infeasible for large
k. MOSAIC is a set of B+-Trees where missing data is
mapped to a distinguished value. Similarly to the previ-
ous method, it becomes necessary to transform the ini-
tial query involving k attributes into 2k subqueries, two
subqueries for each attribute.

What makes MOSAIC perform better than the Bitstring-
Augmented index for point queries is that it uses inde-
pendent indexes for each dimension. However, by using
several B+-Trees the query has to be decomposed and in-
tersection and union operations need to be performed to
obtain the final result. Queries that could gain a greater
performance benefit by utilizing multiple-dimension in-
dexes would not achieve it using this technique. There-
fore, this method may not be useful for multiple-dimension
range queries, or other queries where the number of matches
associated with a single dimension is high.

We introduce and evaluate techniques that do not
suffer the same weaknesses as the techniques in [11]. In
our approach the query need not be transformed into ex-
ponential number of queries and no extra expensive com-
putation, such as set operations, needs to be performed
in order to obtain the final result set. Moreover, even
though VA-File is not a hierarchical index it benefits
from pruning multiple dimensions in one pass through
the structure. In addition, our solution using bitmaps
and VA-Files is also scalable with respect to the data
dimensionality.

Bitmaps. The topic of bitmap indexes was intro-
duced in [9]. Several bitmap encoding schemes have been
developed, such as equality [9], range [5], interval [5], and
workload and attribute distribution oriented [8]. Several
commercial database management systems use bitmaps
[10,3,6]. Numerous performance evaluations and improve-
ments have been performed over bitmaps [4,16,12,7,17,
18,5,19]. While the fast bitwise operations afforded by
bitmaps are perhaps their biggest advantage, a limita-
tion of bitmaps is the index size. Several compression
techniques have been proposed [2,15,1,12] to reduce the
bitmap index size. Some of the most popular compression
techniques such as Byte-Aligned Bitmap Code (BBC) [2]
and Word Aligned Hybrid (WAH) code [15], use a hybrid
between the run-length encoding and the literal scheme
to compress the bitmap.

VA-Files. The motivation for VA-files is introduced
in [14]. This paper showed theoretical limitations for
the classes of data and space partitioning indexing tech-
niques with respect to dimensionality. Since reading all
database pages becomes unavoidable when the number
of indexed dimensions is high, the authors suggest read-
ing a much smaller approximate version, or vector ap-
proximation (VA), of each record in the database. An
initial read approximately answers queries, and actual
database pages are read to determine the exact query
answer. VA-files are more thoroughly described in [13].



4 Michael Gibas et al.

3 Problem Definition

Let D be a database with a schema of the form (A1, A2, . . . , Ad).
D is said to be incomplete if tuples in it are allowed to
have missing attribute values. Without loss of generality,
assume the domain of the attribute values is the integers
from 1 to Ci, where Ci is the cardinality of attribute
Ai, i.e. the number of distinct non-null values among all
records for attribute Ai.. We assume that data retrieval
is based on a k-dimensional search key, where k is less
than or equal to d.

In range queries, bounds are specified for each at-
tribute in the search key. Each interval in the query is
represented as v1 ≤ Ai ≤ v2, where v1 and v2 are be-
tween 1 and Ci. The query is said to be a point query
if all lower bounds are equal to the corresponding upper
bound for each attribute in the search key.

Given a range query Q with a k-dimensional search
key, we have two ways to compute the results for each
of the k dimensions of Q. A tuple t in the database is
considered to be a query match if every attribute a of t
matches the query criteria. When missing data is consid-
ered to be a query match for an attribute a, the attribute
matches the query if the attribute value for that tuple
falls within the query range or is missing. When miss-
ing data is not considered to be a query match for an
attribute a, the attribute matches the query only if the
attribute’s value falls in the range specified by the query
search key for that attribute.

The performance of a query can be characterized by
the time it takes to perform the query and the accuracy
of the result. For this work we only consider techniques
that provide accurate query results. The time it takes to
perform a query when an index is used is made up of the
time to read the index (if the index does not already re-
side in memory), the time to execute the query over the
index, and the time to read the database pages indicated
by the index. The goal of this work is to propose index-
ing techniques that exhibit better performance than ex-
isting techniques and sequential scan when the database
attributes that are specified in a search key have missing
data.

When measuring query performance we consider two
metrics: index size and query execution time. Index size
is simply measured as the size of the requisite index files
on disk. It is indicative of the time required to initially
load the index structures. Although this metric is not as
critical for static read-only databases with ample disk-
space available, it becomes important as database up-
dates become more frequent or available disk space be-
comes limited. Query execution time is measured in mil-
liseconds for a query set. Given that the indexes are in
memory, this measurement indicates the time required
to process a set of queries and arrive at a set of pointers
to records in the database that match the query criteria.

4 Proposed Solutions

Our proposed solutions are to apply the techniques of
bitmap indexes and vector-approximation (VA) files mod-
ified appropriately to account for missing data and to ex-
ecute the query according to the query’s semantics. The
reason is that we want to independently index each di-
mension and execute queries efficiently without needing
to perform expensive operations to obtain the final re-
sult. Bit operations for bitmaps provide fast computation
and VA-Files provide pruning in multiple dimensions at
the same time using cheap comparisons.

4.1 Bitmap Indexes

We base one solution for the efficient access of incom-
plete databases on bitmap indexes. In the bitmap index
context, records are represented by a bit string. Each at-
tribute Ai would be represented by at most Ci bits of
the string where Ci is the cardinality of Ai. A bitmap
is a column wise representation of each position of the
bit string. Each bitmap would have n bits where n is the
number of records in the dataset. Given a dataset D =
(A1, A2, . . ., Ad) for each Ai attribute we build a certain
number of bitmaps depending on Ci. To handle missing
data using bitmaps, we map missing values to a distinct
value, i.e. 0. By doing this we are increasing the number
of bitmaps for each attribute with missing data by 1.
While mapping missing data to a distinct value fails for
multi-dimensional indexes, it is acceptable for bitmaps
because the attributes are indexed independently and
we are not creating an exponential number of subspaces
that must be searched to answer a query.

Let’s denote the bitvectors or bitmap vectors for at-
tribute Ai by Bi,j where 0 ≤ j ≤ Ci if Ai has miss-
ing values and 1 ≤ j ≤ Ci otherwise. Bi,0 represents
the bitvector for missing values. Let’s denote by Bi,j [x]
where 1 ≤ x ≤ n the bit value for record x in the
bitmap for attribute Ai and value j. Using bitmap in-
dices, queries are executed by performing bit operations
over the relevant bitmaps. OR, XOR, AND and NOT
are commonly used.

An important aspect of a bitmap index is the type
of encoding of the records. We explore two alternatives:
equality and range encoding.

4.2 Bitmap Equality Encoding (BEE)

Using equality encoded bitmaps, bit Bi,j [x] is 1 if record
x has value j for attribute Ai and 0 otherwise. Using this
encoding, if Bi,j [x] = 1 then Bi,k[x] = 0 for all k 6= j.
If attribute Ai has missing values, we add the bitmap
Bi,0 that behaves in the same manner explained above.
Figures 2 and 3 show a sample equality encoded bitmap
representation as modified to handle missing data.



Indexes for Databases with Missing Data 5

Bitmap
Vector Value

B1,0 0001000010
B1,1 0000001000
B1,2 0100000001
B1,3 0010000100
B1,4 0000100000
B1,5 1000010000

Fig. 3 Bitmap indexes

Adding an extra bitmap for each attribute with miss-
ing data is not a major burden with few records or few
dimensions, but when we consider 1,000,000 records with
100 dimensions we are effectively adding 100,000,000 bits
to our index which correspond to approximately 12 MB
in size. An intuitive solution that could be used to encode
missing data without adding an extra bitmap would be
to use different encodings depending on whether missing
data means an attribute match or not. In this alterna-
tive, when missing is a match we make Bi,j [x] = 1 for all
j if record x has missing data in attribute Ai; and when
missing data means a non-match, we make Bi,j [x] = 0
for all j if record x has missing data in attribute Ai.

However, there are problems associated with this ap-
proach. We will need to perform more bitmap operations
when we use the NOT operator. The reason is that when
we negate a bitmap when missing data is considered to
be a query match, the resulting bitmap would have 0’s
for the missing records. In order to recover the records
with missing data we will need to AND together two
bit columns. We then need to OR that result with the
original negated bitmap to arrive at a correct final re-
sult. When missing data does not imply a query match,
we would need to OR together two bit columns to en-
sure we are eliminating the records with missing values
and then AND this result with the negated bitmap to
get correct results. Using this approach, it would also
be impossible to distinguish between missing values and
a real value when the cardinality of the attribute is 1.
In addition, by making all bits 1 for the attribute when
missing data means a match we interrupt the runs of 0s
and compression decreases dramatically for the attribute
bitmaps.

Empirically, we realized that after compression using
WAH, the addition of an extra bitmap to handle miss-
ing data did not introduce much overhead. For the same
example of 1,000,000 records with 100 dimensions, and
assuming 10,000 records with missing data, each bitmap
for missing values would have a compression ratio of ap-
proximately 0.47 and overall the compression ratio for
the dataset would also improve.

Query Execution With equality encoded bitmaps a point
query is executed by ANDing together the bit vectors
corresponding to the values specified in the search key.
Bitmap Equality Encoded are optimal for point queries

[5]. However, when missing data means a query match
we need to use two bitmaps instead of one to answer the
query, i.e. the bitmap corresponding to the value queried
and the one for missing values.

Range queries are executed by first ORing together
all bit vectors specified by each range in the search key
and then ANDing the answers together. If the query
range for an attribute queried includes more than half
of the cardinality then we execute the query by taking
the complement of the ORed bitmaps that are not in-
cluded in the range query.

We execute the query differently depending on whether
missing data is a query match or not. Figure 4(a) shows
how a query interval for one attribute is evaluated when
missing data implies a query match. Figure 4(b) shows
the same evaluation when missing data is not a match.
The query execution time is a function of the number
of bitvectors used to answer the query. The number of
bitvectors used in the worst case to evaluate a single in-
terval in the query is equal to min(ASi, 1−ASi) ∗Ci +1
where ASi is the attribute selectivity of attribute Ai for
this query.

4.3 Bitmap Range Encoding (BRE)

For range encoded bitmaps, bit Bi,j [x] is 1 if record x has
a value that is less than or equal to j for attribute Ai

and 0 otherwise. Using this encoding if Bi,j [x] = 1 then
Bi,k[x] = 1 for all k > j. In this case the last bitmap
Bi,Ci

for each attribute Ai is all 1s. Thus, we drop this
bitmap and only keep Ci − 1 bitmaps to represent each
attribute. If attribute Ai has missing values we add the
bitmap Bi,0 which has Bi,0[x] = 1 if record x has a miss-
ing value for attribute Ai. Also in this case Bi,j [x] = 1 for
all j. We are treating missing data as the next smallest
possible value outside the lower bound of the domain, in
our case, the value 0. In total the set of bitmaps required
to represent attribute Ai with missing values is Ci. Fig-
ures 6 and 7 show a sample range encoded bitmap
representation as modified to handle missing data.

Another kind of encoding was considered instead of
making missing data the smallest value we evaluate the
extra bitmap as a flag indicating whether the data is
missing. In this alternative, if record x has a missing
value for attribute Ai, Bi,0[x] = 1 and Bi,j [x] = 0 for all
j > 0. However, by making Bi,Ci [x] = 0 when x has a
missing value for attribute Ai, we can no longer drop it.
This will effectively increase the number of bitmaps for
attribute Ai to Ci+1, and will not provide any advantage
to the query evaluation logic.

Query Execution For range encoded bitmaps, the bitvec-
tors used and the operations performed to execute a
query depend on the range being queried. We identify
three scenarios, depending on whether the range includes
the minimum value, or includes the maximum value, or



6 Michael Gibas et al.

Record Value B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

1 5 0 0 0 0 0 1
2 2 0 0 1 0 0 0
3 3 0 0 0 1 0 0
4 missing 1 0 0 0 0 0
5 4 0 0 0 0 1 0
6 5 0 0 0 0 0 1
7 1 0 1 0 0 0 0
8 3 0 0 0 1 0 0
9 missing 1 0 0 0 0 0
10 2 0 0 1 0 0 0

Fig. 2 Equality encoded with missing data

v1 ≤ Ai ≤ v2 =

(a) Missing Data is a Match (b) Missing Data is not a Match

Fig. 4 Interval Evaluation for Bitmap Equality Encoding

v1 ≤ Ai ≤ v2 =

(a) Missing Data is a Match (b) Missing Data is not a Match

Fig. 5 Interval Evaluation for Bitmap Range Encoding

Bitmap
Vector Value

B1,0 0001000010
B1,1 0001001010
B1,2 0101001011
B1,3 0111001111
B1,4 0111101111

Fig. 7 Range encoded bitmap indexes

is within the domain and includes neither the minimum
or maximum.

Figures 5(a) and 5(b) show how the interval is evalu-
ated for a single query attribute when missing data im-
plies a match or does not imply a match respectively.

The first three conditions in Figures 5(a) and 5(b)
refer to point queries. The other three refer to range
queries.

In the presence of missing data, range encoded bitmaps
are more efficient for range queries than equality encoded
bitmaps in all but extreme cases.

In the case where missing data is a query match, we
will need to access between 1 and 3 bitvectors per query
dimension. In databases without missing data, we would
need to access between 1 and 2 bitvectors per query di-
mension. We introduce some overhead to deal with the
missing data case.

In the case where missing data is not a match, we
need to access between 1 and 2 bitvectors per query di-
mension. This is also true for databases without missing
data, but there are two conditions, specifically the con-
ditions where the query range includes the minimum do-
main value, that require 1 extra bitvector access. This is
due to the fact that missing values are encoded as 1’s in
all bitmaps and a XOR operation is required to eliminate
missing data from the result set.



Indexes for Databases with Missing Data 7

Record Value B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

1 5 0 0 0 0 0 1
2 2 0 0 1 1 1 1
3 3 0 0 0 1 1 1
4 missing 1 1 1 1 1 1
5 4 0 0 0 0 1 1
6 5 0 0 0 0 0 1
7 1 0 1 1 1 1 1
8 3 0 0 0 1 1 1
9 missing 1 1 1 1 1 1
10 2 0 0 1 1 1 1

Fig. 6 Sample data using Range encoding

4.4 Bitmap Compression

One of the biggest disadvantages of bitmap indices is the
amount of space they require. Several compression tech-
niques have been developed in order to reduce bitmap
size and at the same time maintain the advantage of fast
operations [2,15,1,12].

The two most popular compression techniques are
the Byte-aligned Bitmap Code (BBC) [2] and the Word-
Aligned Hybrid (WAH) code [15]. BBC stores the com-
pressed data in Bytes while WAH stores it in words.
WAH is simpler because it only has two types of words:
literal words and fill words. The most significant bit indi-
cates the type of word we are dealing with. Let w denote
the number of bits in a word, the lower (w-1) bits of a
literal word contain the bit values from the bitmap. If
the word is a fill, then the second most significant bit
is the fill bit, and the remaining (w-2) bits store the fill
length. WAH imposes the word-alignment requirement
on the fills. This requirement is key to ensure that logi-
cal operations only access words.

We chose WAH over BBC because the bit opera-
tions over the compressed WAH bitmap file are faster
than BBC (2-20 times) [15]. However, we do sacrifice
space since BBC gives better compression ratio. When
we perform logical operations over intermediate com-
pressed bitmaps, we get compressed bitmaps as a result
and do not need to uncompress the representations.

4.5 VA-Files

For traditional VA-files, data values are approximated by
one of 2b strings of length b bits. A lookup table provides
value ranges for each of the 2bpossible representations.
For each attribute Ai in the database we use bi bits to
represent 2bi bins that enclose the entire attribute do-
main. In general bi � lg Ci when the cardinality is high.
We made bi = dlg(Ci + 1)e. For our purposes, we use
2b − 1 possible representations for data values and we
use a string of b 0’s to represent missing data values.
A VA-file lookup table relates attribute values to the
appropriate bin number. For VA-files we make a modi-
fication to the query based on the query semantics. For

Record Data VA-File
Number Value Representation

1 6 11
2 1 01
3 3 10
4 missing 00

Fig. 8 Database and VA-File representations.

VA-File
Representation Range

00 missing
01 1-2
10 3-4
11 5-6

Fig. 9 VA-file representations and data ranges.

a range query where missing data is not a query match,
we look for matches over the range of bins returned by
the lookup table. In the case where missing data means
a query match, we also include those records in the all
0’s bin as a query match.

Figures 8 and 9 show a simple example of a VA-
file using our missing data modification. If we perform a
query “return all records where value is 4 or 5”, our VA-
file technique will return the records in bins 00, 10, 11 as
approximate answers in the case where missing data is a
match. A filtering step would verify that record 1 does
not answer the query. In the case where missing data is
not a match, only the records in bins 10 and 11 would
be returned in the first step.

Query translation is simple. When missing data im-
plies a match, a range query in the form v1 ≤ Ai ≤
v2 is converted to (V A(v1) ≤ V A(Ai) ≤ V A(v2)) ∨
(V A(Ai) = 0b), where V A(x) is a function that converts
values to their representative VA-file bit representation
and b is the number of bits used to define an attribute.

These techniques are easy to apply and require little
or no modification of the queries or query processing. As
shown using empirical experiments, they are also scalable
in terms of the number of data dimensions.



8 Michael Gibas et al.

5 Query Level Semantics and Query Selectivity
Estimation

At the attribute level, we have described two basic query
semantics with respect to missing data. Missing data
means the attribute matches the query for that attribute
or it does not. At the query level with k query attributes,
the query semantics can entail all 2k combinations of
these 2 attribute-level semantics. In this section we de-
scribe some query level semantics and potential appli-
cations. We also explored query selectivity estimation
in the context of missing data. Query selectivity esti-
mates are used to provide online aggregation estimates
or to develop query plans. A certain level of accuracy is
needed for these estimates in order for them to be useful.
When databases contain missing data and the missing
data can be a match, the traditional methods for esti-
mating query selectivity are no longer valid due to the
effects of the missing data. For each query level semantic,
we provide methods to estimate the query selectivity us-
ing both simplified equations when certain assumptions
hold, and also equations for the general case.

5.1 Query Level Semantics - Maximum Allowed Missing

In the first described query level semantic, the user can
define a maximum number or percentage of attributes
that can be missing and still be a query match, assuming
all the other attributes which are not missing match the
query criteria.

Formally this query semantic can be described by the
algorithm presented in Figure 10

Input: Record Set S,
Query Q,
Allowable attributes with missing data AM

Output: Set of Matching Records M
M = ∅

for each Record R in S
boolean match = true
int count = 0
for each Attribute A in Q

if Rs attribute value is missing
count++

else if Rs attribute value for A not in range of A
match = false
break

if count ≤ AM AND match
M = M ∪R

Fig. 10 Query Processing Algorithm for Maximum Allow-
able Attributes Missing Query Level Semantic

This type of query semantic can be applied to a sit-
uation where the user is trying to accumulate at least a
certain number of candidates and progressively relaxes

the constraint on the allowable missing data until the
number of candidate answers is reached. For example,
consider a clinical trial that is trying to find a certain
number of participants. Candidates are typically found
by reviewing answers on forms filled out by patients or
doctors. The dataset of form data is susceptible to the
presence of missing data, either by design of the form or
the patient not completing the fields. A first set of clinical
trial candidates can be found by requiring no query fields
be missing. This constraint can be iteratively relaxed un-
til the candidate set is large enough. This process will
tend to target the most likely candidates first.

Because this alternate query semantic is structured
in much the same way as VA-files are processed, the en-
hanced VA-file is a natural choice to use to answer this
type of query. VA-file operations are more flexible to al-
low greater expressiveness. Given a number of maximum
allowed attributes that can be missing, we simply com-
pute query matches the same way that we did for the
query semantics where missing attributes are a query
match for the attribute. We accumulate the number of
attributes for which the reason that it matches is because
the data is missing (e.g. bucket number is 0). If this count
is greater than the number of allowed attributes that can
be missing, the data object does not match the query.

While bitmaps provide fast bit operations when the
query semantics are relatively simple, they do not have
the expressive power to easily compute results for this
more complicated query semantic. In order to compute
the query matches for this particular semantic using bitmaps
without modification, the level of allowable missing at-
tributes would need to be converted to a potentially com-
plicated series of bitmap operations that reflect the level
of missingness. For a query of length q where n attributes
are allowed to be missing, we need a combinatorial for-
mula using just AND and OR operations to verify that
not more than n attributes are missing. In the worst case,
the length of this formula can be exponentially depen-
dent on q, even after all possible simplifications.

For this query semantic, we can estimate the query
selectivity for the case where the probability of missing
data and attribute selectivity are the same across the
attributes, and the data and data missingness are not
correlated across attributes using the following formula:

QSm =
m∑

i=0

(n)!/((i)!(n− i)!) ∗ (AS ∗ (1− PM))n−i ∗ PM i

where QSm is the query selectivity for a query that
matches the query semantic for the case where missing
data is a match and the number of attributes for which
the query is a match because the data is missing is no
greater than m, AS is the attribute selectivity (the se-
lectivity for the attribute where data is not missing), n
is the number of attributes in the query, and PM is the
ratio of missing data.

For a given combination of k missing and n non-
missing attributes where the attribute selectivity and



Indexes for Databases with Missing Data 9

Allowed Missing Actual Size Predicted Size

0 104 105
1 337 338
2 529 533
3 601 605
4 612 615

Fig. 11 Query Set Size as Number of Allowed Missing At-
tributes Vary, PM = 0.1, AS = 0.2, k = 4

ratio of missing data is not the same over different at-
tributes we can estimate the query selectivity as:

QS =
n∏

i=1

ASi ∗ (1− PMi)
k∏

j=1

PMj

We can then estimate the query selectivity for a limit
of m attribute matches as a result of missing data by
aggregating all possible combinations of k and n where
k ≤ m. The accuracy of the estimation is affected by
correlations of data and missingness between attributes.

We performed tests in order to gain intuition about
the effect on performance and number of query matches
as we vary the user defined allowable level of missing
attributes for both synthetic and real data.

With respect to time performance, the enhanced VA-
file method of handling this alternate query semantic
took the same amount of time as the case where we con-
sider missing attributes to be a query attribute match.
Figure 11 and Figure 12 show samples of the variation
in the number of query matches as we vary the user de-
fined allowable level of missing attributes. Figure 11 is
for the synthetic data with cardinality 10, a probability
of missing data of 10% per attribute, a query length of 4
attributes, and an attribute selectivity level of 0.2. Fig-
ure 12 is for the synthetic data set with cardinality 10,
probability of missing data of 50%, a query length of 8
attributes, and an attribute selectivity of 0.1. The first
column shows the number of attributes for each query
that are allowed to match because they contain missing
data. The second column is the average number of query
results over a set of 100 randomly generated queries. The
last column shows the predicted number of results com-
puted using the formula for uniform attribute selectivity
and missing data ratio.

Figure 13 shows the effect of relaxing the level of al-
lowed missingness using our real set of Spanish census
data. For this experiment the cardinality and percent of
data missing for each dimension is highly variable, the
query length is 8 attributes, and the attribute selectivity
is variable due to data distribution, but the percent of
values that are covered by each query attribute range is
40%. The last column in this table is the average pre-
dicted query result set size using the attribute specific
attribute selectivity and missing data ratio formula.

These results show that we have some degree of con-
trol over the size of the query result set. This has im-
portant implications with respect to estimating query

Fig. 13 Query Set Size as Number of Allowed Missing At-
tributes Varies, AS = variable, k = 8

selectivity in the presence of missing data. For uniform
attribute selectivity and missing data ratio, we can accu-
rately predict the average query result set size, and could
use this information to select an appropriate maximum
allowed missing attribute value, m that will return at
least the given number of maximally filled results.

5.2 Query Level Semantics - User Specified Allowed
Missing Attributes

A second version of query level semantics in the pres-
ence of missing data allows the user to specify which
attributes are allowed to be considered to be a query
match when their attribute values are missing, and which
can not. This is analogous to database schema definition,
where attributes are marked as allowing null values or
not. In this case the allowance of null, or missing, values
is built into the query itself, lending more overall flexibil-
ity to the database design. This type of query semantics
would be applicable in any situation where there are hard
constraints about the presence of data with some portion
of attributes, while not on others.

As this query semantic can be easily translated into
a logical function, it can be easily addressed by both the
proposed VA-file and bitmap indexing solutions. In order
to apply this query semantic, the query language itself
would need some mechanism in order to denote if an at-
tribute is required to contain data. The queries could be
executed using either of the proposed solutions in mul-
tiple ways. One way would be to compute the result set
allowing missing data, Rall, then compute the result set
of only those data objects that contain missing data in
the attributes that require data, Rmiss. The query an-
swer is the difference, (Rall −Rmiss).

Alternatively, we could process attributes appropri-
ately based on the indication if missing data is considered
a query match for the attribute. For the VA-file solution,
as we process records, if the query attribute is not al-
lowed to contain missing data for a query match then



10 Michael Gibas et al.

Allowed Missing Actual Size Predicted Size

0 0 0
1 0 0
2 0 0
3 0 0
4 3 3
5 26 25
6 134 134
7 447 447
8 839 837

Fig. 12 Query Set Size as Number of Allowed Missing Attributes Vary, PM = 0.5, AS = 0.1, k = 8

the attribute is processed as being a match only if the
attribute value is within the range of buckets that match
the query range for the attribute. If missing data can in-
dicate a query match for that attribute, the attribute is
processed as being a match if the attribute values quan-
tization is in the range of buckets that match the query
range for the attribute, or the attribute values quantiza-
tion is the missing data bucket.

Since each attribute is evaluated separately in bitmaps,
we can apply the appropriate logical formula to obtain
results based on the query semantics for each attribute.
For the case where missing data can be a query match,
we can use the formulas presented in Figures 2a and 3a
for equality encoded and range encoded bitmaps, respec-
tively. For attributes where missing data is not a match,
we can use the formulas from figures 2b and 3b for equal-
ity encoded and range encoded bitmaps, respectively. We
then AND together the results we generate for individual
attributes.

In order to calculate the query selectivity using this
query level semantic, we take the product of each of the
attribute selectivitites. For those attributes that allow
missing data, we use the attribute selectivity that ac-
counts for the missing data. For those that do not, we
use the attribute selectivity that does not count missing
data. The formula is:

QS = QSm ∗QSn

where QSm is the missing data is a match query se-
lectivity, and QSn is the missing data is not a match
query selectivity. In databases that contain missing data,
the value of QSm for a query with j attributes that are
allowed to contain missing data can be estimated as:

QSm =
j∏

i=1

(ASi ∗ (1− PMi) + PMi)

and the value of QSn for a query k attributes that
are not allowed to contain missing data can be estimated
as:

QSn =
k∏

i=1

ASi ∗ (1− PMi)

PA Actual Size Predicted Size

0.0 612 615
0.1 530 531
0.2 455 457
0.3 390 391
0.4 331 332
0.5 278 280
0.6 233 234
0.7 195 195
0.8 160 160
0.9 130 130
1.0 104 105

Fig. 14 Query Set Size as Probability Missing Data is Al-
lowed (PA) varies, PM = 0.1, AS = 0.2, k = 4

Accuracy of the estimates will depend on the corre-
lation of the data and missingness between queried at-
tributes.

In our experiments for this query semantic, we ran-
domly determine the semantic for each attribute in the
query. If a random number generated for an attribute
in a query is below some threshold value, then we com-
pute the result set for that particular attribute using the
missing data is a match semantic. When the attribute se-
lectivity and ratio of missing data is the same across the
attributes, we can compute the query selectivity using:

QS =
k∑

i=0

(k)!/((i)!(k − i)!) ∗ (PA ∗AS ∗ (1− PM))i

∗ ((1− PA) ∗ ((1− PM) ∗AS + PM))k−i

where k is the query dimensionality, and PA is the
threshold ratio for allowing missing data per attribute.

Figure 14 and Figure 15 show how query result set
size varies as the probability that an attribute will be re-
quired to contain data is varied. Figure 14 is for the syn-
thetic data with cardinality 10, a probability of missing
data of 10% per attribute, a query length of 4 attributes,
and an attribute selectivity level of 0.2. Figure 12 is for
the synthetic data set with cardinality 10, probability of
missing data of 50%, a query length of 8 attributes, and
an attribute selectivity of 0.1.

The query selectivity for a given query where m at-
tributes are allowed to contain missing data in a query



Indexes for Databases with Missing Data 11

PA Actual Size Predicted Size

0.0 839 837
0.1 389 391
0.2 169 168
0.3 65 66
0.4 22 23
0.5 7 7
0.6 1 2
0.7 0 0
0.8 0 0
0.9 0 0
1.0 0 0

Fig. 15 Query Set Size as Probability Missing Data is Al-
lowed (PA) varies, PM = 0.5, AS = 0.1, k = 8

answer and n attribute are not, where the ratio of missing
data and attribute selectivity can vary among attributes
can be estimated using:

QS =
m∏

i=1

(ASi(1− PMi)) ∗

m+n∏
j=m+1

(ASj(1− PMj) + PMj)

Accuracy of the estimation is dependent on correla-
tion of the data and missingness among attributes. Esti-
mate for each individual combination, weighted by their
probability of occurrence, can be aggregated to estimate
an overall query selectivity for a query using those at-
tributes and given a ratio that each attribute may or
may not allow missing data in a query match.

Figure 16 shows the effect of varying the probabil-
ity that each attribute in a query will allow data to be
missing for a query match using our real set of Spanish
census data. Again, for this real data set the cardinality
and percent of data missing of each dimension is highly
variable, query length is 8 attributes, and the attribute
selectivity is variable due to data distribution, but the
percent of values that are covered by each query attribute
range is 40%. The last column in this table is the average
predicted query result set size using the attribute specific
attribute selectivity and missing data ratio formula.

The predicted values are based on an assumption that
the missingness of data is independent between dimen-
sions. For real data sets, there is likely a correlation be-
tween missing values, and therefore actual query selec-
tivity will likely differ from predicted similarity. Actual
values turn out to be higher than the predicted values,
but the overall shape of the results is similar.

Fig. 16 Query Set Size as Probability Missing Data is Al-
lowed (PA) varies, PM,AS = variable, k = 8

6 Comparative Experiments and Results

6.1 Experimental Framework

We performed experiments to compare the performance
of the bitmaps and VA-file approaches using both syn-
thetic and real datasets as we vary analysis parameters.
By using the synthetic data set we could control analysis
parameters individually and gain insights into the behav-
ior of the indexing techniques. We applied the techniques
to a real data set to verify the effectiveness of the tech-
niques on real scenarios.

For the synthetic data, we generated a uniformly dis-
tributed random dataset set with 450 attributes and
100,000 records. For the set of attributes we varied the
cardinality and percent of missing data. Cardinality var-
ied among 2, 5, 10, 20, 50, and 100 values and percent
of missing data among 10, 20, 30, 40, and 50 percent.

The real data is census data with 48 attributes and
463,733 records. The attribute cardinalities widely vary
from 2 to 165 (average of 37) and percent of missing data
varies from 0% to 98.5% (average of 41%). Table 1 details
the distribution for the synthetic and the real dataset.

We implemented query executors for both bitmaps
and VA-Files in Java. We ran 100 queries for each type
of experiment. Queries were executed in both scenarios
when missing data is a query match and when miss-
ing data is not a query match. Since the graphs look
very similar in both scenarios we present only results for
queries executed where missing data is a match.

Given that we used the same precision (100%) for
our implementations we compared bitmap indices and
VA-Files in terms of:

– Index Size. Index Size is an important factor in any
indexing technique. We are interested in indices that
can fit into memory to ensure fast query execution
without the overhead introduced when reading from
disk.



12 Michael Gibas et al.

– Query Execution Time. Query Execution Time
is the time required to produce a query result set.
We assume the indexes are in memory and do not
consider time to read the indexes.

6.2 Index Size

In this section we evaluate how the attribute cardinality
and the percentage of missing data affects index size.

6.2.1 Attribute Cardinality

For cardinality less than 10 there is not much room for
compression and the index size is equal for both types
of bitmap encoding and is not sensitive to the percent
of missing data. For equality encoded bitmaps, as the
attribute cardinality increases the compression ratio im-
proves considerably, however, at the same time, bitmaps
index size increases linearly with cardinality. For VA-
Files the index grows very slowly with cardinality given
our current quantization strategy. Index sizes are pre-
sented for attributes with 10% missing data in Figure
17(a). As can be seen, BRE does not benefit from WAH
compression.

With real data, compression rate is highly variable
with respect to attribute cardinality. Since real data can
be far from uniform, an attribute that has low cardinality
but frequently has one value can acheive high compres-
sion ratios. With our set of real data, those attributes
which have cardinalities of between 1 and 10 and are not
missing any data have a compression ratio between 0.002
and 1.03 using equality encoding and between 0.001 and
0.82 using bitmap range encoding. The wide range is
attributable to the bit density (ratio of 1’s) in the bit
columns. As the bit density approaches 1 or 0, the com-
pression ratio improves. Therefore, if one particular value
is frequent, then the bit density for that value’s column
is close to 1 yielding good compression ratio for that col-
umn and the bit density for all other bit columns is close
to 0, which results in good compression ratio for them.

6.2.2 Percent of Missing Data

For equality encoded bitmaps, as the percent of missing
data increases the compression ratio decreases making
the index smaller. Range encoding does not get signifi-
cant compression using WAH code. VA-File is not sen-
sitive to the presence of missing data and its size is in-
dependent of it. In any case the index size for VA-Files
is much smaller than bitmaps. Index sizes are presented
for cardinality 50 in Figure 17(b).

Good compression is also obtained on the real dataset
when an attribute has a high occurrence of missing data.
The missing data bit column has a bit density close to 1
and all other columns are close to 0. This leads to very
good compression ratios for equality encoded bitmaps

(between 0.01 and 0.09 for each of the 8 attributes in
our real data set which have more than 90% missing
data) and decent compresison ratios for range encoded
bitmaps (between 0.11 and 0.44). Overall, this real data
set had an equality encoded bitmap compression ratio of
0.17 and a range encoded bitmap compression ratio of
0.70.

6.3 Query Execution Time

To measure the effect of the various parameters over the
query execution time of the 100 queries we needed to
have control over the global query selectivity, i.e. the
number of records that match the given query. The fol-
lowing formula relates Global Selectivity (GS), Attribute
Selectivity (AS = (v2− v1 +1)/Ci) and Percent of Miss-
ing Data (Pmi

) of all the attributes involved in the queries:

GS =
k∏

i=1

((1− Pmi
)ASi + Pmi

)

, where k is the number of dimensions involved in the
query. In order to simplify this formula we assume equal
attribute selectivity on all the attributes in the query. By
doing this, individual attribute selectivities are easy to
compute but we lose some precision on the global query
selectivity. To measure query execution time we fixed the
global query selectivity to 1 percent. Plugging in different
values for the parameters into GS = [(1−Pm)AS+Pm]k
we compute the attribute selectivity for each attribute
in the query. Note that the granularity of attribute selec-
tivity is limited by Ci. In general, our estimate was very
close to 1 percent but sometimes the actual global query
selectivity went up to 3 percent. Note that when we make
the global selectivity constant and increase the percent
of missing data, the attribute selectivity decreases. We
tested the effect of attribute selectivity, percent of miss-
ing data, and query dimensionality against query execu-
tion time.

6.3.1 Attribute Cardinality

Figure 18(a) shows the query execution time of 100 queries
over attributes with 10 percent missing data and var-
ious cardinalities. Also in this case the execution time
for BRE and VA-Files remains somewhat constant with
BRE being faster than VA-Files. For BEE, the execution
time is linear since the number of bitmaps used to answer
the queries depends on the cardinality of the attribute
and its selectivity.

The proposed techniques also compared favorably to
using a number of single dimension indexes, such as done
by the MOSAIC technique. We achieved speedups of be-
tween 5 and 40 times using our techniques over 8 at-
tribute point queries. The relative difference in times in-
creased as the query ranges per attribute increased. This
is because the intermediate answer sets are larger as more
results are returned by the single dimension indexes.



Indexes for Databases with Missing Data 13

(a) (b)

Fig. 17 Index Size Versus (a) Cardinality and (b) Percent of Missing Data

(a) (b) (c)

Fig. 18 Query Execution Time Versus (a) Cardinality, (b) Percent of Missing Data, and (c) Query Dimensionality

6.3.2 Percent of Missing Data

Figure 18(b) shows the results of these experiments for
attributes with cardinality 10. For equality encoded bitmaps,
the execution time decreases when the percent of missing
data increases. This is because when we make the global
selectivity constant and increase the percent of missing
data, the attribute selectivity decreases and the number
of bitmaps used in the query execution depends on the
attribute selectivity for this kind of encoding. For range
encoded bitmaps, the execution time remains somewhat
constant. The small variations are due to the possibility
of using between 1 and 3 bitmaps per dimension over
the query execution. It turns out that as the percent of
missing data increases the number of bitmaps used per
dimension gets closer to 3. For VA-Files, the execution
time is also somewhat constant. The variations are due
to the actual global selectivity for cardinality 10 and 8
dimensions in the query. For cardinality 10 and 50 %
missing data the global selectivity is 0.84%, for 30 and
40 is 1.28%, but for 20 is 1.7%. In general, BRE executes
range queries faster than the other two. The only case in
which BEE performs better than BRE is at 50% miss-
ing when the attribute selectivity is 10% and the range
query becomes a point query.

6.3.3 Query Dimensionality

Figure 18(c) shows the query execution of 100 queries
over attributes with cardinality 10 and 30 percent of
missing data. For all indices the execution is linear in
the number of query dimensions. BRE grows very slowly
since we are only using between 1 and 3 bitmaps per
query dimension. BEE grows much faster since as we
increase the number of dimensions with this percent of
missing data the attribute selectivity get closer to 50 %.
For smaller percents of missing data and same cardinal-
ity the attribute selectivity is greater than 50 %, around
70 % so effectively we only access the 30 % of the bitmaps
and therefore the execution time does not increase lin-
early. For VA-Files the execution time also increases with
the query dimensionality.

6.3.4 Results on Real Data

Experiments using this real data set yielded several con-
clusions. For this data set, the bitmap solutions were
significantly faster than the VA-File solution (3 to 10
times faster). This was because the skewness of this par-
ticular data set allowed for very good compression of the
bitmaps and while the VA-file implementation had to
operate over about 500,000 vector approximations of the
records, the bitmap implementations performed bit oper-
ations over substantially fewer words. The average com-



14 Michael Gibas et al.

pression ratio for the equality encoding bitmaps was 0.17
(with 23 attributes compressing to less than 0.1 times
their original size). The average compression ratio for
the range encoding bitmaps was 0.7 (with 18 attributes
compressing to less than 0.5 times their original size and
only 3 attributes not compressing at all).

Also of note is that whereas the presence of missing
data can introduce a degradation of a couple of orders
of magnitude in hierachical multiple-dimension indexes
as shown in the motivating example, there is not a large
degradation associated with the presence of missing data
using these techniques.

In our experiments with real data, the range encoded
bitmaps performed faster than the equality encoded bitmaps.
In these experiments we used range queries over 20% of
the queried attribute possible values and would expect
this result since range encoded bitmaps are tailored for
range queries.

7 Conclusions

In this paper we demonstrate that missing data not only
causes semantic problems, but also that indexing such
data while maintaining the knowledge that data is miss-
ing causes significant performance problems. We show
that performance using current multi-dimensional index
structures degrades (e.g. by a factor of 23 for a 2-D R-
tree with 10% missing data) and introduce techniques
for indexing missing data that are scalable with respect
to query dimensionality.

The techniques presented in this paper are easy to ap-
ply and allow the effective indexing of missing data. As
opposed to traditional hierarchical indexing structures
and previously proposed missing data indexing techniques,
these techniques exhibit linear performance for query ex-
ecution time with respect to database and query dimen-
sionality. This is done by essentially indexing attributes
independently. Our solutions take advantage of this in-
dependence by handling missing data for each attribute,
and still maintain the linear performance associated with
respect to dimensionality that bitmaps and VA-files have
been known for.

These techniques exhibit a tradeoff between execu-
tion time and indexing space. The bit operations used to
evaluate queries for bitmaps are fast, but the space re-
quired to represent an exact bitmap can be much higher
than a corresponding exact VA-file.

The range encoded bitmaps typically offer the best
time performance but, at least using the techniques we
used, can not be compressed as much as equality encoded
bitmaps. They typically perform faster because there is
a limit on the number of bit operations that must be per-
formed to evaluate a query for each dimension. Equal-
ity encoded bitmaps perform a maximum of C/2+1 bit
operations per query dimension and can perform faster
than range encoded bitmaps for point queries or range

queries with small ranges. Equality encoded bitmaps can
be compressed much more than range encoded bitmaps.

VA-files offer the least size to represent the same in-
formation offered by bitmaps, but the operations per-
formed are not bit operations, they usually do not oper-
ate as fast as the range encoded bitmaps.

Query level semantics can cover any possible com-
bination of atrtibute level semantic. These can be ap-
plied to enhance the flexibility of the query language
and find answer sets that reflect a likelihood of matching
the query. Query selectivity when the database contains
missing data can be relatively accurately estimated if the
missingness of the data is not correlated.

A characteristic of the range encoded bitmaps is the
inability to compress them. We would like to explore
techniques such as BBC compression and row reordering
in order to achieve more compression of these bitmaps.

Acknowledgements This research was partially supported
by Department of Energy (DOE) grant DE-FG02-03ER25573
and National Science Foundation (NSF) grant CNS-0403342.
We extend our gratitude to the anonymous EDBT 2006 re-
viewers who provided excellent ideas about extending our ear-
lier work.

References

1. Amer-Yahia, S., Johnson, T.: Optimizing queries
on compressed bitmaps. In: The VLDB Journal,
pp. 329–338 (2000). URL citeseer.ist.psu.edu/amer-
yahia00optimizing.html

2. Antoshenkov, G.: Byte-aligned bitmap compression. In:
Data Compression Conference. Oracle Corp., Nashua,
NH (1995)

3. Antoshenkov, G., Ziauddin., M.: Query processing and
optimization in oracle rdb. The VLDB Journal (1996)

4. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design
and evaluation. In: Proceedings of the 1998 ACM
SIGMOD international conference on Management of
data, pp. 355–366. ACM Press (1998). DOI
http://doi.acm.org/10.1145/276304.276336

5. Chan, C.Y., Ioannidis, Y.E.: An efficient bitmap
encoding scheme for selection queries. SIG-
MOD Rec. 28(2), 215–226 (1999). DOI
http://doi.acm.org/10.1145/304181.304201

6. Inc., S.: Sybase IQ Indexes., chap. Sybase IQ Release 11.2
Collection, chapter 5. Sybase Inc. (1997)

7. Johnson, T.: Performance measurements of compressed
bitmap indices. In: Proceedings of the 25th International
Conference on Very Large Data Bases, pp. 278–289. Mor-
gan Kaufmann Publishers Inc. (1999)

8. Koudas, N.: Space efficient bitmap indexing. In: Proceed-
ings of the ninth international conference on Information
and knowledge management, pp. 194–201. ACM Press
(2000). DOI http://doi.acm.org/10.1145/354756.354819

9. O’Neil, P., Quass, D.: Improved query performance
with variant indexes. In: Proceedings of the 1997
ACM SIGMOD international conference on Manage-
ment of data, pp. 38–49. ACM Press (1997). DOI
http://doi.acm.org/10.1145/253260.253268

10. O’Neil, P.E.: Model 204 architecture and performance.
In: Proceedings of the 2nd International Workshop
on High Performance Transaction Systems, pp. 40–59.
Springer-Verlag (1989)



Indexes for Databases with Missing Data 15

Table 1 Synthetic and Census Datasets Distribution

Synthetic Dataset Census Dataset
% of Missing Data Total % of Missing Data Total

Card 10 20 30 40 50 Columns Card 0 ≤10 ≤50 ≤90 >90 Columns
2 10 10 10 10 10 50 <10 11 0 2 2 0 15
5 10 10 10 10 10 50 10-50 7 2 3 5 4 21

10 20 20 20 20 20 100 51-100 2 0 1 2 2 7
20 20 20 20 20 20 100 >100 0 0 1 2 2 5
50 20 20 20 20 20 100 Total 20 2 7 11 8 48

100 10 10 10 10 10 50
Total 90 90 90 90 90 450

11. Ooi, B.C., Goh, C.H., Tan, K.L.: Fast high-dimensional
data search in incomplete databases. In: Proceedings of
the 24rd International Conference on Very Large Data
Bases, pp. 357–367. Morgan Kaufmann Publishers Inc.
(1998)

12. Stockinger, K.: Bitmap indices for speeding up high-
dimensional data analysis. In: Proceedings of the 13th
International Conference on Database and Expert Sys-
tems Applications, pp. 881–890. Springer-Verlag (2002)

13. Weber, R., Blott, S.: An approximation based data
structure for similarity search (1997). URL cite-
seer.ist.psu.edu/weber97approximationbased.html

14. Weber, R., Schek, H.J., Blott, S.: A quantitative analy-
sis and performance study for similarity-search methods
in high-dimensional spaces. In: Proceedings of the 24th
International Conference on Very Large Databases, pp.
194–205 (1998)

15. Wu, K., Otoo, E., Shoshani, A.: Compressing bitmap in-
dexes for faster search operations. In: SSDBM (2002)

16. Wu, K., Otoo, E., Shoshani, A.: On the performance
of bitmap indices for high cardinality attributes. Tech.
Rep. LBNL-54673, Lawrence Berkeley National Labora-
tory (2004)

17. Wu, K., Otoo, E.J., Shoshani, A.: A performance com-
parison of bitmap indexes. In: Proceedings of the tenth
international conference on Information and knowledge
management, pp. 559–561. ACM Press (2001). DOI
http://doi.acm.org/10.1145/502585.502689

18. Wu, K., Otoo, E.J., Shoshani, A., Nordberg., H.: Notes
on design and implementation of compressed bit vectors.
Technical Report LBNL PUB-3161, Lawrence Berkeley
National Laboratory (2001)

19. Wu, M.C.: Query optimization for selections using
bitmaps. In: Proceedings of the 1999 ACM SIG-
MOD international conference on Management of
data, pp. 227–238. ACM Press (1999). DOI
http://doi.acm.org/10.1145/304182.304202

20. Zimanyi, E.: Incomplete and uncertain information in
relational databases. Ph.D. thesis, Université Libre de
Bruxelles (1992)


