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Abstract

Network File System (NFS) is widely deployed as
one of the reliable means for file sharing. A trend in
NFS development is the use of Remote Direct Mem-
ory Access (RDMA) as the data transport protocol.
With its capability of offloaded data movement and
direct data placement, RDMA is able to reduce the
host CPU involvement in bulky data movement, as
well as the load on the memory and IO buses. NFS
over RDMA has been first attempted on Solaris
with a pure RDMA read-based design and avail-
able in the recent releases of OpenSolaris. In this
paper, we further investigate and optimize the de-
sign of OpenSolaris NFS over RDMA. We focus on
the appropriate, yet efficient use of RDMA read and
RDMA write for different NFS operations. We also
devise mechanisms for credit-based flow control for
efficient and scalable communication of NFS over
RDMA. To be interoperable with corresponding
client/server implementations from other NFS over
RDMA implementations, the client and server pro-
tocols are both designed to be fully compliant to the
IETF drafts for NFS Direct Data Placement [11]
and RPC over RDMA [12]. We have also evaluated
our design of OpenSolaris NFS over RDMA pro-
tocol. Our results indicate that the optimized NFS
over RDMA design can improve NFS read perfor-
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mance by up to 28% in single-threaded test cases,
and up to 44% in multi-threaded cases. In addition,
our design is also beneficial to the performance of
some NFS metadata operations, such as readdir, by
up to 15%.
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finiBand

1. Introduction

Since its inception in the mid-80’s, the Network
File System (NFS) [28] protocol has been ubiq-
uitously accepted as a standard means for sharing
files in many operating systems. It has been de-
ployed on a variety of architectures and platforms,
including workstations and high end server farms.
Despite the rapid development of different cluster
file systems [35, 13, 5], incarnations of NFS con-
tinue to be used as the primary file system for main-
taining user home directories largely because of its
reliability and ease of deployment.

NFS has gone through several generations of de-
velopment, including versions 2, 3 and 4 [28, 24,
29]. Evolutionary advances in NFS include better
performance with significant feature additions like
TCP-based transport, large block transfer, server
retry caches and asynchronous writes. Recent tech-
nology advances, such as high speed, multi-core
CPU architectures, high bandwidth system mem-
ory and IO buses, as well as high speed networks,
continuously push the performance bottlenecks to
the slowest evolving components. This exerts a
Darwinian pressure on file system protocols like



NFS, which also need to keep abreast with these
technological changes to remain competitive. In
particular, state-of-the-art networking technologies,
such as InfiniBand [18] and 10GigE [17, 15], pro-
vide high bandwidth of more than 10Gbps and sub-
microsecond latency. This trend of network ac-
celeration leads to the various new communication
protocols being designed, such as RDMA [26] and
SDP [4]. These protocols typically try to offload
the movement of data into the network hardware
and directly transfer data between source and desti-
nation memory buffers. These appealing transport
protocols and the physical capacity of their under-
lying networks have triggered the improvement of
other subsystems in the computer architecture. In
particular, networking has become an integral part
of file system and storage subsystems in so called
networked storage systems. These networked sub-
systems have integrated new generations of net-
work communication interfaces either through the
creation of new protocols such as DAFS [14], or by
the introduction of a new data movement layer to
an existing protocol, such as iSER [19] for SCSI.

RDMA, with its offloaded processing and direct
data placement features, can reduce the overhead
for both data and metadata exchange. This com-
munication benefits are directly linked with criti-
cal NFS performance metrics in terms of IO band-
width and transaction throughput. Hence, RDMA
has been viewed as an opportunity for improv-
ing the performance of all NFS versions. It also
allows NFS to gain benefits from the latest net-
working technologies such as InfiniBand [18] and
iWARP [27] via 10GigE [17, 15]. Multiple IETF
drafts [11, 12] have been proposed to publicize the
problem statements and standardize the wire proto-
col for possible NFS over RDMA implementations.

There have been earlier studies to build NFS
data movement on top of RDMA transport proto-
col. For example, Callaghan et. al. [9] have pro-
totyped an RDMA read based transport protocol
for NFSv3 and have demonstrated its benefits in
terms of NFS READ bandwidth and CPU utiliza-
tion. Talpey et. al. [33] have recently announced
the availability of initial implementations for Linux
NFS client and server. While the NFSv4 [29] being
positioned as a cluster file system with its pNFS [8]
parallel extension, an efficient NFS over RDMA

implementation would be an indispensable com-
ponent for NFS to demonstrate its capabilities of
blending with the latest networking technology and
maximizing the utilization of available network IO
capacity. Such performance promises of RDMA
will help the continuous adoption of NFS into more
high end server and computing environments, as
they do not have to switch to proprietary solutions
for equivalent performance. Thus it is desirable to
ensure that the existing implementations can deliver
its optimal performance.

In this paper, we delve into the issues of de-
signing efficient NFS over RDMA for OpenSolaris,
while taking into account the advocated IETF RPC
RDMA draft [12] requirements of NFS scalability,
security and interoperability. For these purposes,
we demonstrate the inappropriateness of the cur-
rent RDMA read-based design of OpenSolaris NFS
over RDMA. For example, such RDMA read based
design exposes part of the server memory space
to any client. This likely put the server at risk
from misbehaving or even malicious clients. An
RDMA read based design may significantly lim-
its the number of concurrent RDMA operations.
Over InfiniBand, this number is as small as eight
(for current generations of InfiniBand HCAs) com-
pared to several thousands for RDMA write. In-
stead, we provide an optimized design, which also
conforms to NFS direct data placement and RPC
over RDMA drafts [11, 12]. In our design, only the
NFS server is allowed to initiate RDMA operations,
including RDMA read and RDMA write as appro-
priate. The conformance of our design to these pub-
licized IETF standards guarantees its interoperabil-
ity with the corresponding client/server implemen-
tations from other NFS over RDMA implementa-
tions such as Linux NFS over RDMA [33]. We
have also devised mechanisms for credit-based flow
control for efficient and scalable communication of
NFS over RDMA.

We have evaluated the new design of OpenSo-
laris NFS over RDMA protocol. IOzone bench-
mark tests indicate that, as expected, the current
implementation does not affect the performance of
NFS write, whose communication remains to go
through RDMA read. On the other hand, for NFS
read, our results show that RDMA write based
RPC brings up to 28% performance improvement



in single-threaded test cases, and up to 44% in
multi-threaded cases. Moreover, our design is also
shown to be beneficial to the performance of some
NFS metadata operations, such as readdir, by up to
15%.

The rest of the paper is presented as follows. In
Section 2, we discuss some related work. Section 3
provides an overview of InfiniBand, NFS and its
related protocols including XDR and RPC. In Sec-
tion 4, we describe the detail design of NFS over
RDMA, focusing on the utilization of RDMA write
in the new RPC/RDMA transport and its confor-
mance to the IETF standards [11, 12]. Following
that, in Section 5, we describe some resource man-
agement issues related to NFS over RDMA, includ-
ing the server-side credit control and connection
management. In Section 6, we provide the perfor-
mance evaluation of the new design. Finally, Sec-
tion 7 concludes the paper.

2. Related Work

There have been numerous studies in the opti-
mization of NFS protocols. In this section, we
discuss about some of the most related work in
the evolution of NFS, as well as its relation to the
advances in high performance networks and other
network-based storage protocols.

Xu et. al. [34] investigated the performance ben-
efits of client caching to concurrent read sharing
over NFS. Peng et. al. [25] showed that a network-
centric reorganization of the buffer cache can im-
prove the NFS performance. Radkov et. al. [23]
compared the performance of file-based NFS proto-
col and block-based iSCSI protocol and noted that
aggressive meta-data caching can benefit the NFS
protocol.

Martin et. al. [21] studied the sensitivity of NFS
to high performance networks by introducing con-
trolled delays into live systems in the late 90’s.
They observed that NFS was more sensitive to
processor overhead rather than networking latency
and bandwidth. However, the emergence of high
speed networks with direct access protocols such
as RDMA lead to both the design of new network
file system and the revision of traditional network
file systems to enable file accesses over RDMA-
capable networks. For example, iSER was recently

proposed and standardized by IETF as an exten-
sion for Internet Small Computer Systems Interface
(iSCSI) protocol [19, 32]. DAFS [14, 20] designed
a user space file system library that allows appli-
cations to bypass operating system kernel and take
advantage of high performance user-level network
directly. Goglin et. al. [16] replaced the RPC pro-
tocol of NFS with Myrinet GM protocol to achieve
Optimized Remote File System Accesses (ORFA).
Callaghan et. al. [9] provided an initial implementa-
tion NFS over RDMA on Solaris. An RDMA read
based RPC transport is implemented as a proof of
concept to show the performance benefit of NFS
over RDMA compared to TCP.

Our work continues this endeavor further and
optimizes the design of NFS over RDMA for the
purposes of its performance enhancement and com-
pliance to IETF drafts [11, 12] for wide interoper-
ability. Our studies are performed with experiments
over 10Gbps InfiniBand [18]. Note that, Talpey
et. al. [33] have recently announced the availabil-
ity of initial Linux NFS over RDMA implementa-
tions for comments. This project is carried out in
parallel with our work in order to verify the mutual
interoperability.

3. Overview

In this section, we discuss InfiniBand RDMA
operations, the OpenSolaris implementation of In-
finiBand and the NFS protocol.

3.1 Overview of RDMA operations in Infini-
Band

InfiniBand [18] supports channel based opera-
tions for reliable communication. These operations
include traditional send/receive semantics as well
as Remote Direct Memory Access (RDMA) prim-
itives. Send/Receive (RDMA Send) primitives re-
quire the prior posting of a descriptor on the re-
ceiver side. RDMA operations allow secure access
to the memory of a remote node without involve-
ment of that node. RDMA operations are mainly
of two types Read and Write.RDMA Readallows
a given node to directly read the contents of a re-
mote node. Similarly,RDMA Writeallows one to



deposit data directly into the memory of the re-
mote node. Fig. 1 shows the InfiniBand software
stack in OpenSolaris. The Tavor HCA driver pro-
vides access to the InfiniBand to the Solaris In-
finiBand Transport Framework (IBTF) which im-
plements the InfiniBand Transport Layer (IBTL)
and IBMF. Other access protocols such as IETF IP
over InfiniBand (IPoIB) and user defined applica-
tion programming layer (uDAPL) are implemented
using IBTF. NFS/RDMA may access InfiniBand
through IBTF.

RPC
XDR

NFS (2,3,4)

uDAPL IPoIB

IBMFIBTF

Tavor HCA Driver

Hardware

Other TCP or UDP networks

RDMA  SOCK

Fig. 1. OpenSolaris Implementation of Infini-

Band and NFS

3.2. Overview of NFS

Network File System (NFS) [7] is ubiquitously
used in most modern clusters. It allows users to
transparently share file and IO services on a variety
of different platforms. Figure 1 shows a diagram of
the NFS architecture on OpenSolaris. NFS is based
on the single server, multiple clients model. Com-
munication between the NFS client and the server
is via the Open Network Computing (ONC) remote
procedure call (RPC). RPC is an extension to the
local procedure calling semantics, and allows pro-
grams to make calls to nodes on remote nodes as
if it were a local procedure call. RPC traditionally
uses TCP or UDP as the underlying communication
transport. RDMA transport enabled RPC specifi-
cations and protocols have become available [12].
RPC is a standard defined by IETF RFC 1831 [30].
Since the RPC calls may need to propagate be-
tween machines in a heterogeneous environment,
the RPC stream is usually serialized with the eX-

ternal Data Representation (XDR) standard (IETF
RFC 1832 [31]) for encoding and decoding data
streams. NFS has seen three major generations of
development. The first generation, NFS version
2 (RFC 1094 [3]), provided a stateless file access
protocol between the server and client using RPC
over UDP. NFS version 3 [24] (RFC 1813 [10])
added to the features of NFSv2 and provided sev-
eral performance enhancements, including larger
block data transfer, TCP-based transport and asyn-
chronous write, among many others. The latest ver-
sion NFS version 4 [1] specification was developed
by IETF (RFC 3530 [29]) and includes features for
improved access and performance.

4. Designing OpenSolaris NFS over RDMA

In this section, we describe the new design of
OpenSolaris NFS over RDMA. We focus on these
issues: RPC message layout for NFS, leveraging
RDMA write in transport, and XDR stream encod-
ing/decoding of RDMA chunks. In particular, we
describe the importance of leveraging RDMA write
in the transport of direct (RDMA chunk) messages
as well as long RPC messages. In addition, as
we describe these issues, we illustrate in what as-
pects the design can improve the current NFS over
RDMA implementation.

4.1. RPC Message Layout

In this section we describe the formats of RPC
calls and replies. RPC call messages are composed
of two parts - an RDMA chunk which includes an
RDMA header and zero or more read/write chunk
lists, and an RPC message which includes an RPC
header and non-chunked arguments. The layout is
shown in Fig. 2. With NFSv3, at most one ofread
chunk list, write chunk list, andlong reply chunkis
not null. When a chunk list is null, there is a single
Falseat the corresponding position.

The layout of the RPC reply is similar to that
of the RPC call. Thewrite chunk listand long
reply chunkshould be the same as received from
the client, but with updatedlength information. In
our RDMA write based implementation, since the
client shall never issue RDMA operations to the
server, theread chunk listis always null.



RDMA header & chunk list RPC header & arguments

creditxid  version op Read chunk list Write chunk list Long reply chunk

xid procedure_num credential non−chunked arguments

more wchunk Falsemore rcle more rcle  ... False

more num_segments wcle wcle ... more num_segments wcle wcle ... False

RPC Call Format

more: A boolean variable that indicates whether there is a chunk list element following

rcle: Read chunk list element

wcle: Write chunk list element

wchunk: Write chunk for long reply

Fig. 2. Layout of RPC Call/Reply Messages
4.2. Leveraging RDMA Write in transport

The original RDMA read based design has sev-
eral drawbacks. These include the security and per-
formance concerns because the original design al-
lows RDMA read from the client to access memory
regions on the server. But for security reasons, an
NFS server shall avoid exposing its memory seg-
ments to any client to prevent incorrect or mali-
cious uses of its memory resources. In addition,
RDMA write on some interconnects, e.g. Infini-
Band, allows more messages concurrently in tran-
sit. This can help the new design to achieve bet-
ter data throughput. Moreover, the original RDMA
read based design also requires the client to send
an RDMA Done message to the server when it fin-
ishes reading the Reply Chunks. Thus RDMA write
based design can eliminate this extra control mes-
sage for the completion of an RPC transaction, po-
tentially enhancing performance. The details are
described in Section 4.2.2. Finally, we design a DI-
RECT IO path in the RDMA write based design for
NFSv3 READ operations. This allows the server to
directly write into the client application buffer, re-
ducing client overhead.

4.2.1. Transport of Short and Direct (RDMA
chunk) Messages

Depending on the type of NFS operations, RPC
messages may vary in length. For example, sizes
for RPC call and reply for NFSv3 GETATTR are
usually less than 120 bytes; RPC messages for
NFS read/write can be as long as the maximum
fragment size allowed. Based on the fact that
the communication of RDMA chunks requires the

communication of extra steering tags and mes-
sage offset/lengths, it makes sense to put short
message inline with the RPC messages, while ex-
ploiting the use of direct (RDMA chunk) transfer
when the message size is large than a threshold,
RDMA MINCHUNK (adjustable value, 1KB is the
default).

(No chunk lists)
RDMA Header RPC Call

(No chunk lists)
RDMA Header RPC Reply

Client Server

Fig. 3. Inline Trans-

port of Short Mes-

sages

(No chunk lists)
RDMA Header RPC Reply

Client Server

RPC Call
(Read lists)

RDMA Header

RDMA Read

Fig. 4. RPC via

RDMA Read

Client Server

RPC CallRDMA Header

RDMA Write

(Write lists)

RDMA Header RPC Reply
(Write lists)

Fig. 5. RPC via

RDMA Write

RDMA Read

(Read lists)
RDMA Header

(No chunk lists)
RDMA Header

RPC Reply

RPC Call

RDMA_DONE

Client Server

Fig. 6. NFS Read via

RDMA Read

Figures 3, 4 and 5 illustrate the design of In-
line, RDMA read and RDMA write based RPC
transport, respectively. For NFSv3, no RPC mes-
sage will include both Read and Write chunklist,
so Figures 4 and 5 exactly correspond to the com-
munication for large NFS write and read opera-
tions. NFSv4, in order to save the number of net-
work messages, introduces compound operations.
Such compound operations lead to the combination
of multiple read/write operations in one RPC call.
For these compound operations, the server side can
satisfy the requirement by combining the process-
ing of both read and write chunk lists and invok-
ing RDMA read and write as needed. It should
be noted that in the current OpenSolaris NFS over
RDMA, NFS READ operations are built entirely



on top of RDMA read. Fig. 6 shows the commu-
nication flow diagram of NFSv3 Read operations
with RDMA read. In contrast, the RDMA write
based design for NFSv3 READ readily saves an
extra RDMA DONE message. More important,
the throughput could potentially be much higher
as the server can issue several concurrent RDMA
write messages, compared with what it can do with
RDMA read.

4.2.2. RDMA-based Long Message Transport

NFS can have RPC procedures that transfer very
large amount of data in either RPC call or reply,
whose sizes exceed the maximum allowable size
for an RDMA send operation. These situations
can be more frequent with NFSv4 compound op-
erations as it combines more operations into a sin-
gle RPC call. These chunks can be in the size of
megabytes. RDMA send operations require pre-
pinned memory buffers. Forcing the data to be sent
inline in RDMA send operations can lead to unac-
ceptably large pre-pinned send and receive buffers.
This might impact scalability of the server mem-
ory resource management. Additionally, the expen-
sive data copies needed to process the received data
might tie down the CPU, impacting utilization and
the ability to serve more clients. It makes sense
to leverage RDMA transport for transferring these
chunks of data because it can be more efficiently
carried out with RDMA’s direct placement and less
involvement of host CPU.

(No chunk lists)
RDMA Header RPC Reply

RDMA_NOMSG

Client Server

RDMA Read
RPC Long Call

Fig. 7. Long RPC

Call via RDMA Read

RPC Long Reply

RDMA_NOMSG

Client Server

RDMA Header RPC Call

RDMA Write

Fig. 8. Long RPC

Reply via RDMA

Write

The long RPC call and reply can happen in di-
rect mode of RPC message transport or inline mode
of transport, because the number of fragments can

Client Server

RDMA Header RPC Call

RDMA_DONE

RDMA Read
RPC Long Reply

RDMA_NOMSG

Fig. 9. Original Long RPC Reply via RDMA Read

be very large while each of the fragments is less
than RDMA MINCHUNK. Again, NFSv4 com-
pound operations can lead to long chunk lists and,
hence, long RPC call and reply messages. Figures 7
and 8 show the diagrams of RDMA read and write
based transport for such long RPC call and reply
messages. In contrast, as shown in Fig. 9 with the
original RDMA read based RPC transport, a long
RPC reply message has to be pulled by the client
from the server, followed by an RDMADONE
message sent to the server. As a result, such RDMA
write based RPC transport can benefit both the NFS
server throughput and the response time as seen
from the client.

4.3. XDR stream encoding and decoding of
RDMA chunks

Through XDR encoding and decoding, applica-
tion data can be converted into a form that is suit-
able for transmission from one computer to another
in a network order and architecture endian indepen-
dent manner. For references of XDR, please refer
to IETF XDR RFC 1832 [31]. There are differ-
ent type of XDR streams. For NFS over RDMA to
work, a new type, XDRRDMA, is introduced for
communicating data via RDMA. As described in
Section 4.1, each RPC message is encapsulated into
XDR RDMA stream in which an RDMA header
in wrapped ahead of RPC header. Within RDMA
header, the chunk lists are provided. We describe
the processing of forming read and write chunk
lists,



4.3.1. Creating RDMA Chunk Lists

The new design of NFS over RDMA in OpenSo-
laris employs three different types of RDMA chunk
lists including, read chunk lists, write chunk lists
and long RPC reply chunk lists. The original design
has only RDMA read chunk lists. RDMA read and
write chunk lists are created based on the buffers for
the RPC arguments and results, respectively. The
length for each chunk are available based on the
length of memory IO vectors. If the RPC opera-
tion is expecting a long reply (or a reply message
of unknown length) from the server, a long RPC
reply chunk of LONGRPCLEN (64KB) is allo-
cated and created as a reply chunk list of only one
chunk. For NFSv3, there is exactly only one type
of chunk lists amongst these three. With NFSv4,
there can be any combination of these three. If
the RPC message is large than the buffer size for
RDMA send operations, this results in a long RPC
call. A new buffer is allocated from a slab cache
and created as an extra read chunk put at the zero
offset, i.e. prepended to the existing read chunk
list. The resulting RDMA RPC message is marked
as RDMA NOMSG, indicating the server that an
extra RDMA read is needed to get the actual RPC
message and the rest of read chunk lists describes
the RDMA read chunks for the actual read argu-
ments.

4.3.2. Encoding and Decoding of RDMA Chunk
Lists

Once the chunk lists are created, they will be mar-
shaled into the RDMA header in the order of read
chunk lists, write chunk lists and long reply chunk
list, as described in Section 4.1. The absence of
any list will be marked with a FALSE boolean
value. In addition, for a regular RPC call message,
the RDMA header will be typed as RDMAMSG
(or RDMA MSGP when padding is introduced for
alignment). For a long RPC call, its RDMA header
is typed as RDMANOMSG, as mentioned in Sec-
tion 4.3.1. When an NFS RPC call is received, the
read chunk list is decoded and the corresponding
read chunks are pulled over from the client. The
write chunk list or the long reply chunk list (of
a single element only for NFSv3) is decoded and

stashed for use until the actual data is available.
When the NFS server is ready to return the re-

sults for an RPC call request, the originally stashed
write chunk list or long reply chunk list is used as
destinations for directly placing the data back to the
client. At the same time, the actual length of data
transferred for each chunk is updated in the chunk
list and encoded into the RDMA header in the RPC
reply message to the client. This chunk length up-
date is needed because the server actual file con-
tent may not the length expected from the client,
for example, if the end of file (EOF) is reached be-
fore fetching the expected length of data. Or in the
case of long reply chunk, the reply chunk is allo-
cated of length, LONGREPLY LEN (64KB), by
the client. The actual length of the results may ei-
ther be shorter or longer than LONGREPLY LEN.
For example, an NFS3 READDIR RPC call may
fall on directories of very different sizes, for which
a length update is needed to inform the client to is-
sue one or more requests for leftover results.

5. Managing Resources RPC over RDMA

In this section, we discuss several resource man-
agement issues for both performance optimization
and RPC over RDMA configuration. Specifically,
we focus on scalability related flow control and
interoperability related connection management is-
sues.

5.1. Flow Control

RPC calls and replies are exchanged through
RDMA Send/Receive operations. It is required that
receive buffers must be pre-posted on a connection
to accept incoming RDMA Sends from that con-
nection [18]. If no receive buffers are available,
RDMA Receive operations will fail. It is straight-
forward to meet this requirement on the client side.
Whenever the client sends out an RPC call, it ex-
pects an RPC reply from the server. Therefore,
the client can pre-post a receive buffer prior to ev-
ery RPC call. However, it is impossible for the
server to predict which clients are going to send
RPC calls and the number of requests that they are
going to send, thus flow control is a critical issue to



make sure that the RDMA connections between the
server and the clients work properly.

The Internet Draft ”RDMA Transport for ONC
RPC” [12] has identified that it is not scalable to
provide fixed credit limits to the clients. With fixed
credit limits, buffers may not be used efficiently at
the server side, because the posted buffers are ded-
icated to the associated connection until they are
consumed by receive operations. Therefore, the
draft specifies a request/grant protocol in the RPC
over RDMA header associated with each RPC mes-
sage. The client can request for a certain amount of
credits based on its needs, and the server can grant
the client credits based on its resource usage policy.
The client should never send out more unacknowl-
edged RPC calls than granted.

In this paper, we designed algorithms for the
client and the server to dynamically determine the
number of credits they shall request or grant based
on their current status. The algorithms for the client
and the server are shown in Fig. 10 and 11 respec-
tively.

In the client algorithm (shown in Fig. 10),in-
flight indicates the number of pending RPC calls
the client has sent in the recent past, which may pre-
dict the trend in the near future. Therefore,request
should increase asinflight increases. On the other
hand, the server executes an algorithm as shown in
Fig. 11. The main idea for this algorithm is that the
server should adjustgrant based on the total num-
ber of clients and total number of receive buffers
available. When the amount of resources is suf-
ficiently large, the server shall satisfy the client’s
request as much as possible.

5.2. Connection Management

Besides providing flow control for buffer cred-
its per client connection, connection management
is also an important issue for accomplishing inter-
operability between different computing environ-
ment with different NFS over RDMA implemen-
tations. Currently, Solaris InfiniBand stack pro-
vides a switch-based Address Translation Service
(ATS) for connection queries, while Linux-based
InfiniBand stack, e.g. OpenIB Gen2, introduces
RDMA CMA based connection management in-
terface, as an enhancement from its original In-

finiBand specific Connection Management (IBCM)
model. Since RDMA CMA provides a device inde-
pendent interface for setting up new connections,
it is currently being proposed as an IETF draft for
connection management interface for all RDMA-
capable hardware devices including iWARP [27]
and InfiniBand. Thus it is necessary to adapt to
the RDMA CMA model from Solaris ATS. Col-
laborative efforts from Sun MicroSystems, Net-
work Appliance and The Network-based Comput-
ing Laboratory at The Ohio State University has
been initiated to ensure basic network interoper-
ability and the interoperability between different
NFS over RDMA implementations. A final con-
sensus will be materialized on a revised design of
OpenSolaris connection management.

6. Performance Evaluation

In this section, we describe the performance
evaluation of our NFS over RDMA implementa-
tion compared to that from the original OpenSo-
laris. Benchmarks including IOzone [2], Fileop
(a metadata benchmark distributed along with IO-
zone) and Postmark [6] are used in our experiments.
Our experimental testbed consists of four Sun Fire
V20z server nodes. All nodes have PCI-X Infini-
Band MT23108 HCA’s. They are connected to a
SilverStorm 5000 switch. The original OpenSolaris
build version 33 was used in all experiments. In this
evaluation, we focus on the performance of NFSv3
over the RDMA-based RPC transport, comparing
the RDMA write capable design to the original de-
sign. We plan to devise a set of NFSv4 testing
programs, and further investigate the performance
benefits of the new RDMA write-capable design to
NFSv4 specific features, such as compound opera-
tions. Note that in our experiments, unless explic-
itly specified, a memory-based file system (/tmp in
Solaris) is exported from an NFS server for clients
to mount over RDMA-based RPC transport. The
intent of using a memory-based file system is to
avoid the bottleneck that could be imposed by the
disk access so that the benefits of high speed net-
work communication can be maximally exposed to
network IO in NFS.



 

Output:

Adjustment factor

granted:

request:

Input: 

min_client:

 

Minimum number of credits that  

the client should request for

threshold: Low credit threshold

inflight: Number of pending RPC calls

Number of credits granted last time

f_client:

Algorithm:

if (granted−inflight >= threshold) then

request = min_client

else

endif

request = min_client + inflight * f_client

Number of credits the client will request

Fig. 10. Algorithm for the client to dynamically

adjust credit requests

Input: 

average:

posted: Number of buffers posted

Average number of buffers available 

to each client

to the client

requested: Number of credits requested

f_server: Adjustment factor

Output:

grant: Number of credits the server will grant

Algorithm:

if (requested <= posted) then

grant = posted

endif

grant = average + (requested − average) * f_server
else

else if (requested <= average) then

grant = requested

Fig. 11. Algorithm for the server to dynamically

adjust credit grants

6.1. IOzone Read and Write

IOzone [2] performs a variety of file IO tests on a
file system, such as read/re-read, write/re-write. To
investigate the performance of a file system under
different IO patterns, these tests can be carried with
a variety of parameters, options and I/O modes.

In our experiment, we use DIRECTIO option
to bypass file system buffer cache to compare the
network impact with different transport protocols.
Fig. 12 shows the performance results of NFS read
operation for RDMA write and RDMA read de-
sign for different file sizes. Our RDMA write de-
sign performs consistently about 20% better than
RDMA read based design. These results indicate
that the RDMA write based RPC transport indeed
provides better throughput compared to RDMA
read based RPC transport. This is because, com-
pared to RDMA read based RPC, the new design
allows more concurrent RDMA write operations to
be aggregated together and it has also eliminated an
extra control message, RDMADONE.

At the same time, as shown in Fig. 13, the NFS
write operation still performs the same. This is be-
cause, in our new design, the actual network IO
for NFS write remains to be RDMA read based, in
which the NFS server pulls client data based on the
read chunk list inside the RPC call.

From the above experiments, the peak band-
width for both read and write operations falls far be-
low the physically capability of 10Gbps InfiniBand.
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Fig. 12. IOzone Read Performance
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Fig. 13. IOzone Write Performance
We have carried out another set of experiments to
find the achievable IO bandwidth with more num-
ber of client threads. With the same IOzone bench-
mark, we let an NFS client initiate NFS read and
write requests via varying number of threads. As
shown in Fig. 14, the aggregated IO bandwidth is
clearly increasing with an increasing number of IO
threads from the client. Eventually, the bandwidth
number levels off at around 200MB/sec. This ex-



periment indicates that the current design of RPC
over RDMA still has a drawback of not being able
to request enough RPC transactions to the network.
Further efforts need to be put on how to increase
the level of concurrent requests through either mod-
ifications of the RPC over RDMA interface or the
number of readahead window. Also shown in the
figure is the performance comparison of NFS read
between the RDMA read- or RDMA write-based
RPC transport. RDMA write-based design pro-
vides consistently better performance, which sug-
gests RDMA write can be beneficial to the through-
put of RPC requests.
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Fig. 14. IOzone Multi-threading Read Perfor-

mance

6.2. Fileop

Another benchmark, fileop, is distributed along
with IOzone. It tests the performance of a vari-
ety of meta-data operations including mkdir, create,
close, stat, chmod, readdir, link, unlink. As shown
in Fig. 15, the performance of such NFS metadata
operations largely remains the same compared to
the original NFS implementation. However, one
operation to note is the NFS readdir. An NFS client
invokes this operation in order to fetch the content
of a directory. Compared to the original design,
a long RPC reply chunk is first allocated and the
NFS server provides the directory content through
an RDMA write operation so that NFS readdir can
take advantage of RDMA write as shown in Fig. 8.
Fig.15 shows the performance of NFS readdir is im-
proved by about 15% due to this design.
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Fig. 15. Fileop Performance
6.3. Postmark

Postmark [6] is a benchmark that measures file
system performance on small short-lived files. It
first creates a pool of text files and then performs
two different sets of transactions on the pool, either
create/delete or read/append a file. These types of
workloads are typically seen in computing environ-
ments such as Internet e-mail and news servers. Ta-
ble 1 shows the performance comparisons of Post-
mark between the RDMA write-based design and
the original read based design. However, for all dif-
ferent operations in Postmark, the transaction rates
appear to be comparable. This is reasonable consid-
ering that Postmark transactions are on short-lived,
small files, and more importantly, a majority of traf-
fic is NFS write in nature. Therefore, Postmark
does not reveal the benefits of our new design.

Table 1. Postmark Performance

Postmark Transaction/s Create/s Read/s Append/s Deletes/s
RDMA write 344 180 172 170 180
RDMA read 348 182 174 172 182

6.4. CPU Utilization

One of the most important metrics is the CPU
utilization, which reflects how much overhead the
NFS operations impose to the host. If the CPU
utilization is low, the host can use the CPU cycles
to do other useful work thus improves the overall
system performance. In this experiment we have
measured the CPU utilization for the duration of
IOzone. DIRECTIO is specified in the IOzone
tests. The CPU utilization is measured by thestatit
tool [22]. The results are shown in Fig. 16. From



this figure we can see that the CPU utilization for
the RDMA write based implementation is as low as
4%, which is 2 to 3 times better than the RDMA
read based design.
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Fig. 16. CPU Utilization

7. Conclusions

In this paper, we have investigated the design of
NFS over RDMA in recent releases of OpenSolaris
and discussed its inappropriate exposure of NFS
server memory to clients. Accordingly, we have
proposed an optimized NFS over RDMA design
that is based only on server-initiated RDMA oper-
ation, including both RDMA read and write. This
design also removes the potential security leak in
RDMA read based design and allows more concur-
rency in file serving. Our design is compliant to
NFS direct data placement and RPC over RDMA
drafts [11, 12]. Moreover, we devised credit-based
flow control mechanisms for efficient and scalable
communication of NFS over RDMA. The result-
ing implementation is intended to be interopera-
ble with other available NFS over RDMA imple-
mentations such as Linux NFS over RDMA [33].
Our evaluation results show that RDMA write
based RPC transport provides up to 28% improve-
ment to the performance of NFS read operation in
single-threaded test cases, and up to 44% in multi-
threaded cases. It is also beneficial to the perfor-
mance of some NFS metadata operations, such as
readdir, by up to 15%. In addition, the current
implementation does not affect the performance of
other NFS operations, such as NFS write, which re-
mains to be built on top of RDMA read.

In the future, we intend to investigate the per-

formance of OpenSolaris NFS over RDMA using
NFSv4. We plan to propose possible optimizations
and evaluate its performance while maintaining in-
teroperability with implementations from other op-
erating systems such as Linux. We also intend to
exploit the use of Advanced InfiniBand capabilities
such as scatter/gather and shared received queue
(SRQ) for further performance and scalability op-
timizations of NFS over RDMA.
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