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ABSTRACT
In this paper we consider the problem of estimating the selectiv-
ity of conjunctive queries on large sparse binary data. Recently, an
approach based on generating a maximum entropy model from fre-
quent itemset patterns was shown to out-perform other extant ap-
proaches such as mixture modeling using Bernoulli distributions,
inclusion-exclusion ADTree model, etc. However, a key limita-
tion of the maximum entropy model, which can also be viewed as
a Markov Random Field (MRF), is that it needs to build a model
on the fly for every query. This localized approach to estimation
can be quite expensive for complex queries, thus limiting its use in
settings where response time is crucial.

We address this limitation through the design of a global model
that takes into account all the variables in the data. The model is
constructed offline once. Subsequently answers to ad-hoc queries
can be estimated from the global model, thus avoiding online model
construction. The modeling approach first employs graph partition-
ing to cluster variables into balanced disjoint partitions, and then
augments important edges across partitions to capture interdepen-
dencies across them. A local MRF model is generated for each
partition, and then all local MRF models are combined together to
form a global model of the data.

A probabilistic estimation procedure is developed to estimate the
selectivity of ad-hoc queries from the model summary. Extensive
empirical evaluations on real datasets demonstrate the viability of
the approach when compared to extant strategies in terms of overall
accuracy and especially in terms of efficiency.

1. INTRODUCTION
In this paper we address the problem of constructing probabilis-

tic models to estimate the selectivity of conjunctive queries on large
binary data. Examples of such data are market basket data, web log
data, etc. Such data can be represented by a high-dimensional data
matrix, with each row corresponding to a particular market basket
(web session), and each column corresponding to a particular item
(web page) . Each entry takes a value of “1” if the corresponding
item is in the corresponding basket, otherwise it takes a value of
“0”. Thus the data is a binary matrix. An important characteristic
of this matrix is that it is often sparse in that the number of entries
per row that take the value of “1” is small when compared to the
number of columns. In other words, a large portion of the matrix
takes the value of “0”.

Selectivity estimation is important for query optimization, since
the query optimizer routinely relies on the selectivity estimations
to evaluate optimal query plans. Selectivity estimation techniques
have been extensively examined in the context of relational database
queries [5, 28, 27], boolean string queries [20, 16, 7, 8] and semi-
structured data queries [6, 1, 26, 25]. Furthermore, reasonably ac-

curate selectivity estimation is also desirable in interactive settings
and for approximate querying. For instance, an end user can inter-
actively refine her query if she knows that the current query will
return an overwhelming result set. Similarly, the estimated value
can be returned as an approximate answer to aggregate queries us-
ing the COUNT primitive.

Estimating selectivity usually relies on some summary structure
of the original large data. Ideally, the summary structure should
be much smaller than the original data (usually in memory), such
that the selectivity estimator can efficiently process the summary
structure and yield the estimation fast. Furthermore, in order to
yield reasonably accurate estimations, the summary structure has
to be able to faithfully capture important statistics of the data.

An important class of such summary structures are probabilistic
models of the data. Specifically for large binary data, probabilis-
tic models can effectively capture association or causal correlations
among attributes. An important benefit of probabilistic models is
that one is able to make predictions, for example, how often a par-
ticular combination of items are likely to be purchased together
in the future. A direct application of this is in recommender sys-
tems whose goal is to predict what items that users would buy next
according to their purchase history. Another use of probabilistic
models is to define interestingness of itemset patterns [17]. Itemset
patterns whose count deviates significantly from its expected value
are considered interesting. Probabilistic models also find applica-
tions in bioscience as well. Friedman et al. [13] describe gene
regulatory networks using probabilistic graph models.

We rely on probabilistic models to tackle the selectivity esti-
mation problem on large binary data. First a probabilistic model
is learned from the data, and then query selectivity is estimated
based on the model. Specifically, our proposed approach is based
on the Maximum Entropy (ME) model proposed by Pavlov et al.
[22]. Their approach is based on generating a maximum entropy
model from frequent itemset patterns, and has been shown to yield
more accurate estimations than other approaches, such as Bernoulli
mixture model, inclusion-exclusion ADTree model and so forth on
large sparse binary data. It has been shown that the maximum en-
tropy model defines a Markov Random Field (MRF) [12], which
specifies the class of probabilistic models we are inferring using
this approach.

However, a key limitation of the maximum entropy model is that
it needs to build a model on the fly for every query. A local model
on query variables is constructed in an online fashion to estimate
the query’s selectivity. Due to the fact that inferring an ME model
is an iterative process and is usually very expensive, such a just-
in-time model construction approach is not appropriate in settings
where online estimation time is crucial, especially for processing
complex queries.



We address this limitation through the design of a global model
that takes into account all the variables in the data. The model is
constructed offline once. Subsequently answers to ad-hoc queries
can be estimated from the global model thus avoiding just-in-time
model construction. The modeling approach relies on graph par-
titioning to cluster variables into balanced disjoint partitions, and
then augmenting important edges across partitions to capture inter-
dependencies across them. A local MRF model is generated for
each augmented partition, and then all local MRF models are com-
bined together to form a global model of the data.

A probabilistic estimation procedure is developed to estimate the
selectivity of ad-hoc queries from the model summary. Extensive
empirical evaluations on real datasets demonstrate the viability of
the proposed approach when compared to the previous approaches
in terms of overall accuracy and efficiency. The main contributions
of this paper are highlighted below.

• We introduce a novel divide-and-conquer style approach based
on graph partitioning to learning a global MRF model from
large binary data. Such a model is an approximation of the
exact global MRF model, which is usually computationally
expensive to learn.

• We introduce an efficient mechanism to estimate a query’s
selectivity based on the above model.

• We conduct extensive empirical evaluations on real datasets
to show the efficiency and effectiveness of the new approach.

The rest of the paper is organized as follows. We briefly go over
the maximum entropy model in Section 2. In Section 3 we detail
our proposed probabilistic model and the corresponding selectivity
estimating mechanism. We present experimental results in Sec-
tion 4 and related work in Section 5. Finally, we discuss the future
work and conclude in Section 6.

2. BACKGROUND AND PROBLEM STATE-
MENT

Definition 1. An item associated with the binary table r (with
header R) is a single attribute in R.
Within the probabilistic model context, each item corresponds to
a distinct random variable. Throughout the rest of the paper, item
and variable will be used interchangeably.

Definition 2. [22] An itemset associated with the binary table r
(with headerR) is defined to be either a single positively initialized
attribute or a conjunction of mutually exclusively positively initial-
ized attributes fromR. We call an itemset T -frequent if its count in
the table r is at least T , where T is some pre-specified non-negative
threshold. The size of an itemset is the number of conjuncts it is
defined on.

Formally, borrowing the precise terminology from Pavlov et al.
[22], the query selectivity estimation problem on binary data can be
defined as follows. Let R = A1, . . . , Ak be a table header with k
0/1 valued attributes and r be a table of n rows over R. We assume
that k � n, and that the data are sparse, i.e., the average number
of 1’s per row is substantially smaller than the number of attributes.
By definition, a row of the table r satisfies a conjunctive query Q if
and only if the corresponding attributes in the query and in the row
have equal values. We are interested in finding the number of rows
in the table r satisfying a given conjunctive query Q defined on a
subset of its attributes.

To tackle this problem, Pavlov et al. [22] used the collection of
T -frequent itemset patterns from the binary data as the statistics of
the data. They took each itemset pattern as a particular constraint

on the true joint distribution which generates the data. Among all
distributions satisfying all the constraints, they picked the distribu-
tion with the maximal entropy (“as uninformed as possible”) as the
estimate for the true joint distribution. It has been shown that this
ME based approach is very effective in estimating the selectivity of
queries, especially on the sparse data. Specifically, they showed
that the ME based approach is more accurate than models such
as the Chow-Liu tree model, the Bernoulli mixture model and the
inclusion-exclusion ADTree model, etc. The usefulness of frequent
itemset patterns in constructing probabilistic models is supported
by an observation that positive correlations are much stronger than
negative correlations in the case of sparse data [14]. The frequent
itemset patterns capture exactly the positive correlations between
items.

Specifically this approach works as follows. First all T -frequent
itemset patterns are collected offline. When a query Q with vari-
ables xQ is posed in real-time, all itemset patterns whose vari-
ables are subsets of xQ are picked up as the distribution constraints.
Next, a full distribution on xQ is built in an online fashion based on
the ME principle. Once the model is ready, any conjunctive query
whose variables are subset of xQ can be answered, including Q it-
self as well. Due to its inherent online and local character, we call
this approach the online local MRF approach.

The following gives an example of the maximal entropy distri-
bution. Suppose we have collected the itemset patterns as x1, x2,
x3, x4, x5, x1x2, x1x3, x2x3, x3x4, x4x5 and x1x2x3. Let xQ
be {x1, x2, x3, x4, x5}. Then the maximal entropy distribution on
xQ has the following product form:

p(xQ) = µ0 · µ
I(x1=1)
1 · µ

I(x2=1)
2 · µ

I(x3=1)
3 · µ

I(x4=1)
4 ·

µ
I(x5=1)
5 · µI(x1=x2=1)

6 · µI(x1=x3=1)
7 · µI(x2=x3=1)

8 ·

µ
I(x3=x4=1)
9 · µI(x4=x5=1)

10 · µI(x1=x1=x3=1)
11

where I() is an indication function for the corresponding con-
straint and the constants µ0, . . ., µ11 are estimated from the data.

Importantly, it has been shown that the ME based approach de-
fines an MRF model for the original data [22]. This precisely tells
us the class of probabilistic model that is inferred from the data
using this approach. The MRF model is an undirected graph in
which vertices represent variables and edges represent correlations
between variables. The joint distribution associated with the undi-
rected graph model can be factorized as follows:

p(X) =
1

Z(ψ)

�

Ci∈C

ψCi
(XCi

)

where C is the set of maximal cliques associated with the undi-
rected graph; ψCi is a potential function for the elements of clique
Ci and 1

Z(ψ)
is a normalization term to ensure a valid distribu-

tion. A clique is a subset of vertices in the graph that are fully-
connected. The maximal cliques of a graph are the cliques that
cannot have more vertices added and remain a valid clique. We
associate with each maximal clique a non-negative and real-valued
potential function. Figure 1 shows the MRF model defined by the
maximal entropy distribution in the previous example. In particu-
lar, ψC1

(XC1
) = µ

I(x1=1)
1 · µI(x2=1)

2 · µI(x3=1)
3 · µI(x1=x2=1)

6 ·

µ
I(x1=x3=1)
7 ·µI(x2=x3=1)

8 ·µI(x1=x1=x3=1)
11 ; ψC2

(XC2
) = µ

I(x4=1)
4 ·

µ
I(x3=x4=1)
9 and ψC3

(XC3
) = µ

I(x5=1)
5 · µI(x4=x5=1)

10 .
Note that the online local MRF approach has several limitations.

First the MRF model is built online. It has been shown that the ME
algorithm for inferring an MRF model has worst-case time com-
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Figure 1: An MRF Example

plexity exponential in the number of query variables, thus it is not
feasible to process complex queries in real time. Further, the model
constructed is a local model in the sense that it targets specifically
the query variables, thus cannot be reused for the queries there-
after. However, selectivity estimation usually requires very prompt
response. Thus the online local MRF approach can not be applied
for processing complex queries. In our empirical study, we found
that the approach became inefficient when processing queries of
size approaching or above 10.

The goal of our study is to tackle the crucial limitations of the on-
line local MRF approach. Specifically, we want the new model to
be an offline model. Thus we do not need to sacrifice precious on-
line time for model construction. Another benefit of offline model
is that we are able to afford a more fine-grained refinement of the
model, since this can be done offline. Additionally, in order to
cope with complex queries, we expect the new model to be a global
model which specifies the joint distribution on all variables. Cor-
respondingly, another closely related requirement is that given the
model satisfying the above requirements, we should be able to have
an efficient online estimating mechanism.

3. APPROXIMATE OFFLINE GLOBAL MRF
MODEL

Towards the goal of a global model, our first attempt is to ac-
count for all the T -frequent itemset patterns, then build a complete
MRF model on all variables offline directly. We call this model
the exact global MRF model. When a query is posed online, we
make an estimation based on this model. However, one problem
with this approach is that the iterative algorithm for inferring an
MRF model on the variables has worst case time complexity expo-
nential in the number of variables, as already pointed out in Sec-
tion 2. In [22], Pavlov et al. propose several optimizations which
rely on the graph structure to speedup model construction. The
time complexity of iterative algorithm has been reduced to being
exponential in the induced width of the MRF graph, which how-
ever is still computational prohibitive for inferring large complex
MRF models. Moreover, even suppose we were able to construct
the exact global model, there is another difficulty when doing selec-
tivity estimation for online queries. Essentially we need calculate
marginal distributions (estimation) corresponding to the query vari-
ables. Making the estimation efficiently for large graph models is
not an easy task. Therefore, we resort to approximate MRF mod-
els. Now let us take a look at the MRF model and its important
properties.

3.1 MRF Model and Its Properties
The MRF models fully specify the conditional independence among

variables. The global Markov property tells us that for all disjoint

X1 X3 X2

Figure 2: Conditional independence

vertex subsets a, b and c in the graph model, whenever b and c are
separated by a in the graph, then the random variables associated
with b, c are independent given the random variables associated
with a alone. Based on this property, we can derive several useful
properties.

Let’s consider an extreme case in which the overall graph con-
sists of a set of disjoint non-correlated components. Then the joint
distribution can be obtained in a straightforward fashion according
to the following lemma.

LEMMA 1. Given an undirected graph G subdivided into dis-
joint componentsD1,D2, . . .,Dn (not necessarily connected com-
ponents), and there is no edge across any two components, then the
probability distribution associated with G is given by:

p(X) =

n�

i=1

p(XDi)

This conclusion follows immediately from the global Markov
property.

From Lemma 1, we see that if the graph model consists of a set
of disjoint non-correlated components, then a divide-and-conquer
style approach gives the exact estimate for the full joint distribu-
tion. Specifically, we focus on the variables belonging to a single
graph component, and construct the joint distribution over these
variables. Essentially we construct a local model specific to this
graph component. We do this for all graph components. In the
end, we combine these local models together into a global model
according to Lemma 1.

However, we know that in practice, different components of the
graph usually interact with one another. So how do we take into
consideration the correlations between different components?

LEMMA 2. LetX1,X2,X3 be three disjoint sets of variables in
an undirected graphG, such thatX = X1∪X2∪X3. Additionally,
there is no edge across X1 and X2 (we only allow edges across
X1 and X3, X2 and X3 (see Figure 2), i.e., the separating set for
X1 and X2, s(X1, X2) ⊆ X3, then the probability distribution
associated with G is given by:

p(X) =
p(X1, X3) · p(X2, X3)

p(X3)

Proof:

p(X1, X2, X3) = p(X3) · p(X1|X3) · p(X2|X1, X3)

(X1 and X2 are independent given X3)

= p(X3) · p(X1|X3) · p(X2|X3)

=
(p(X3) · p(X1|X3)) · (p(X2|X3) · p(X3))

p(X3)

=
p(X1, X3) · p(X2, X3)

p(X3)
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From Lemma 2, we see that even when there exist correlations
between graph components, the divide-and-conquer approach can
still be used. In particular, we make use of the conditional indepen-
dence structure of the graph, and divide the whole graph into over-
lapped partitions. The correlations between partitions are captured
by their shared common part. Next we construct a local model for
each partition, then we combine the local models together to obtain
a global model according to Lemma 2. For the example in Figure 2,
two overlapped partitions X1 ∪ X3 and X2 ∪ X3 give exact esti-
mate for the full joint distribution. Lemma 2 can be generalized to
handle the case where we have multiple overlapped partitions.

LEMMA 3. Given an undirected graphG subdivided into n over-
lapped components, if there exists an enumeration of these n com-
ponents, i.e., C1, C2, . . ., Cn, s.t., for any 2 ≤ i ≤ n, the separat-
ing set, s(Ci,∪i−1

j=1Cj) ⊆ (Ci ∩ (∪i−1
j=1Cj)), then the probability

distribution associated with G is given by:

p(X) =

� n

i=1 p(XCi
)

� n

i=2 p(XCi
∩ (∪i−1

j=1XCj
))

Proof Sketch: We follow the order C1, C2, . . ., Cn to deduce the
full joint distribution as follows (repeatedly apply Lemma 2):

p(XC1
∪ XC2

) =
p(XC2

) · p(XC1
)

p(XC2
∩ XC1

)

p(XC1
∪ XC2

∪ XC3
) = p(XC1

∪ XC2
) ·

p(XC3
)

p(XC3
∩ (XC1

∪ XC2
))

...

p(XC1
∪ . . . ∪ XCn

) =

� n
i=1 p(XCi

)
� n
i=2 p(XCi

∩ (∪i−1
j=1XCj

))

Essentially, we require that there is no cyclic dependence among
components, which would hinder the applicability of Lemma 2.
The overall dependence among components has a tree-like struc-
ture. Figure 3 illustrates an example of this. Specifically for this
example, we have:

p(X) =
p(XC1

) · p(XC2
) · p(XC3

) · p(XC4
) · p(XC5

)

p(XC1
∩ XC2

) · p(XC2
∩ XC3

) · p(XC3
∩ XC4

) · p(XC3
∩ XC5

)

2

3.2 Approximate Offline Global MRF Model
by Graph Partitioning

The basic idea of our proposed divide-and-conquer style approach
comes directly from the above theoretical analysis and an impor-
tant observation. On large sparse high-dimensional binary data,

most variables have strong correlations to only a few other vari-
ables, rather than many variables. In other words, the number of
vertices with low degrees in the graph model is much higher than
that of vertices with high degrees. This is called scale-free property
in social network literature [2, 21]. Let us consider a real binary
transaction data, in which each item is an author and each transac-
tion is an author list for a particular academic paper. It’s easy to
show that the graph of the corresponding MRF model on all vari-
ables (authors) is essentially a co-authorship network, which has
been shown to be scale-free [3].

Specifically in the proposed approach, the variables are clustered
into groups according to their correlation strengths. We call the
group variable-cluster. Then a local MRF model is defined on each
variable-cluster. In the end we aggregate the local models to ob-
tain a global model. Correspondingly, the first problem we face is
how to cluster the variables and how to construct local models for
these variable-clusters? Furthermore, how do we aggregate these
local models to form a global model? Finally, how to make online
selectivity estimations efficiently based on the global model?

3.2.1 Clustering Variables Based on Graph Partition-
ing

In our study, we evaluated different variable clustering schemes.
All the schemes can be presented within the context of graph parti-
tioning.

3.2.2 k-MinCut
The k-MinCut problem is defined as follows [19]: Given a graph

G = (V,E) with |V | = n, partition V into k subsets, V1, V2, . . . , Vk
such that Vi ∩ Vj = ∅ for i 6= j, |Vi| = n

k
, and ∪iVi = V , and the

number of edges of E whose incident vertices belong to different
subsets is minimized. Given a partitioning P , the number of edges
whose incident vertices belong to different partitions is called the
edge-cut of the partitioning. In the case of weighted graphs, we
minimize the sum of weights of all edges across different parti-
tions. Correspondingly, the edge-cut is the sum of weights of all
edges across different partitions.
k-MinCut is useful in factorizing the full joint distribution. Each

graph partition corresponds to a variable-cluster. Intuitively, we
want to maximize correlations between variables within clusters,
and minimize the correlations between variables across clusters.
So we should make the weight of edges to some extent reflect the
strength of the correlation between variables. We have the collec-
tion of all T -frequent itemset patterns. In particular, itemsets of size
2 specify the connectedness structure of the graph, and their asso-
ciated counts indicate the strength of pairwise correlations between
variables. We can use the counts as the edge weights directly. How-
ever, we also have higher-order statistics available, i.e., the larger
itemset patterns. We expect that taking into consideration the infor-
mation of all itemset patterns will yield a better weighting scheme.
To this end, we propose an accumulative weighting scheme as fol-
lows: for each itemset pattern, we add its count to all related edges,
whose incident vertices are contained by the itemset. Intuitively,
we strengthen the graph regions which involve many closely related
itemset patterns in the hope that the edges within these regions will
not be broken in the partitioning. Figure 4 illustrates the weighting
result for the previous example in Section 2. The collection of fre-
quent itemset patterns and their associated counts are given in the
figure.

A significant advantage of the k-MinCut scheme is that the re-
sulting clustering is forced to be balanced. This is desirable for the
sake of efficient estimation, since we will not encounter very large
clusters which would result in complex local models. We need to
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Figure 4: The accumulative graph weighting scheme

specify k a priori. By choosing k one can examine trade offs in-
volving model complexity, accuracy and online estimation time.

In our study, we used Metis [19, 18] to obtain k-MinCut of
the original exact graph model. Metis is a multilevel partitioning
scheme and has been shown to be successful in producing balanced
clusters of good quality. The multilevel partitioning scheme has
three major phases: coarsening, initial partitioning and uncoarsen-
ing. In the coarsening phase, the original graph is gradually trans-
formed into a smaller graph. An initial two-way partitioning of
the smaller graph that satisfies the balancing constraint while min-
imizing the edge cut is obtained in the next phase. During the final
phase, the partitioning is successively refined as it is projected back
to the original graph by traversing intermediate partitions.

3.2.3 Pattern Profile and Flow-based Graph Parti-
tioning

Yan et al. [32] recently proposed a pattern summarization ap-
proach for frequent itemsets. The key notion is pattern profile,
which essentially corresponds to an item cluster. Specifically, a
pattern profile is a triple< a, b, c > where a is a set of items, b is a
distribution vector on the items in a and c is the count of the whole
pattern profile. Essentially, a pattern profile is a compressed repre-
sentation of similar itemset patterns and can be used for summariz-
ing the itemset patterns. In their proposed summarization scheme,
pattern profiles are compared based on their Kullback-Leibler (KL)
divergence between their distribution vectors. The first principle is
that the pattern profiles having smaller KL divergence are more
correlated than that having larger KL divergence. In our study, we
apply this technique to summarize all the T -frequent itemset pat-
terns and use the resulting pattern profiles to generate the variable-
clusters. An advantage of this approach is that it is natural to obtain
overlapped clusters, since the same variables can belong to multi-
ple pattern profiles simultaneously. Pattern profile based clustering
scheme can be presented using graph partitioning framework. A
particular pattern profile corresponds to an induced subgraph of the
complete MRF model.

However, a disadvantage of this approach is that there is no bal-
ancing constraint on the resulting clusters. It is possible that the
resulting clusters are quite unbalanced, since general MRF models
are typically scale-free networks when the dimensionality is high.
As for partitioning scale-free networks without forcing any balanc-
ing constrain on the clusters, it has been shown that extremely un-
balanced clusters will be formed [4, 33]. Specifically, a giant core
consisting of hub nodes and their neighboring nodes will dominate
the whole network. Obviously this is not what we want since we
prefer balanced clusters for the sake of efficient estimation there-
after.

In addition, we also evaluated flow-based graph clustering algo-
rithms on the MRF model. In particular, we used MCL [29], which

C3C1

... ...
C1'

C2

Figure 5: Augmented variable-clusters

has been shown to be able to identify natural cluster structures of
a graph, and has been widely used in biological data analysis [11,
24]. An important feature of MCL is that there is no need to spec-
ify the number of clusters a priori. MCL faces the same problem
as the pattern profile, since the natural cluster structures of a scale-
free network are probably extremely unbalanced. The drawbacks
of the pattern profile and the flow-based clustering algorithm have
been verified by our empirical study, we do not pursue these two
ideas further.

3.2.4 Edge Importance Based Variable Cluster Aug-
mentation

The balanced clusters produced by the k-MinCut partitioning
scheme are disjoint. Intuitively, there is significant correlation in-
formation that is lost during the partitioning. The loss could be
more severe considering that we force the balanced clusters, thus
somehow we have to eliminate some edges with relative high weights.
To compensate for this loss, we propose an edge importance based
variable-cluster augmenting scheme to recover the damaged corre-
lation information. The idea is that for each cluster, we let it grow
outward. In other words, it attracts and absorbs most significant
(important) edges incident to its vertices from outside to itself. As
a result, some extra variables are pulled into the cluster. We control
the augmentation through the number of extra vertices pulled into
the cluster (called growth factor). We usually use the same growth
factor for all clusters to preserve their balance. We want to keep
the important correlation information that is lost during the graph
partitioning. Consequently, we are obtaining overlapped variable-
clusters by this scheme. Figure 5 gives a sketch of the augmented
variable-clusters.

3.2.5 Approximate Offline Global MRF Model
For each augmented cluster, we construct a local MRF model

for which we use the same process as the online model construc-
tion. Two local models are correlated to each other if they share
variables. The collection of all local MRF models forms a global
model of the original binary data. We note that this global model is
an approximation of the exact global MRF model, since we lose de-
pendency information by breaking edges in the exact graph model.
However, most of the important correlation information loss will
be compensated during the cluster augmentation. Further, the aug-
menting scheme implicitly gives higher priority to more frequent
variables such that they tend to be shared among variable-clusters.
Interestingly, we note that this is beneficial for preserving the ba-
sic topological structure of the exact graph model. We know in
scale-free networks, hub nodes sustain the whole network. The
most frequent variables play roles of hub nodes in the exact graph
model. Keeping the information of these variables in the approxi-
mate graph model enables it to preserve the basic topological struc-



Algorithm: BuildMRFModel (F , k, g)
Input: F , collection of T -frequent itemset patterns;

k, number of partitions for MinCut algorithm;
g, growth factor;

Output: X , global MRF model;
1. Construct a weighted graph G from F ;

//G has the same graphical structure as the exact MRF model;
2. k-MinCut G;
3. for each graph partition Gi

Gi’= augment(Gi, g);
Pick itemset patterns Fi related to Gi’
Mi = BuildLocalMRF(Fi);
add Mi to X ;

4. return X ;

Figure 6: Building Global MRF Model Algorithm

ture of the exact graph model. As such, we believe that the pro-
posed global graph model reasonably approximates the exact graph
model. Figure 6 provides the formal algorithm for building approx-
imate offline global MRF model.

3.3 Model-Aware Decomposition Scheme for
Online Estimation

Given the global model consisting of a set of local MRF mod-
els, how do we do the online estimation efficiently? In the first
scenario, where all query variables are subsumed by a single local
MRF model, we just need to estimate the selectivity within the local
model. In the second scenario, where query variables span multiple
local models, we use a greedy decomposition scheme to estimate.
First, we pick the local model which intersects most with the cur-
rent query (covers most query variables) Then we pick the next
local model which covers most uncovered variables in the query.
This covering process will be repeated until we cover all variables
in the query. Simultaneously, all intersections between the above
local models and the query are recorded. In the end, we derive an
overlapped decomposition of the query. We notice that locally the
dependencies among small chunks in the decomposition often ex-
hibit a tree-like structure, thus we use Lemma 3 to calculate the
selectivity estimation. Strictly speaking, this is a heuristic since it
is possible to have cyclic dependencies.

The intuition is that such a greedy approach will produce near
optimal estimations without sacrificing estimation time. The goal
is to find a minimum size set of local MRF models whose union
contains all query variables. As can be seen, decomposition pro-
ceeds in a model-aware fashion. Compared to a naive decompo-
sition scheme in which we simply subdivide the query into small
enough chunks without taking the model into consideration, this
scheme is able to give much more accurate estimations.

Additionally, due to the overlap between local models, it is pos-
sible to have multiple feasible decompositions for a single query,
which results in multiple estimations for that query. In the present
study, we limit it to one particular decomposition for selectivity
estimation. A potential followup work is to evaluate all feasible de-
compositions and corresponding estimations, and then apply some
voting scheme to get even better estimations. This is more worth-
while when there are parallel computing resources available, since
evaluation of different decompositions can be made independently.
Figure 7 gives the formal model-aware decomposition algorithm.
In particular, eval() is a function that calculates the selectivity es-
timation within a local MRF model.

Algorithm: Estimate (Q, M )
Input: Q, online query;

M , offline global MRF model;
Output: s, selectivity estimation for Q;
1. Initialize remaining by Q;
2. Initialize covered to be ∅;
3. While remaining 6= ∅
4. Choose a local model Mi which covers remaining most;
5. newCovered = Mi ∩ remaining;
6. Di = Mi ∩ covered;
7. Ci = newCovered ∪Di;
8. add Ci to C;
9. add Di to D;
10. remaining = remaining - Ci;
11. covered = covered ∪ Ci;
12. s =

�
i eval(Ci,Mi)�
i eval(Di,Mi)

;
13. return s;

Figure 7: Online Estimation Algorithm

4. EXPERIMENTAL RESULTS
In this section, we examine the performance of our proposed ap-

proach on real datasets. We compare the new offline global MRF
model against the previous online local MRF model (abbreviated
as OLM in figures presenting experimental results).

4.1 Experimental Setup
All the experiments were conducted on a Pentium 4 2.66GHz

machine with 1GB RAM running Linux 2.6.8. We used apriori (a
well-known efficient frequent itemset pattern mining algorithm) to
collect the T -frequent itemset patterns. In particular, we imposed
the same precision (0.01) on the two models during their iterative
construction for the sake of an impartial comparison between the
two approaches. Below we detail the datasets, query workloads
and performance metrics considered in our evaluation.

Datasets: We used two publicly available datasets in our ex-
periments: the Microsoft Anonymous Web dataset (publicly avail-
able at the UCI KDD archive, kdd.ics.uci.edu) with 32711 transac-
tions (Web site visitors) and 294 distinct attributes (Web pages); the
BMS-Webview1 dataset (publicly available from the FIMI reposi-
tory, fimi.cs.helsinki.fi), which is a web click-stream dataset from
a web retailer company, Gazelle.com. The dataset contains 59602
transactions (Web sessions) and 497 distinct attributes (product de-
tailed pages).

Query Workloads: In our experiments we considered the work-
loads consisting of conjunctive queries of different sizes. Follow-
ing the same practice in [22], we first specified the number of query
variables n (varied from 4, 6, 8 to 10), then we picked n variables
according to the probability of the variable taking a value of ”1”
and generated a value for each selected variable by its univariate
probability distribution. As pointed out in [22], the variables are
prone to take the zero values in sparse data, thus using purely ran-
dom queries (variables are randomly chosen with randomly chosen
values) would result in a preponderance of queries with zero count.

Performance Metrics:
• Time. We considered the online time cost, the time taken to

answer the queries using the model. We also considered the
offline time cost, the time taken to construct the model. Our
objective is to have a fast and accurate online answer at the
expense of potentially much higher offline time cost.

• Memory. We considered the memory consumption of the
models, which to some extent reflects the complexity of the



models. We prefer the models with low memory consump-
tion which however yield fast and accurate answers.

• Error. We quantified the accuracy of estimations using the
average absolute relative error over all queries in the work-
load. The absolute relative error is defined as |σ − σ̂| /
max(10, σ), where σ is the true selectivity , σ̂ is the esti-
mated selectivity and a sanity bound of 10 is used to avoid
the artificially high percentages of low selectivity queries.

In the experiments, we varied C, the number of clusters; k, the
number of edges used to augment variable-clusters (the larger k is,
the more overlapped the variable-clusters are, in the special case
where k = 0, the clusters are disjoint); query size (4, 6, 8, 10) and
the threshold T used to collect the frequent itemset patterns from
the data.

4.2 Results on the Microsoft Web Data
In this section, we report the experimental results on the Mi-

crosoft Web Data. In the first set of experiments, we set T = 200
to collect the frequent itemset patterns, which results in 405 fre-
quent itemsets. Figure 8a presents the graphical structure of the ex-
act complete MRF model. We applied Metis to partition the graph.
Specifically, we did not consider the 24 isolated vertices in the par-
titioning process, since it is safe to take each of such vertices as an
independent cluster and then apply the independence formula on
these variable-clusters according to Lemma 1. As a result, we had
the 42 vertices for partitioning. Note that all the isolated vertices
will be considered in the model construction.

Figure 9a presents the estimation accuracy whenC is varied (k is
fixed as 4) for queries of different sizes. As can be seen, the offline
global MRF model works very well compared with the online local
MRF model. The offline model gives very close or even better
estimations as that given by the online model. In particular, whenC
is 5, 10 and 15, the offline model yields more accurate estimations
than the online model. When C is 20, the two models give very
close estimations, though the online model is slightly better. These
results are not surprising since in the online model, we only use the
information of the itemset patterns whose variables are subsets of
the online query to estimate the selectivity for the sake of a more
efficient model construction. However, in the offline model, we are
able to rely on the information of all related itemset patterns whose
variables intersect with the query variables to make the estimation.
Even though the graph partitioning phase gives rise to information
loss, since the model is global in nature, in many cases it is still
able to yield better estimations. Furthermore, an obvious trend that
stands out is that as the size of the query increases, the quality of
the estimations degrades. This is as expected since for larger sized
queries, estimation errors grow for both approaches.

Another observation is that the estimations are more accurate
when we use less variable-clusters. This is because with less clus-
ters, the information loss due to the graph partitioning is less severe,
thus we capture better the correlations between items. However,
this will affect the online estimation time. Now let us examine the
timing performance when varying the number of clusters.

Figure 9b illustrates how the online time depends on the num-
ber of clusters for queries of different sizes. It can be clearly seen
the exponential growth of online time taken by the online model.
The online model is very fast when processing rather small queries
(query size less than 6), but is extremely slow when processing
complex queries (query size larger than 8). In contrast, the offline
model has much flatter curves here. In some cases, the curve is
actually going down as the size of the queries increases. For ex-
ample, when C is 5 and 10, the timing curve keeps going down
as we process more complex queries. This shows the extreme ef-

ficiency of the offline model for processing complex queries. The
model-aware decomposition scheme can efficiently decompose the
complex query, and estimations within local models are fast. Fur-
ther, we see that the smaller number of clusters results in higher
online estimation time. This is as expected since the smaller C is,
the larger each variable-cluster will be. Correspondingly, we will
have a larger local MRF model for each cluster, which results in
slower estimation. In the extreme case where C is 1, we revert to
the exact complete MRF model, which has been shown to be com-
putationally infeasible.

Figure 9c presents the offline time cost of the offline approach
when varying C. An obvious trend is that as we increase the value
ofC, the time cost of the offline model decreases significantly. This
is as expected since the larger C results in less complex models.

Figure 10a presents the estimation accuracy when varying k (C
is fixed as 20). As can be seen from the results, the error decreases
steadily with increasing k. When k is 0 (disjoint variable-clusters),
the estimations are most inaccurate. In contrast, the estimations are
much more accurate when k is 6. The results clearly show the
effects of the edge importance based cluster augmenting scheme.
The offline model approximates the exact complete model better
when more correlations are compensated.

Figure 10b presents the online times when varying k. We see
from the results that the model with the larger k takes more online
time to answer the query. This is also as expected since the larger
k results in more complex models (similar to the case of smaller
number of clusters).

Figure 10c presents the offline time cost of the offline approach
when varying k. An obvious trend is that as we raise the value of
k, the time cost of the offline model increases significantly. This is
again as expected.

We also examined the memory usage taken by models under dif-
ferent conditions. Figure 11 presents the memory usage of different
models with varied k and C. For the comparison with the online
model, we also plot its memory usage. Note that the online model
only has one column. As can be seen, when we raise k, the mod-
els take more memory. Interestingly, we note that when k is small
(less than 3), the models with smaller C values take more mem-
ory. In contrast, when k is large, the models with larger C values
take more memory. This is because that when k is small, the mem-
ory usage is primarily caused by recording the within-cluster cor-
relations, rather than the cross-cluster correlations, thus the models
with smaller C values need more memory. In contrast, when k
becomes larger, the memory usage caused by recording the cross-
cluster correlations becomes more significant, therefore the models
with largerC values need more memory, since usually they need to
record more cross-cluster correlations.

Furthermore, we see that the models with k less than 4 take
roughly the same amount of memory as the online model. We
know from the previous results that the models with k = 4 are
able to generate fairly accurate estimations. Moreover, if we keep
increasing k, the models will generate even more accurate estima-
tions at the cost of reasonably more memory. Overall, the offline
model does not incur much more memory usage, compared to the
online model. We believe that the optimal values of C and k are
application dependent and we will exploit that in the future work.

We varied the threshold T from 200 to 100, thus collected more
frequent itemset patterns. Specifically, we had 998 patterns col-
lected when T = 100. Figure 8b plots the graphical structure of
the corresponding exact complete MRF model. As can be seen, the
graph is much more complex than that with T = 200. Correspond-
ingly, we partition the graph into more clusters to maintain small
local models. We had 65 vertices for partitioning.



Figures 12a-c present the estimation accuracy, the online times
and the offline times of the models with varied C (k is fixed as
4). As illustrated, the offline model also works very well compared
with the online model. It yields very close or even better estima-
tions, while exhibiting a much better timing performance. The of-
fline model is faster than the online model when query size exceeds
6. Moreover, its timing curve is very flat. Additionally, the larger
C results in less complex models which take less time to construct.

Figure 13a-c present the estimation accuracy, the online times
and the offline times of the models with varied k (C is fixed as 20).
As before, we see that the models with larger k values yield better
estimations, while taking more online time to estimate and more
offline time to construct.

Figure 14 presents the memory usage by different models with
varied k and C. The memory usage of the online model is also
plotted for comparison. As can be seen, the models with larger
k values take more memory. When k is small, the models with
smaller C take more memory. In contrast, when k is large, the
models with larger C take more memory. Specifically, the offline
models take less or roughly the same memory usage up to the point
where k is 4.

4.3 Results on the BMS-Webview1 Data
In this section, we report the experimental results on the BMS-

Webview1 data. Again, we considered two different threshold val-
ues, T = 200 and T = 100. The resulting exact complete MRF
models had 63 and 146 vertices respectively, without counting the
146 and 140 isolated vertices. Figures 15a-b present the graphical
structure of the two exact complete models.

First, we report the results on the threshold 200. Figures 16a-
c present the estimation accuracy, the online times and the offline
times of the models with varied C while fixing k. Figures 17a-c
present the performance of the models with varied k while fixing
C. Figure 18 presents the memory usage of the models. Overall,
the results are very similar to that on the Microsoft Web data. The
offline models works very well on this dataset as well. They yield
very close or even better estimations while exhibiting a much better
timing performance at a reasonable offline time cost. Moreover, the
edge importance based augmenting scheme can effectively com-
pensate the correlation loss due to the graph partitioning. Further-
more, we can tradeoff the estimation accuracy for online efficiency,
model complexity by tuning C and k. For a smaller C and a larger
k, the model yields more accurate estimations while taking more
online time to estimate and more offline time to construct. In con-
trast, the model with a larger C and a smaller k takes less online
time and less offline time, while yielding reasonable estimations.
The results on the threshold 100 are very similar to that on the
threshold 200 and are thus omitted in the interest of space.

4.4 Results on Weighting Scheme and Model
Refinement

Weighting scheme. We examined the effect of the accumulative
weighting scheme. We compared three schemes. 1) No weighting
scheme at all; 2) Use the count of itemsets of size 2; 3) Accumu-
lative weighting scheme (consider all itemsets). Figure 19 presents
the results on the Microsoft web data (T = 100, C = 20, k = 3).
The other results are similar and are thus omitted.

The advantage of the accumulative weighting scheme over the
other two schemes can be clearly seen from the results. The mod-
els derived from the graph with the accumulative weighting scheme
yield more accurate estimations. The results show that the accumu-
lative weighting scheme can effectively enhance the local structures
where the strong correlations exist, thereby benefiting the follow-
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ing partitioning process. From the figure, we can also see that the
weighting scheme of using the count of itemsets of size of 2 is bet-
ter than the no-weighting scheme.

Refining the offline models. Since our proposed model is built
offline, we are able to afford a further model refinement. In this
experiment, we raised the accuracy precision of the iterative model
constructing algorithm from 0.01 to 0.001. Figure 20a-b present
the results before and after the model refinement on the Microsoft
web data and the BMS-Webview1 data respectively. We see that
we can improve the estimation quality by further refining the offline
models, and this can be done without affecting any online efficiency
and memory usage. This is a significant advantage of the offline
model over the online model.

5. RELATED WORK
Pavlov et al. [23, 22] have done significant work on exploit-

ing probabilistic models for query approximation (selectivity esti-
mation) on binary transaction data. They examine several models
for this purpose. Besides the online local MRF model on which
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Figure 8: The graphical structures of exact MRF models (Microsoft Web): (a) threshold=200 (b) threshold=100
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Figure 15: The graphical structure of exact MRF models (BMS-Webview1): (a) threshold=200 (b) threshold=100
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our study based, they also examine the Chow-Liu tree model, the
Bernoulli mixture model, the ADTree model and Bayesian net-
works. They show that the online local MRF model gives the most
accurate estimates on sparse data under similar conditions. They
also employ several optimizations to speed up the online model
construction, namely bucket elimination and clique tree (also called
junction tree) algorithms. As a result, the time complexity of the
online model construction can be reduced from being exponential
in the number of query variables to being exponential in the induced
width of the model graph.

Hollmen et al. [15] proposed a mixture model in which the trans-
action data are clustered using EM clustering algorithm. For each
data chuck, the frequent itemset patterns are identified and are used
to construct a probabilistic model based on the ME principle. They
combine local models of all data chucks together to form a global
model of the original data. They show that this mixture model
yields good performance. However, due to the fact that the data
are only row-wise clustered, the number of variables a local graph
model must account for remains unchanged. As a result, the global
model on all variables cannot be constructed. In their paper, the
authors only modeled the most frequent variables. The same idea
can also be applied to our approach. Essentially, the graph parti-
tioning scheme clusters the data column-wise. We can enhance it
with row-wise clustering, which in spirit is very similar to the co-
clustering or bi-clustering approaches present in the literature [9,
10]. In the near future, we plan to examine if this approach yields
benefits for our approach.

Goldenberg et al. [14] proposed an approach (SNBS) of using
frequent itemset patterns to learn large Bayesian networks from
sparse data. The resulting model can be used in recommender sys-
tems. Specifically, the frequent itemset patterns are collected as
the evidence for constructing the Bayesian network. Further, they
augment the constructed Bayesian network with edges of high mu-

tual information for variables that have not co-occurred in the data,
considering that such dependencies are not captured by the frequent
itemset patterns. The same technique can again be adopted to en-
hance our proposed model as well.

Xing and Jordan et al. describe an algorithm for variational mean
field inference in probabilistic graph models [30, 31]. Their ap-
proach shares some characteristics with what we propose in that
they partition the original global model into disjoint clusters and
subsequently a local model is constructed for each cluster based
on its own evidence and the expected sufficient statistics obtained
from its neighboring clusters. Local models are constructed in an
iterative fashion until convergence. However, there are significant
distinctions between the two approaches. First, our work is tar-
geting on constructing an approximate global probabilistic graph
model for the large binary data, while their goal is probabilistic in-
ference. Second, in our study, we do not have the global model
available all the time. We only have a partial information of the
global model, i.e., its graphical structure. Moreover, we do not
have any information of any potential functions associated with the
graph. In contrast, in their study they have the global model avail-
able from the beginning, and they need the potential information
during the iterative model construction process. Third, their mod-
eling of neighboring interactions is significantly more complex, and
moreover, the iterative phase can take a long time to converge. Both
these factors significantly limit the efficiency of their approach.

6. CONCLUSION
In this paper, we have described a new approach, the offline

global MRF model, to estimate the selectivity of conjunctive queries
on large sparse binary data. The new approach is shown to yield
comparable or even better selectivity estimations than the previous
online local MRF approach. Moreover, our new approach is also
significantly faster in terms of online estimation time, especially
for complex queries. Interestingly, we note that our proposed of-
fline global MRF model is an approximation of the exact global
MRF model.

In the future, we will study the following issues. We would like
to adopt the optimization techniques to speed up model construc-
tion and online estimation. Particularly, we would like to employ
bucket elimination and clique tree algorithms in constructing local
MRF models. Additionally, we can also rely on them to speed up
the online estimation process. With these optimizations, we expect
that the graph model can be partitioned into fewer clusters without
affecting the online efficiency, which would result in better estima-
tions. Finally, we would also like to exploit the temporal behavior
of such probabilistic models as the underlying data evolve. How
to incrementally maintain the models, identify interesting tempo-
ral patterns on the data through the models are both interesting and



challenging problems we would like to pursue in the future.
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