
Harvest: A Reliable and Energy Efficient Bulk Data Collection
Service for Large Scale Wireless Sensor Networks

Vinayak Naik
Department of Computer Science and Engineering

The Ohio State University

naik@cse.ohio-state.edu

Anish Arora
Department of Computer Science and Engineering

The Ohio State University

anish@cse.ohio-state.edu

Abstract

We present a bulk data collection service, Har-
vest, for energy constrained wireless sensor nodes.
To increase spatial reuse and thereby decrease la-
tency, Harvest performs concurrent, pipelined ex-
filtration from multiple nodes to a base station.
To this end, it uses a distance-k coloring of the
nodes, notably with a constant number of colors,
which yields a TDMA schedule whereby nodes can
communicate concurrently with low packet losses
due to collision. This coloring is based on a
randomized CSMA approach which does not ex-
ploit location knowledge. Given a bounded de-
gree of the network, each node waits only O(1)
time to obtain a unique color among its distance-k
neighbors, in contrast to the traditional determin-
istic distributed distance-k vertex coloring wherein
each node waits O(∆2) time to obtain a color.

Harvest offers the option of limiting memory use
to only a small constant number of bytes or of im-
proving latency with increased memory use; it can
be used with or without additional mechanisms for
reliability of message forwarding.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

We experimentally evaluate the performance of
Harvest using 51 motes in the Kansei testbed. We
also provide theoretical as well as TOSSIM-based
comparison of Harvest with Straw, an extant data
collection service implemented for TinyOS plat-
forms that use one-node at a time exfiltration. For
networks with more than 3-hops, Harvest reduces
the latency by at least 33% as compared to that of
Straw.

1 Introduction

Wireless sensor nodes often maintain logs of
network, environment, middleware, and applica-
tion behavior. Examples of logged information
include link qualities, network routes, sensory
data, mobility traces, exception reports, applica-
tion statistics, etc. The collection of bulk data from
a number of wireless sensor nodes is thus a fre-
quent requirement for testers, operators, managers,
modelers, and users. In this paper, we focus on
the convergecast of the (potentially different) bulk
data logged at a number of nodes to one “base
station” node. We consider an “off-line” setting
where no other data traffic is present on the net-
work; this case arises when the bulk data collec-
tion can materially interfere with ongoing applica-
tion traffic or when the size/generation-rate of the
bulk data exceeds the effective communication ca-
pacity of the source nodes with respect to the base
station.

As networks scale to larger numbers of nodes

and communication hops and as the bulk datum
sizes grow, the reliability, energy-efficiency, and
latency of the collection operation become key is-
sues. While these issues have been well studied in
the context of bulk data dissemination, they have
received far less attention in the case of bulk data
convergecast. Also, since network debugging and
management are primary motivations for the col-
lection service, it is desirable that this service have
a small footprint in terms of instruction memory,
data memory, message overhead, and wireless traf-
fic, and to minimize its dependence on other net-
work services, including localization and time syn-
chronization. In this paper, we present and evalu-
ate a protocol that meets these requirements; we
call this protocol Harvest.

Harvest achieves its reliability with two mea-
sures: First, it schedules the transmissions (of mes-
sages containing bulk datum pieces) so that mes-
sage losses due to collision are reduced. We reduce
the problem of computing a TDMA schedule that
avoids hidden terminals to computing a distance-
2 (henceforth D-2) vertex coloring; the color of
a node decides the slot in which it can transmit.
In the unit disk graph model, these two problems
are equivalent [6]: this intuitively follows from the
observation if two non-neighboring nodes u and v
interfere with each other then there exists a node
w such that there are edges (u,w) and (w,v) in the
unit disk graph. Second, Harvest uses acknowl-
edgments and retransmissions at the MAC layer
for recover from losses

Harvest achieves its energy efficiency by avoid-
ing energy-intensive flash operations: it performs
at most one flash read and no flash write for any
bulk datum piece, and stores the piece at nodes
en route to the base station only in their RAM. Of
course, avoiding message collision also yields en-
ergy efficiency. Harvest keeps the message over-
head low (below 9 bytes per bulk data packet).

To keep the number of control message tranmis-
sions low, we present a distributed algorithm for its
TDMA schedule computation that generates O(1)
control message per node involved, which is sig-
nificantly better than the traditional, distributed al-
ternative, which incurs O(∆2) per node involved,
where O∆ is the node degree. As we explain
shortly, this improvement is enabled by comput-
ing vertex coloring with a constant number of col-
ors that may be smaller than ∆. As a result, not
every node in the network is colored and so the
TDMA schedule has to be computed in an ongo-
ing manner, which in turn implies the control mes-
sage savings is an ongoing one. Moreover, since
an idle radio also consumes significant power (of
the same order as that during message reception),
Harvest schedules the switching off of the radio to
save energy: asymptotically, a node keeps its radio
on only for the time it is scheduled to send data on
behalf of itself or someother node.

Finally, Harvest achieves low latency in two
ways. For one, it exploits spatial reuse. Instead
of collecting data from only one node at a time,
Harvest allows data collection from some constant
number of nodes concurrently. For ease of expo-
sition only, we let the concurrency constant be 2
henceforth (the protocol assumes that the user will
specify this concurrency constant as a parameter;
in fact, larger constants for dense networks yield
lower latency). For nodes (including the base sta-
tion) to concurrently receive data from 2 nodes, 4
colors are needed in the vertex coloring (one for
the node, two for its allowed children, and one for
its parent node). In other words, regardless of the
density of the network, Harvest colors at most 4
nodes in the inteference region of any node at any
time. Once a colored node has completed its trans-
missions, Harvest lets an uncolored node in its in-
terference region to assume that color; this is the
on-going aspect of the TDMA schedule computa-

tion. We validate that a concurrency constant of 2
yields 33And two, we ensure that the control al-
gorithms used by Harvest have constant time com-
plexities. In particular, our TDMA slot synchro-
nization algorithm (which obviates the need for a
time synchronization service) has a local conver-
gence time of O(1) as opposed to O(∆2)+O(D) in
traditional algorithms, given the bound on the node
density.

Contributions of the paper.
1. We present a randomized distributed algo-

rithm that assigns a constant number of col-
ors in the D-2 region of every node (if such
a coloring is possible) so that each node that
gets a color waits O(1) time until it gets a
unique color; this contrasts with the O(∆2)
wait time of traditional deterministic D-2 col-
oring algorithms. This is achieved by execut-
ing our TDMA scheduling algorithm on top of
a CSMA/CA-based MAC; thus, in the event
that two nodes within reliable range of each
other will start to contend on a color simula-
taneously (i.e. in the same slot), then due to
CSMA/CA, one of the two nodes will back off
and receive a packet from the other contend-
ing node, therby yielding that color. We note
that the algorithm would work given (local or
nonlocal) ways of calculating the interference
regions of nodes other than our method for lo-
cal computation of the D-2 neighborhood set.

2. We present an algorithm that synchronizes its
TDMA slots with that other colored nodes
within O(1) time of its being colored. Tra-
ditional deterministic TDMA slot synchro-
nization algorithms have O(Dia) convergence
time, where Dia is the diameter of the net-
work. Intuitively, the reason for the O(Dia)
convergence time is that the maximum number
of colors used the nodes in any interference re-
gion needs to be propagated to all the nodes

after the D-2 coloring so that they can agree
on the transmission period. Harvest achieves
constant time converence because of its use of
a pre-specified constant number of colors.

3. We present a data collection algorithm that
can use a small constant number (even 1) of
packet-sized buffers, irrespective of the num-
ber of nodes and the bulk datum sizes. In ef-
fect, each node in Harvest can have at the most
two children node that send data to it. Using 1
buffer let’s the node forward on behalf of only
one child; using two let’s the node forward on
behalf of both; and using more buffers helps
in further reducing the latency.

4. We evaluate the performance benefit of the
spatial reuse and TDMA scheduling in Har-
vest, by providing a comparative performance
with the Straw protocol, in terms of latency
and energy improvement achieved via the for-
mer and the relative message overheads (Straw
use 7 bytes per packet versus Harvest’s 9).

Organization of the paper. In Section 2, we
present the system model and problem statement
in more detail. We describe the Harvest proto-
col and its TinyOS implementation in Section 3.
We analyse the performance of the randomized
TDMA scheduling algorithm and the data collec-
tion components of Harvest in Section 4. In Sec-
tion 5, we overview the Straw protocol and com-
pare its performance with that of Harvest, analyt-
ically and via TOSSIM simulations. We describe
a number of extensions of Harvest and discuss its
relevance for collecting on-line streaming data in
Section 6. We discuss related work in Section 7
and make concluding remarks in Section 8.

2 The Bulk Data Convergecast Problem

The system consists of n,n > 0, wireless sensor
nodes, called motes, one of which is distinguished
as a base station. We do not make assumptions

of how the mote locations are spatially distributed,
nor do we assume the availability of a location ser-
vice. We do assume that each mote can communi-
cate with the base station over zero or more com-
munication hops and the degree ∆ in the network
is bounded.

Some of the motes initially each have a bulk da-
tum in their data store, whose size may vary from
mote to mote and may exceed that of the mote’s
RAM. For simplicity, we assume that each bulk
datum resides in the nonvolatile store of its mote.
Desired is a middleware service that upon initia-
tion from the base station collects of all motes’
bulk data at the base station. In decreasing or-
der of importance, the performance metrics of the
service are: first, energy efficiency and reliability,
and, second, latency, by which we mean the time
taken at the base station from the initiation to the
completion of the bulk data collection opreation.

With respect to energy, Table 1 illustrates the en-
ergy cost in terms of current draw for common op-
erations for the case of motes in the Mica-2/XSM
family.

Operation Current Draw
CPU and Idle Radio 8 mA

Packet Reception 7.03 mA
Packet Transmission 10.4 mA

EEPROM Read 6.2 mA
EEPROM Write 18.4 mA

Table 1. Energy required by common operations

The table suggests that given the aggregate
current draw for an EEPROM read and write
(24.6mA) is significant, and thus every addition of
flash operations to the bulk convergecast forward-
ing process will almost double the current draw
associated with the minimum aggregate current
draw of radio receive, CPU, and radio transmis-
sion (25.43mA). It follows that minimizing EEP-
ROM operations is desirable for the energy metric.
The table also identifies the energy overhead asso-

ciated with an idle radio. One implication is that a
mote should sleep as soon as it has no data to send
of its own or on behalf of other motes.

With respect to reliability, we focus attention
on obtaining high but not necessarily 100% reli-
able data collection. Unlike the dual problem of
bulk data dissemination, where objectives such as
mote reprogramming demand all-or-nothing deliv-
ery of bulk data, the use cases of bulk data con-
vergecast can often tolerate low levels of unrelia-
bility. In designing our solution, we do not empha-
size a particular selection of a link estimation tech-
nique or retrasmission mechanism. (Specifically,
our experimental evaluation of our solution uses
the WMEWMA link estimation approach of Woo
and Culler [16] and 0-retransmissions, but these
choices are not of central importance.)

With respect to latency, we note that the prob-
lem statement does not emphasize the latency
of collection from the perspective of individual
motes. Had we considered the version of the prob-
lem where motes were continually generate and
stream data to the base station, low jitter and com-
parable latency across the motes would have been
desirable. We therefore regard these latter require-
ments as being optional, but not first order, solving
the problem.

Finally, in designing our solution, we do not as-
sume the availability of a time synchronization ser-
vice.

3 The Harvest Protocol

3.1 The Components of Harvest
In this section, we describe the three compo-

nents of Harvest, viz. interference neighborhood
discovery, randomized slot assignment and syn-
chronization, and data collection.

Neighborhood Discovery. Each node performs
online link estimation to find out its 1-hop neigh-

borhood set. For ease of exposition, we first as-
sume that all the links are symmetric, i.e., the link
quality between two nodes is same in both the di-
rections. Therefore, it is sufficient to do link es-
timation in any one direction. However, the links
in sensor network may not always be symmetric,
so we will extend the link estimation in both the
directions to deal with asymmetric links.

A number of metrics can be used for this link
estimation; for instance we may use the window
mean with exponentially weighted moving aver-
age (WMEWMA) metric. This metric was has
been used by MintRoute protocol [16] of Woo
and Culler. There are two tuning parameters for
WMEWMA-based link estimations, viz. α and t.
The parameter α determines the size of the history
used in link estimation and t determines the rate
at which link estimation is updated.(Experimental
results in the literature show that the values 0.6 and
30 for α and t respectively, provide stable and ag-
ile link estimation for Chipcon’s CC1000 radio. In
particular, the settling time, which is the length of
time for the estimator to converge within ±10%
of the actual value and remain within the error
bound.)

Based on link estimation, path selection to the
base station can be based again on a number of
metrics studied in the literature, e.g., end-to-end
path reliability, hop distance, end-to-end mac la-
tency, etc;. for instance, we may use a combina-
tion of link quality and hop distance. In particular,
we define the 1-hop neighborhood of a node A to
be the set of nodes that have WMEWMA value
greater than or equal to 75 (which roughly implies
a stable packet loss rate less than 10%). Among
the 1-hop neighbors, node A selects a node with the
least hop distance to the base station as its parent.
Using TOSSIM simulations, we find that the mini-
mum WMEWMA link quality between two nodes
at 2-hops from each other is 30 (which roughly im-

plies the nodes can reliably sense each other’s car-
rier).

Randomized Slot Assignment and Synchroniza-
tion. As explained in Section 1, Harvest uses 4
colors in the entire network (i.e., two more col-
ors than our de facto concurrency constant of 2).
The TDMA scheduling divides time into intervals
of length T = 4 ∗ tS, where tS is the duration of a
timeslot. Note that the color assignment should be
such two nodes with that are not within 2 hops of
each other can use same color. Further, every node
can have at the most two children. In each time
period T , a node can forward only one packet (this
could be its own packets or on behalf of one of its
two children). The parent can signal which child
should send a packet next by ordering the child IDs
in the Harvest message, as we shall explain later.

To begin the TDMA scheduling, the base station
selects a color for itself and starts sending beacon
messages in its timeslot. The 1-hop neighbors of
base station randomly select an available color and
start sending their payload. Every node’s packet
contains the IDs of its 1-hop neighborhood trans-
mitters. If node A hears its 1-hop neighbor trans-
mitting in the same time-slot then one of two nodes
gives up its color. The priority among the contend-
ing nodes is decided by considering which nodes
was the first to select the color and then by the IDs
of the nodes. Thus, priority is locally computed by
looking at the sequence number of the messages
and the unique IDs of the nodes.

The underlying MAC layer in Harvest is
CSMA/CA based. As a result, even if two nodes
try to transmit in the same time slot, only one of
them can succeed. We claim that this phenomenon
applies to both scenarios, viz. when the two con-
tending nodes are 1-hop neighbors of each other
or 2-hops neighbors of each other. The nodes in
the 1-hop neighborhood of the base station select

a color and the wave propagates. After a node se-
lects a color for itself or finds that there are no
available colors in its D-2 neighborhood, it turns
off the backoffs in the underlying CSMA/CA. Ev-
ery node maintains a list of node IDs, which are us-
ing the 4 colors in its D-2 neighborhood, as a soft
state. Whenever a node finishes its data transmis-
sion, it stops transmitting and its color is available
for reuse. All the nodes in the D-2 neighborhood
learn this information by the virtue of the soft state
and enable backoff in the underlying CSMA/CA.
And the process of randomized color selection re-
peats.

The selection of 2 senders and the color as-
signment is a distributed operation. The operation
is initiated from a single base station as opposed
the nodes in the network, since uniquely selecting
nodes in a distributed manner would incur addi-
tional message overhead for coordination. The ap-
proach outperforms a centralized solution because
in the latter a single node (such as the base sta-
tion) would need to collect the entire topology in-
formation to compute disjoint paths between two
nodes. Further, the operation would have to re-
peated whenever a new sender is selected.

Data Forwarding Protocol. As soon as a node
has selected its parent and uniquely selected a
color in its D-2 neighborhood, it starts sending
data packets to its parent in the corresponding
timeslot. A parent can choose to receive packets
from either of its children. If a parent node has 1
buffer space, then it can receive only 1 packet in
the entire time period T = 4∗ tS (tS is long enough
to transmit a Harvest message with CSMA/CA
backoffs disabled). In this csae, a parent node re-
ceives packets from a child in every alternate time
period. The process of alternation ensures that the
colors assigned to its children are not unassigned.
This is a minor variation in the Harvest protocol
as described above. Instead of one packet buffer

at each node, more than one packet buffers can be
allocated at each node. This will expedite the data
collection.

3.2 Implementation Description
In this section, we describe the implementation

of Harvest in NesC under TinyOS 1.x release. Har-
vest has a single message structure; Figure 1 il-
lustrates this structure, using numbers that denote
field sizes in terms of bits.

2 4 8 168 8 88 20*8

Color ID

hops

Child IDs Node IDs Sequence # Payload

8

Figure 1. Harvest Message Structure

The payload in each Harvest packet is 20 bytes
(this is in contrast to Straw’s payload of 22 bytes).
The color ID identifies one of the 4 colors used by
the node. The # hops denotes the distance of the
sender from the base station. This information is
used by a node to select it parent, which has the
minimum distance to the base station, among the
set of nodes within 1-hop neighborhood.

The child IDs are used identify the IDs of the
sender’s children. A non-null value declares that
the sender is available for forwarding. Also, the
sender can use this field to declare its decision
about the selected children in case multiple node
are in contention for the selection. In particular,
the ID in the first field among the two, should send
packet in the next time period.

The array of 4 node IDs denotes the IDs of the
4 nodes, in the sender’s D-2 neighborhood, which
are currently using the 4 colors. The array is or-
dered in the increasing order of the color IDs. Ev-
ery node copies the array received from its 1-hop
neighborhood and maintains it as a soft state. If a
color is not refreshed for a certain time, then the

node assumes that the color is free and sends this
information as part of its messages. The sequence
number is a monotonically increasing number and
denotes the sequence number of the packet. It is
used in the calculation of WMEWMA link esti-
mate and to select a unique node in the case of 2
nodes contending for the same color or same par-
ent. The range of sequence numbers can be chosen
depending upon the number of packets to be trans-
mitted and also the number can be recycled to save
space.

There are no explicit sender ID and the desti-
nation ID fields. The sender ID can be retrieved
from the message by reading the node ID at the
location of sender’s color ID. The destination ID
field is used from the TOS header in the TinyOS
packet. Harvest uses promiscuous mode of trans-
mission so that neighboring nodes can learn about
the color allocation. But only the node identified
as the destination node forwards the packet to the
base station. The base station’s ID is 0. The re-
ceiver can identify whether the message is from
the base station or not by looking at the sender ID.

Harvest does not need an explicit tine synchro-
nization service for its TDMA to function. Ev-
ery packet contains the D-2 color of the sender.
We use the synchronous reception property of the
wireless medium to achieve time synchronization
among the nodes [2]. In particular, when a node
hears a packet from its parent, it synchronizes its
time with that of its parent. Since base station is
the root of the tree, all the time at all the nodes is
synchronized to that of the single clock of the base
station by virtue of induction. This synchroniza-
tion scheme is also used in Sprinkler [8], which
uses TDMA.

4 Performance Evaluation

In this section, we evaluate the latency and num-
ber of packet transmissions for Harvest’s random-

ized slot assignment algorithm and data collection
protocol.

4.1 Randomized Slot Assignment Perfor-
mance

As described earlier, Harvest uses an underlying
CSMA/CA protocol for color selection. In partic-
ular, when a node receives a message, it finds out
the available colors in its D-2 neighborhood from
the received message. If one or more colors are
available, the node randomly selects an available
color and starts transmitting from the correspond-
ing TDMA slot in next time interval. It is pos-
sible that two or more nodes can simultaneously
select the same color and therefore their transmit-
ted packets can collide with each other. We show
here that in O(1) time, a unique node will select a
unique color in the node’s D-2 neighborhood.

TinyOS uses a variant of non-persistent
CSMS/CA protocol [15]. We briefly recall
the definition of non-persistent CSMA/CA proto-
col [1]:
1. A node senses channel before transmission.

2. If the channel is free, it immediately trans-
mits a frame; otherwise it waits for a random
amount of time.

3. After waiting, it repeats step 1.
In the case of TinyOS, a node waits for a ran-
dom amount of time before it senses the channel.
This ensures that the transmissions are not syn-
chronized. Because of the initial random wait,
the throughput of the CSMA/CA in TinyOS is
better than that of the classical non-persistent
CSMA/CA.

THEOREM 1. Given that the degree (∆) of net-
work is bounded, Harvest takes O(1) time for as-
signing a unique color to a node in its D-2 neigh-
borhood.

PROOF. Given that ∆ is bounded, for non-

persistent CSMA/CA, there exists a constant τ > 0
such that the probability of a frame transmission
without collision is at least τ [1]. The same holds
for the CSMA/CA in TinyOS which is variant of
non-persistent CSMA/CA.

Therefore, the expected time for a frame trans-
mission without failure is also O(1). In the event
that two or more nodes select the same color and
transmit in the same timeslot, in O(1) time, a
unique node will succeed in a transmission with-
out failure. After one transmission without colli-
sion, all the nodes in the D-1 neighborhood will
learn that the color is not available. Similarly, for
the D-2 neighborhood, a unique color is selected in
O(1) time since the packet delivery rate between
D-2 neighbors is non-zero. After one transmission
without collision by the successful node, or via a
neighbor of the successful node, the color assign-
ment of the successful node get conveyed to its 2-
hop neighborhood.

The value of τ depends upon the range of val-
ues for random wait and ∆. Instead of finding the
value of τ, we perform experiments to measure the
convergence time of Harvest’s slot assignment for
different values of ∆. We use 51 XSM motes in
an indoor testbed, Kansei. An XSM mote uses
Chipcon’s CC1000 radio and is for the purposes
of this experiment similar to a Mica-2 mote. We
use the TinyOS 1.x release and the standard MAC
that comes with the 1.x release. The topology of
the network is as shown in the Figure 2. The motes
are placed in grid with 3ft unit separation on the X
and Y axes. We uses default power level and de-
fault frequency for transmission. The mote at loca-
tion (0,0) is selected as the base station, as shown
in Figure 2. Each slot is of the duration 31 msec,
which is the minimum possible given that the radio
transmission takes at 23 msec and the UART trans-
mission takes at least 8 msec in TinyOS 1.x over
XSM. Each node has a payload of 100 packets to

be sent to the base station.

Base Station

Figure 2. Testbed Topolgy

We measure the time required to collect all the
data packets from the first mote after the start of
the experiment as a function of the number of
nodes. The time is sampled at a granularity of
30 times the time for a transmission period. The
number of sampling periods required for the first
node to complete data exfiltration denotes the con-
vergence time of the color selection algorithm. As
shown in Table 2, the convergence time has a vari-
ance of 1 sampling period, which is negligible.
Hence, for the non-persistent CSMA/CA imple-
mentation in TinyOS 1.x release, the convergence
time of Harvest’s randomized slot assignment is
negligible for a ∆ up to 51.

nodes Convergence time
6 8

12 8
18 8
22 8
31 7
42 8
51 9

Table 2. Scalability of color selection

4.2 Data Collection Protocol

Latency. We define the total latency of Har-
vest data collection to be the duration between
the moment that the base station receives the first
data packet and the moment it receives the last
data packet. Since the base station has 2 children

and there are 4 timeslots per time period T,T =
4 ∗ ts, it receives 2 packets per time T . Therefore,
for n nodes and M number of packets from each
node, the time required to receive n ∗M packets
is n ∗M ∗ 2 ∗ ts, which is O(n ∗M). The time re-
quired to build the tree rooted at the base station is
in the worst case O(n). Note that the tree building
is happening in parallel to the data collection. But
for the worst case analysis, we can assume that the
two processes happen sequentially. In that case,
the total latency of Harvest is O(n) + O(n ∗M) =
O(n∗M).

Number of Transmissions. Let h be the aver-
age height of a node in the routign tree. Therefore
given n∗M packets, the total number of transmis-
sions is O((n∗M ∗h)/2).

5 Performance Comparison

5.1 The Straw Protocol
In this section, we compare the performance of

Harvest with that of Straw [4]. Similar to Harvest,
the objective of Straw protocol is to collect bulk
data from all the nodes at the base station. Un-
like Harvest, Straw collects data from one node at
a time. For each node, the data collection is di-
vided into two phases, viz. broadcast and collec-
tion. In case the collection phase loses packets,
the two phases are repeated to recover from loss.
(The broadcast command in the recovery phase
contains the sequence numbers of the lost pack-
ets.) The overall goal of the protocol is to mini-
mize latency and number of packet transmissions.
The broadcast phase disseminates the ID of a se-
lected node, from which data is to be collected.
Following the broadcast phase, the selected node
periodically sends packets to the base station. The
route is selected using MintRoute protocol.

For all nodes that are at a distance greater than
2-hops from the base station, the transmission pe-
riod in Straw is 3∗ th, where th is the time required

to traverse single hop. The number 3 is chosen to
reduce the interference with data forwarding at an
upstream node. If we color the nodes that transmit
at the same time, then the coloring of transmitting
nodes effectively yields a D-2 coloring. Note that
the transmitting nodes induce a one dimensional
graph, in other words, a single line (and hence
the name “straw”). Due to the fact that each node
sends packets at the period of 3∗th, the base station
receives a packet after every 2∗ th time. For nodes
at 1-hop and 2-hop distances from the base station,
the transmission period is th and 2∗ th respectively.

The initial broadcast command sets up the col-
ors on the linear path from a node to the base sta-
tion. This corresponds to a deterministic slot as-
signment, as compared to the randomized slot as-
signment of Harvest. Further, a node from which
data is collected, is selected by the base station as
opposed to the local, distributed selection in Har-
vest.

5.2 Latency Comparison

5.2.1 Theoretical Comparison

Straw uses a broadcast for slot assignment. In
each broadcast phase, a node forwards the broad-
cast command once. For collecting data from n
nodes, Straw will therefore employ n broadcast
sessions, on average lasting for at least O(h) time.
Therefore, the total latency for assigning slots is
O(n∗h) as compared to O(n) for Harvest.

In Straw’s data collection protocol, only the
nodes on the path from the current sender to the
base station are transmitting. The rest of the net-
work is idle, in other words, spatial reuse is lim-
ited. If the rest of the network lies outside inter-
ference distance from the the transmitters, then an
idle node from the rest of the network can send its
data towards the base station. However, finding a
nodes outside interference distance from the cur-
rent transmitters could be impossible, especially

near the base station. A solution is to increase the
number of D-2 colors from 3.

Instead of a linear structure, Harvest utilizes a
tree structure to collect data packets. Given the
concurrency constant of 2, Harvest uses a binary
tree. Harvest uses 4 colors in order to ensure that
the binary tree can be D-2 colored. In that case, the
base station receives 2 packets every 4 ∗ ts, where
ts is the duration of a timeslot. Therefore the rate
of data collection at the base station is equal to a
packet after every ts time. Note that we can uti-
lize any m-ary tree and C colors, and the resulting
rate of data collection at the base station would be
m/C.

In Straw, the rate of data collection from the
nodes at more than 2-hops from the base station
is 1 packet per 3 ∗ ts. If we assume that the num-
ber of nodes at 1-hop and 2-hop distance from the
base station is far less than that the total number of
nodes n, the latency of data collection for Straw is
n∗M ∗3∗ ts. Therefore, data collection of Harvest
has 33.33% lower latency than that of Straw.

Further, the overall order complexity of the la-
tency of Straw is O(n ∗ h) + O(n ∗M), which ex-
ceeds the O(n∗M) of harvest if Oh is greater than
O(M).

5.2.2 Simulation-based Comparison

� 12 feet

Base
Station

7
nodes

7
nodes

Figure 3. Network topology for simulation

To validate the claimed improvement in latency,
we perform simulations in TOSSIM. We setup a
network of 20 non-base station motes and 1 base
station node. As shown in Figure 3, we ensure that
there are nodes at more than 2-hop distance from
the base station. Also, the base station has more
than 1 node at 1-hop distance.

The QueuedSend buffer module at the TinyOS’s
MAC layer uses explicit acknowledgment. In the
case of unsuccessful transmission, a retransmis-
sion is attempted. However, the retransmission
could happen in an incorrect timeslot, resulting in
a collision. Therefore, we have disabled the MAC
layer ACK in this simulation. However, we can
still utilize the MAC-level ACK by channeling the
ACK information to the Straw and Harvest proto-
col layer. Use of ACK will increase the reliability
to data collection.

All of the simulation are done under TOSSIM.
This NesC-code simulator has an option to instan-
tiate a link quality set given the node placement.
The links qualities are based on some empirical
measurements carried out for MICA-2 motes. The
links qualities vary in spatial and temporal dimen-
sions. Since the current implementation of Harvest
assumes symmetric links and base its parent selec-
tion criteria by measuring link quality in one di-
rection, we have pre-processed the link quality set
so that all the links are symmetric. In our future
work, we will refine the implementation to deal
with asymmetric links by computing link quality
in both directions. In particular, link quality from
the child to parent will be computed by counting
the number of successful and failed ACKs. We use
our NesC implementation and we use the Straw
code which has been available as part of a Golden
Gate Bridge health monitoring project contribu-
tion folder under TinyOS 1.x release.

We measure the rate at which data is collected
at the base station. We observe that the rate of data
collection is 1.67 packets per 4∗ ts for Harvest and
0.8 packets per 3∗ts for Straw, as shown in Table 3.
The rate of data collection is lower than the respec-
tive theoretical values due to the fact that ACKs are
disabled. The observed latency gain under simula-
tion is 36%, which is close to the theoretical value
of 33.33%.

Service Theoretical Simulation
Straw 1 packets/(3∗ ts) 0.8 packets/(3∗ ts)
Straw 2 packets/(4∗ ts) 1.67 packets/(3∗ ts)

Table 3. Latency Comparison

5.3 Energy Comparison

5.3.1 Theoretical Comparison

Straw uses a broadcast to disseminate the com-
mand to send the ID of a selected node. This is
equivalent to the slot assignment in Harvest. In
a broadcast phase, each node in the network for-
wards a newly heard packet exactly once. There-
fore, the total number of transmissions in a broad-
cast phase are n, where n is the total number of
nodes in the network. Therefore, to collect data
from n nodes, the total number of packet transmis-
sions are n2.

Also, each broadcast phase is followed by a re-
ply from a selected node to the base station. The
total number of transmissions, for each reply, is a
function of number of hops from the selected node
to the base station. In the worst case, the average
path length in the network could be n/2. In that
case, the total number of replies for all nodes is
n2 +n/2, which is On2).

In Harvest, the control information pertaining to
slot assignment is piggybacked on the data mes-
sages. Therefore, Harvest does not have packet
transmissions for slot assignment. Hence, it saves
O(n2) number of packet transmissions as com-
pared to Straw.

We assume that Straw and Harvest both use the
shortest path routes to transmit data packets to the
base station. In that case, the total number of data
packet transmissions for data collection purposes
are the same for Straw and Harvest. In particular,
this number is O((n∗M ∗h)/2).

The total number of messages for Straw is O(n2)
+ O((n∗M ∗h/2).

5.3.2 Simulation-based Comparison

In reality, the radio behavior is more complex
than that represented by the simplistic unit-disk ra-
dio model. Not only is packet delivery rate less
than 100% but it also varies in space and time.
Therefore, we conduct simulations over a multi-
hop network to compare the number of packet
transmissions for Straw and Harvest. We conduct
simulations in the same network topology as used
in Section 5.2.2. In future, we plan to compare re-
sults in a real sensor network.

The number on top of each node, in Figure 4, il-
lustrates the number of broadcast sessions required
to reliably convey the command to each of the 20
nodes. The total number of broadcast sessions are
46. Given 20 nodes, Straw consumes 20 times 46,
i.e. 920, more packet transmissions.

! 12 feet

Base

Station

7

nodes

7

nodes

442

1,2,2,1,2,2,1

1 2 1

7,4,3,2,2,1,2

Figure 4. Number of broadcast sessions for 21 nodes in
Straw

6 Harvest Extensions and Discussion

Duty Cycling of Radios. As we discussed in Sec-
tion 2, an idle radio draws a significant amount of
current and so energy efficiency is gained by let-
ting idle nodes sleep. In Harvest, we achieve this
as follows. When a node sees that no colors are
available for itself in its interference region (i.e.,
its 2-hop neighborhood), it can switch off its ra-
dio until a color is expected to be available again.
Given some knowledge of the number of pack-
ets to be transmitted that color and by observing
the sequence number of the packet currently being
transmitted for that color, a sleeping duration can
be readily calculated.

Furthermore, once a node is done with its role

in the convergecast, it can switch off its radio per-
manently. A node is defined to be done with its
transmissions after it has sent all of its packets and
the packets of its children.

Reliability when all Children Transmit Concur-
rently. As described in Section 3, the data col-
lection protocol allows non-base station nodes to
forward data from one or more of its children. (If
more than one child can transmit, then the proto-
cols maintains at least one buffer per child.) When
only one child is allowed to transmit, the implicit
acknowledgement scheme suffices for nodes to
discover whether or not their transmissions were
successfully received.

When more than one child is allowed to trans-
mit, using the implicit acknowledgement scheme
implies either a delay in loss detection or a modifi-
cation of the protocol to expose more node buffer
information. One alternative in this case would be
to use explicit acknowledgements. If we assume
that explicit acknowledgements can be send imme-
diately (or within some constant delay after mes-
sage reception), then the tranmission slots can be
extended to subsume both the transmission time
and the acknowledgement time.

Continuous Streaming of Data to the Base Sta-
tion. Harvest collects data simultaneously from
multiple nodes, as opposed to receiving data from
only one node at a time. In this sense, the data re-
ceived at the base station resembles a continuous
stream of data from the network ordered in time. It
is therefore conceivable to use Harvest as the ba-
sis for collecting in an on-line fashion continuous
data streams from the network.

Note that the description in Section 3 for the
case where all nodes forward data from multiple
children allows the possibility that the data from
each child is forwarded in a round robin. More
sophisticated rules for fair scheduling that con-

sider the distance of the node from the base station
can be defined to achieve global fairness, other-
wise nodes near base station will contribute more
packets as opposed to the ones farther from the
base station. One extension of Harvest that we
are presently studying is in the context of real-time
wireless sensor network applications, such as visu-
alizing link quality of the network in real time or
viewing consistent global snapshots of the wireless
sensor network.

7 Related Work

TDMA and CSMA. Herman et al [3] have pro-
posed a randomized TDMA algorithm that first
forms clusters, each with a unique cluster-head.
Each cluster-head then allocates colors to its chil-
dren. Cluster-heads are ordered in a monotoni-
cally increasing order, so the color assignment oc-
curs sequentially per that order. A similarity be-
tween this work and Harvest’s TDMA schedul-
ing is the use of underlying CSMA/CA MAC
layer to CSMA/CA to communicate control in-
formation pertaining to node coloring and TDMA
scheduling. Z-MAC [9] uses both TDMA and
CSMA/CA features in manner different from Har-
vest. Z-MAC is hybrid MAC that uses TDMA
under high contention and CSMA under low con-
tention, whereas data transmission in Harvest is al-
ways in TDMA mode. Kulkarni and Arumugam
[7] describe TDMA based protocols that are op-
timized for convergecast, that work however as-
sumes grid localization.

RID [18] is a radio interference detection ser-
vice that detects interference relations between
nodes at run-time, and provides higher fidelity for
collision avoidance when using TDMA. The RID
approach would be a suitable candidate for en-
abling Harvest’s distributed coloring protocol.

Convergecast routing. There is a rich body of
work on convergecast routing for wireless sensor

systems. Several protocols assume location infor-
mation. Most of the others such as MintRoute
[16], RMST [11], PSFQ [13], Drain [12] are,
unlike Straw and Harvest, not optimized for the
energy and latency requirements associated with
the collection of payloads that can well be in
the thousands of packets per node. For instance,
MintRoute does not pipeline transmissions, which
would yield higher latency for bulk data transport,
and Drain is optimized for the case of a single
packet payload per source mote.

Reliability. The study of reliability in converge-
cast has often arisen in the context of concur-
rent event detections, which tend to occur in a
bursty manner or with multiple sources are contin-
uously/periodically generating packets (with low
duty cycle). RBC [17] focuses on the former
whereas the traffic models considered in CODA
[14] and ESRT [10] focus on the latter. RBC
deals with bursts by maintaining information about
queue conditions of the neighboring node as well
as number of times enqueued packets were re-
transmitted, which results in sizeable RAM us-
age. Also, the queue condition has to be trans-
mitted in RBC, which results in sizeable commu-
nication overhead. The alternative approaches of
packet retransmissions, of acknowledgements, of
hop-by-hop recovery, as well as selecting alterna-
tive routes upon link failure are also relevant ap-
proaches for improving the reliability of Harvest in
particular application contexts. The use of TDMA
and receiver-driven flow control mitigate the con-
sideration of congestion.

Coding of bulk data is a relevant approach for
tolerating packet loss in bulk convergecast. Kim et
al [5] have considered the use of erasure codes. We
have regarded this relevant consideration as being
orthogonal to the pipelining and spatial reuse con-
siderations of Harvest.

8 Conclusion

We have presented a bulk data collection ser-
vice, Harvest, for energy constrained wireless sen-
sor nodes. Harvest assumes a bounded node den-
sity, i.e., degree ∆. This assumption enable us
to We assign distance-k (our exposition has used
k=2) colors to nodes in O(1) time by utilizing
an underlying CSMA/CA MAC layer. We use a
constant number of colors in the entire network,
which enables the per node computation of its
TDMA schedule to occur in O(1) time. Harvest
exploits the spatial parallelism in collecting data,
thereby achieving a latency gain of at least 33%
in large networks (i.e., networks with more than
three hops) as compared to that of Straw. Har-
vest also avoids the O(n2) number of broadcasted
control transmissions used in Straw. Further, Har-
vest requires only O(1) number of buffers at each
node. Therefore, Harvest is suitable for large scale
network of wireless sensor network. We provide
theoretical bounds on the performance of Harvest
and perform simulation results to validate the the-
oretical bound. We find that the spatial parallelism
not only reduces latency, but also creates an op-
portunity to collect global data in a fair real-time
manner. Our present work is studying extensions
of Harvest for the case of on-line continous data
streaming from the network to the base station.

9 References

[1] D. Bertsekas and R. Gallager. Data Net-
works. Prentice Hall, Englewood Cliffs, NJ,
1987.

[2] J. Elson. Time Synchronization in Wireless
Sensor Network. PhD thesis, UCLA, 2003.

[3] T. Herman and S. Tixeuil. A distributed tdma
slot assignment algorithm for wireless sensor
networks. In Algorithmic Aspects of Wireless
Sensor Networks, pages 45–58, 2004.

[4] S. Kim. Wireless sensor networks for struc-

tural health monitoring. Master’s thesis, Uni-
versity of California at Berkeley, USA, 2005.

[5] S. Kim, R. Fonseca, and D. Culler. Reliable
transfer on wireless sensor networks. In An-
nual IEEE Communications Society Confer-
ence on Sensor and Ad Hoc Communications
and Networks, 2004.

[6] S. Krumke, M. Marathe, and S. Ravi. Mod-
els and approximation algorithms for channel
assignment in radio networks. Wireless Net-
works, 7(6):575–584, 2001.

[7] S. Kulkarni and M. Arumugam. SS-TDMA:
A Self-Stabilizing MAC for Sensor Networks,
chapter In Sensor Network Operations. IEEE
Press, 2005.

[8] V. Naik, A. Arora, P. Sinha, and H. Zhang.
Sprinkler: A reliable and energy efficient
data dissemination service for wireless em-
bedded devices. In The 26th IEEE Real-Time
Systems Symposium, December 2005.

[9] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-
mac: A hybrid mac for wireless sensor net-
works. In SenSys, pages 90–101, 2005.

[10] Y. Sankarasubramaniam, O. Akan, and
I. Akyildiz. Esrt: Event-to-sink reliable trans-
port in wireless sensor networks. In The ACM
Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), 2003.

[11] F. Stann and J. Heidemann. Rmst: Reliable
data transport in sensor networks. In The 1st
IEEE Intl. Workshop on Sensor Network Pro-
tocols and Applications (SNPA), pages 102–
112, 2003.

[12] G. Tolle and D. Culler. Design of an
application-cooperative management system
for wireless sensor networks. In Second Eu-
ropean Workshop on Wireless Sensor Net-
works, 2005.

[13] C. Wan, A. Campbell, and L. Krishnamurthy.
Psfq: A reliable transport protocol for wire-
less sensor networks. In WSNA ’02: Pro-
ceedings of the 1st ACM International Work-
shop on Wireless Sensor Networks and Ap-
plications, pages 1–11, New York, NY, USA,
2002. ACM Press.

[14] C. Wan, S. Eisenman, and A. Campbell.
Coda: congestion detection and avoidance in
sensor networks. In SenSys, pages 266–279,
2003.

[15] A. Woo and D. Culler. A transmission con-
trol scheme for media access in sensor net-
works. In ACM/IEEE International Confer-
ence on Mobile Computing and Networking
(MobiCom), pages 221–235, 2001.

[16] A. Woo, T. Tong, and D. Culler. Taming
the underlying challenges of reliable mul-
tihop routing in sensor networks. In Sen-
Sys ’03: Proceedings of the 1st international
conference on Embedded networked sensor
systems, pages 14–27, 2003.

[17] H. Zhang, A. Arora, Y. Choi, and M. Gouda.
Reliable bursty convergecast in wireless sen-
sor networks. In 6th ACM International Sym-
posium on Mobile Ad Hoc Networking and
Computing, 2005.

[18] G. Zhou, T. He, J. Stankovic, and T. Ab-
delzaher. Rid: radio interference detection
in wireless sensor networks. In The 24th An-
nual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM),
pages 891– 901, 2005.

