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ABSTRACT
In this work we focus on the problem of frequent itemset
mining on large, out-of-core data sets. After presenting
a characterization of existing out-of-core frequent itemset
mining algorithms and their drawbacks, we introduce an
efficient, highly scalable solution. Our solution, presented
in the context of the FPGrowth algorithm, involves sev-
eral novel I/O-conscious optimizations, such as approximate
hash-based sorting and blocking, and leverages recent ar-
chitectural advancements in commodity computers, such as
64-bit processing. We evaluate the proposed optimizations,
and present an overall reduction in execution time by over
a factor of 400. Furthermore, we present results of mining
truly large data sets, up to 75 GB in size, on a commod-
ity PC. Finally, we discuss the impact of this research in the
context of other pattern mining challenges, such as sequence
mining and graph mining.

1. INTRODUCTION
The field of knowledge discovery and data mining is de-

voted to the challenge of extracting useful information from
raw data. Over the past decade, technological advances have
allowed us to gather an increasing amount of data in the ar-
eas of science, engineering, and business. Unfortunately, our
ability to collect the data far outstrips our ability to ana-
lyze the data efficiently. There are two main reasons for this
problem. First, many data mining algorithms are compu-
tationally complex and require time that scales non-linearly
with the size of the data set. Second, when the data sets
are extremely large, many data mining algorithms demand
a memory footprint that exceeds the size of main memory.
This can lead to extreme slow down due to poor utilization
of the memory hierarchy. While both these problems need
to be addressed for ensuring the scalability of data mining
algorithms, much of the work to date has focused on the
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first issue. The second issue, while not completely ignored,
has not been satisfactorily addressed.

In this work, we focus on the relatively mature problem
domain of frequent itemset mining [1]. Since its inception,
the community has witnessed a proliferation of efficient fre-
quent itemset mining algorithms in the literature [12, 20, 17,
9, 5, 8]. In this paper, we concern ourselves with the prob-
lem of finding frequent itemsets in large, out-of-core data
sets.

There are two feasible approaches to mine out-of-core data
sets. The first approach is to use an existing in-core algo-
rithm, and leverage an efficient virtual memory sub-system.
Our performance study reveals that while these algorithms
are efficient on in-core data sets, they are extremely inef-
ficient on large, out-of-core data sets. Furthermore, even
when the data set fits in main memory, in some cases, due
to their reliance on large meta-data structures, such algo-
rithms are extremely inefficient due a large virtual memory
footprint. These algorithms are unable to make effective use
of the memory hierarchy and incur a significant number of
page faults, resulting in poor CPU utilization. The second
approach is to partition the data set such that each parti-
tion fits in main memory, use an in-core algorithm to mine
each of these partitions, and aggregate and post-process the
frequent itemsets discovered in each partition, to obtain
the desired results [17]. While this approach is useful in
some situations, in most instances, it results in significant
post-processing overhead and redundant computation. In
essence, the former approach leverages the benefits of search
space pruning by projection at the cost of decreased mem-
ory system performance, while the latter approach maintains
good memory performance at the cost of a poor search space
traversal.

To address the aforementioned shortcomings, we propose
to take one of the most efficient in-core frequent itemset
mining algorithms, FPGrowth, and identify strategies by
which it can be made I/O-conscious [12]. The proposed I/O-
conscious optimizations ensure that the resulting algorithm
will exhibit excellent temporal and spatial locality. Coupled
with recent architectural innovations such as 64-bit micro-
processors, the algorithm affords excellent scaling on data
sets close to available disk capacity, while maintaining good
CPU utilization. This is 400-fold improvement over any of
the strategies we evaluated. While our optimizations focus
on the problem of frequent itemset mining, we believe that
the key findings of this work will hold for many data mining
tasks, especially those in the frequent pattern domain, such
as graph and sequence mining.



Specifically, we make the following contributions:

• We characterize the performance of existing out-of-
core frequent itemset mining solutions.

• We present several novel I/O-conscious optimizations,
namely approximate hash-based sorting, and blocking,
in the context of the FPGrowth algorithm.

• We empirically evaluate the effectiveness of our tech-
niques on several data sets with sizes beyond those
that were previously considered in the literature.

1.1 Organization
The remainder of this paper is organized as follows. A

background on frequent itemset mining is presented in Sec-
tion 2. In Section 3, we present a characterization of existing
out-of-core itemset mining solutions. Based on the results
of this characterization, and the discovered bottlenecks, we
present several novel I/O-conscious optimizations in Section
4. We empirically evaluate the proposed optimizations in
Section 5. In Section 6, we present the implications of our
study on out-of-core algorithm design in the frequent pattern
mining domain. Finally, concluding remarks are presented
in Section 7.

2. BACKGROUND
Frequent itemset mining plays an important role in a

range of data mining tasks. Examples include mining associ-
ations [1], correlations [4], causality [18], sequential patterns
[3], episodes [14], and emerging patterns [6].

The frequent pattern mining problem was first formulated
by Agrawal et al. [1] for association rule mining. Briefly, the
problem description is as follows: Let I = {i1, i2, · · · , in} be
a set of n items, and let D = {T1, T2, · · · , Tm} be a set of
m transactions, where each transaction Ti is a subset of I.
An itemset i ⊆ I of size k is known as a k-itemset. The
support of i is

Pm

j=1
(1 : i ⊆ Tj), or informally speaking,

the number of transactions in D that have i as a subset.
The frequent pattern mining problem is to find all i ∈ D

that have support greater than a minimum support value,
minsupp.

Agrawal et al. [2] presented Apriori, the first efficient al-
gorithm to solve this problem. Apriori traverses the itemset
search space in breadth-first order. Its efficiency stems from
its use of the anti-monotone property: If a size k-itemset
is not frequent, then any size (k + 1)-itemset containing it
will not be frequent. The algorithm first finds all frequent 1-
items in the data set, and then iteratively finds all frequent
l-itemsets using the frequent (l−1)-itemsets discovered pre-
viously.

This general level-wise algorithm has been extended in
several different forms leading to improvements such as DHP
[15] and DIC [4]. DHP uses hashing to reduce the number
of candidate itemsets that need to be considered through
each data set scan. Furthermore, it progressively prunes the
transaction data set as it discovers items that will not be
useful during the next data set scan. DIC [4] processes the
data set in chunks and considers new candidate itemsets as
they are discovered through the scanning of a chunk. Unlike
Apriori, it does not wait until the entire data set is scanned.
Such an approach affords fewer passes.

Zaki et al. proposed Eclat [20] and several other algo-
rithms that use equivalence classes to partition the problem

No. Transaction Sorted Transaction
with Frequent Items

1 f, a, c, d, g, i, m, p a, c, f, m, p

2 a, b, c, f, l, m, o a, c, f, b, m

3 b, f, h, j, o f, b

4 b, c, k, s, p c, b, p

5 a, f, c, e, l, p, m, n a, c, f, m, p

6 a, k a

Table 1: A transaction data set with minsupp = 3

into independent subtasks. The use of the vertical data for-
mat allows for fast support counting by set intersection. The
independent nature of subtasks, coupled with the use of the
vertical data format, results in improved I/O efficiency, be-
cause each subtask is able to reuse data in main memory.

Han et al. presented FPGrowth [12], an algorithm that
effectively combats the above problems. FPGrowth sum-
marizes the data set into a succinct prefix tree or FP-tree.
This structure is often significantly smaller than the origi-
nal data set, and thus, it can be stored in main memory in
most practical scenarios. Furthermore, the algorithm does
not have an explicit candidate generation phase. Rather,
it generates frequent itemsets using FP-tree projections in
main memory. The payoff is improved search space traver-
sal and very high I/O efficiency. However, the pointer-based
nature of the FP-tree requires costly dereferences. We have
previous work which improves cache performance of in core
algorithms [16, 7].

As our optimizations are presented in the context of the
FPGrowth algorithm, we will next describe the FP-tree data
structure and the FPGrowth algorithm in more detail. A
prefix tree (or an FP-tree [12]) is a data structure that pro-
vides a potentially compact representation of transaction
data set. Each node of the tree stores an item label and a
count, where the count represents the number of transac-
tions which contain all the items in the path from the root
node to the current node. By ordering items in a transac-
tion, a high degree of overlap is established.

A prefix tree is constructed as follows. First, we scan the
data set to produce a list of frequent 1-items. Second, we
sort the items in frequency descending order. Third, we
sort the transactions based on the order from the second
step. Fourth, we prune away infrequent 1-items. Finally,
for each transaction, we insert each of its items into a tree,
in sequential order, generating new nodes when a node with
the appropriate label is not found, and incrementing the
count of existing nodes otherwise.

Table 1 shows a sample transaction data set, and Figure 1
shows the corresponding prefix tree. Each node in the prefix
tree consists of an item, count, nodelink ptr, (which points
to the next item in the prefix tree with the same item-id)
and child ptrs (a list of pointers to all its children). Pointers
to the first occurrence of each item in the tree are stored in
a header table.

To compute the frequency count for an itemset, say ca,
using a prefix tree, we proceed as follows: First, we find
each occurrence of item c in the tree using the node link
pointers. Next, for each occurrence of c, we traverse the
tree in a bottom up fashion in search of an occurrence of a.
The count for itemset ca is then the sum of counts for each
node c in the tree that has a as an ancestor.

The FPGrowth algorithm is presented in Figure 2. First,
it builds a prefix tree from the transaction database, re-
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Figure 1: An FP-tree/prefix tree

Algorithm: FPGrowth

Input: A prefix tree D, minimum support mins

Output: Set of all frequent itemsets

Mine the FP-Tree by calling FP-Growth(FP-tree,null,mins)

FP-Growth (tree, suffix, mins)
(1) If tree has only one path

(2) Output 2path ∪ suffix as frequent
(3) Else
(4) For each frequent one item β in the header table
(5) Output the item ∪ suffix as frequent
(6) Use the header list for β to find all frequent items in
(-) conditional pattern base C for β

(7) If we find at least one frequent item in the conditional
(-) pattern base, use the header list for β, and C

(-) to generate conditional prefix tree τ

(8) If τ 6= 0 then
(9) FP-Growth(τ , suffix ∪β)
(10) End For

Note: 2path denotes the power set of the elements in path

Figure 2: FPGrowth Algorithm

moving all infrequent items, using the procedure outlined
earlier. Next, using this prefix tree, the algorithm iterates
through each item β in the tree, and performs two sub-steps.
First, it uses the prefix tree to find all frequent items in the
conditional pattern base for the item β. This involves scan-
ning the tree bottom up beginning at all node locations for
item β. The header table provides a starting point for this
search. The remaining locations for item β are derived using
the node link pointers. Second, given we have discovered at
least one frequent item in the conditional pattern base of
item β in the tree, we build a projected database (repre-
sented as a prefix tree) for item β. The projected data set
for an itemset is the subset of the transactions in the data
set that contains the itemset. This sub-step also involves
scanning the conditional pattern base of item β, in search
for items to be included in the projected database. For each
projected database or conditional FP-tree that we build, the
algorithm proceeds recursively.

Another popular approach to frequent pattern mining is
to directly find all maximal [9] or closed frequent itemsets
[19], without generating all frequent itemsets in the data set.
The benefit of this approach is that maximal or closed fre-
quent itemsets can be used to enumerate all frequent item-
sets. This strategy is used in Mafia [5], Genmax [9], and

Support 30% 25% 20% 15% 10%

CPU util. of 97% 98% 1% << 0.1% <<0.1%
FPGrowth

CPU util. of 99% 99% 4% 1% << 1%
CC FPGrowth

Table 2: CPU utilization for FPGrowth and Cache-
conscious FPGrowth on Webdocs at varying sup-
port.

Charm [19].

3. DRAWBACKS OF EXISTING SOLUTIONS
There are several approaches to find frequent itemsets in

out-of-core data sets. In this section, we will briefly describe
these approaches and identify their strengths and weak-
nesses. All empirical evaluations presented in this Section
were performed on a PentiumD desktop PC with 256MB of
RAM, as described in Section 5.

3.1 Scaling using Virtual Memory (VM)
For the past several decades, operating systems have pro-

vided programmers with a virtual address space that is sig-
nificantly larger than the physical address space. Paging
mechanisms have been responsible for moving instructions
and data in and out of memory, as and when needed. Tradi-
tionally, commodity PCs have been 32-bit processors, which
have a limit of 4GB on the amount of available virtual mem-
ory. Today, however, desktop PCs are afforded 64-bit com-
puting via technological innovations in CPU design. Exam-
ples of these new CPUs include the Intel PentiumD1, the
IBM PowerPC, and the AMD Athlon 64. This translates to
a nearly unlimited amount of virtual memory. An in-core
solution can then use this large amount of virtual memory
to process out-of-core data sets, while relying on the OS’s
paging mechanism to automatically handle the movement of
data between main memory and the disk sub-system. The
key benefit of such an approach is its implementation sim-
plicity.

To evaluate the efficacy of such an approach, we con-
sider FPGrowth [12], which is one of the most efficient fre-
quent itemset mining algorithms to date [8], and our cache-
conscious FPGrowth algorithm, as presented in a previous
effort [7]. We measure CPU utilization of both these al-
gorithms on large, out-of-core data sets. The unmodified
FPGrowth implementation is by Grahne and Zhu [10], as it
has been shown to be amongst the most efficient.

Table 2 presents the CPU utilization of FPGrowth on the
Webdocs data set [8]. It is clear that the CPU is largely idle,
rendering a VM-based solution ineffective. Even our cache-
conscious version, although an improvement, fairs quite poorly.
In FPGrowth, about 28% of the execution time is spent in
Build First Tree(), the routine that builds the very first pre-
fix tree. 10% of the execution time is spent in the Count
FPGrowth() routine. This routine finds the set of all viable
items in the FP-tree (projected data set) that will be used
to extend the frequent itemset at that point in the search
space. 62% of the execution time is spent in the Project FP-
Growth() routine, which scans the FP-tree to build a new
projected FP-tree, for the next step in the recursion.

1The PentiumD uses EM64T technology, which is not true
64-bit computing, but affords a 64-bit virtual address space.



Support 25% 20% 15% 10% 7.5%

False Positives 1276 4376 40669 3530690 49498692
True Positives 585 1625 10668 219915 2303383

Table 3: Overheads from using a partitioning-based
approach on Webdocs at varying supports.

Based on the provided performance characterization, to-
gether with an understanding of the algorithm, we attribute
the poor CPU utilization to the following reasons. First,
when the prefix tree is created, the memory address of a
node in the tree is relatively independent of the memory
address of its child and parent nodes. This is because trans-
actions in the input data set can appear in any order. Con-
sequently, prefix tree accesses exhibit poor spatial locality,
both during the tree construction phase and the subsequent
traversal phase. Furthermore, the algorithm does not bene-
fit from page prefetching, because its memory access pattern
lacks structure. Second, when the prefix tree is larger than
the size of main memory, we have a negligible amount of
temporal locality during execution. The above mentioned
reasons cause the processor to wait on the completion of a
page fault for the majority of the time. Even our cache-
conscious algorithm falters considerably due to page faults
while building the first tree. The penalty is doubled because
the cache-conscious algorithm builds a second, spatially im-
proved tree.

3.2 Scaling using Partitioning
Savasere et al. presented Partition [17], an approach for

out-of-core itemset mining. To mine large out-of-core data
sets, they propose to first subdivide the original data set
into smaller data sets that can be processed in main mem-
ory. Next, each of these partitions in mined in main mem-
ory using an in-core algorithm. This is followed by a union
operation on all frequent itemsets discovered in each parti-
tion. Finally, to find the exact set of frequent itemsets, exact
counts of all itemsets in the union are determined using a
data set scan.

While this approach works well in some situations, it suf-
fers from the following drawback. The approach is efficient
only when the union set of itemsets is close to the actual
set of frequent itemsets. If this is not the case, we need
to find the exact support count of a much larger set of fre-
quent itemsets, often resulting in significant computational
overheads. In a case study, we measured the number of
false positives (number of itemsets in the union - number
of true frequent itemsets) and the number of true positives
(number of true frequent itemsets) as we varied the sup-
port. We find that the number of false positives increases
exponentially with decreasing support, as illustrated in Ta-
ble 3. This finding renders a partitioning-based approach
infeasible on large, out-of-core data sets.

3.3 Scaling using Recursive Projection
Grahne and Zhu presented Diskmine [11], an approach for

out-of-core itemset mining that uses projections to partition
the data. The approach recursively projects the data set un-
til it fits in main memory and then uses an in-core algorithm
to mine the projected data set. The premise is that, during
execution, the root structure containing all frequent items
may not fit in main memory when mining large data sets.
In such cases, recursive projection explores all frequent 2-

Support 20% 15% 10% 7.5%

Additional Scans 1711 6903 33930 75466
Time Required (hours) 18.5 74.7 367 817

Table 4: Number of additional data set scans needed
when using recursive projection on the Webdocs
data set at various supports.

itemset projections. If the resulting data structure for each
frequent 2-itemset projection does not fit in memory, the
algorithm recurses to frequent 3-itemset projections. This
proceeds until the data structure does fit in main memory,
at which point the mining process can proceed efficiently.
The frequent itemsets can be determined by simply taking
a union of the itemsets mined from each projection.

There are two significant drawbacks to this approach. First,
when projecting the data set, if the data structure does not
fit in memory, the algorithm must project by including an
additional item, and deleting the current data structure from
memory. The new projection requires a full scan of the data
set. Second, explicit candidate generation is then required,
which is known to be very expensive [12]. In other words,
when the frequent 1-item tree does not fit in memory, then
all combinations of frequent 2-itemsets must be projected,
even if a large subset of these itemsets are not actually fre-
quent. In effect, one of the main advantages of the FP-
Growth algorithm (elimination of candidate generation) is
negated.

We implemented this technique to evaluate its potential.
In Table 4, we show the number of additional scans as a
function of support for the Webdocs data set, and its asso-
ciated execution time cost2. If the frequent 2-itemset trees
do not fit in memory, this constraint is heightened. Equation
1 evaluates the additional number of data set scans, setting
n to be the number of frequent one items and r to be the
depth of the recursion up to which the projected trees do
not fit in main memory.

scans =
n!

r!(n − r)!
(1)

Current techniques to mitigate this liability, such as com-
bining multiple frequent 2-itemset projections with a single
scan, break down at low supports [11]. Intuitively, this tech-
nique assumes frequent 2-itemset projections to be several
times smaller than main memory (so as to afford combin-
ing).

3.4 Scaling by Solving a Related Problem
One last method we briefly describe is to adjust the prob-

lem definition so as to increase the flexibility for providing
a solution. Examples include mining for closed itemsets,
maximal itemsets, or non-derivable itemsets. These related
problem definitions are quite useful in their own right, and
attack two concerns simultaneously. First, they can reduce
the amount of state and computation required. Strategies
such as partitioning the data set can be more attractive
when less information is required to process the data set.
Second, they often result in a reduced result set, which eases
human analysis. A drawback to this strategy is that the
problem of mining large data sets is merely pushed to a
slightly larger data set; an algorithm that could previously

2We require about 39 seconds to touch each item in the
webdocs data set.



Input: Transaction T, int totalFiles
Output: int Xt

CalculateFileNo(Transaction T,int totalFiles)
(1) min = 0
(2) max = totalFiles
(3) check = 0
(4) index = 0
(5) While (min < max and index < |T |)
(6) If (T[index] == check)
(7) max = (min+max)/2
(8) index++
(9) Else
(10) min = (min+max+1)/2
(11) check++
(12)End While
(13)Return min

Figure 3: Geometric Partitioning Algorithm.

Input: int N, partition X
Output: int Xt

CalculateFileNo(Transaction T,int totalFiles, int index, int
check)
(1) If (|X| > 2N)
(2) If (T[index] < check+N
(3) Xt = T[index] - check
(4) Else
(5) div = (totalFreqItems - check)/(|X| − N)
(6) Xt = (T[index] - check)/div
(7) Else
(8) div = (totalFreqItems - check)/(|X| − N)
(9) Xt=(T[index] - check)/div
(10)Return Xt

Figure 4: Arithmetic Partitioning Algorithm.

handle a 4GB data set can now perhaps process a 6GB data
set. Such approaches do not permit scaling on truly large
data sets and the underlying concern continues to persist. In
this work we maintain the problem definition to be that of
mining frequent itemsets because we feel that this informa-
tion has uses beyond the values of the previous alternatives.
Furthermore, from an algorithmic view point, frequent item-
set mining shares common structure with other itemset min-
ing tasks, such a closed itemset mining and maximal itemset
mining, and we believe our optimizations can be applied to
such tasks as well.

4. I/O-CONSCIOUS OPTIMIZATIONS
Scaling using VM results in the least amount of com-

putational overhead. However, when executions spill onto
disk, such algorithms exhibit severe performance degrada-
tion. This is understandable; typical main memory access
times are about 15 nanoseconds, while typical disk access
times are 5 milliseconds, constituting a 333,000-fold gap in
performance. This hardware constraint is likely to worsen
in the future, because memory access times are improving
faster than disk access times. Our methodology to achieve
an out-of-core solution is to minimize the performance degra-
dation due to this gap, through data and computation re-
structuring, to improve locality. In this Section, we present
several novel techniques for improving the I/O performance
of frequent itemset mining algorithms. The details of our
optimizations are presented in the context of the FPGrowth
algorithm. We choose FPGrowth, because it has been shown
to be the most efficient frequent pattern mining algorithm
to date [8].
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Figure 5: Geometric Partitioning Decision Diagram,
for 8 Files.

4.1 Approximate Hash Sorting
As discussed earlier, the initial step in FPGrowth is to con-

struct a global prefix tree. This first tree can be quite large;
at low supports it can approach the size of the data set. For
in-core data sets, this construction time is typically a small
percentage (< 5 %) of the total mining time. For out-of-core
data sets, however, construction of the first tree results in se-
vere performance degradation. During our empirical study
(presented in Section 3), we showed that our cache-conscious
algorithm was a significant performance improvement over
FPGrowth for out-of-core data sets. However, it spent over
90% of the execution time building the first tree, due to an
excessive number of page faults. The reason is that trans-
actions within the data set appear randomly, which results
in random writes to the tree nodes in virtual memory, dur-
ing tree construction. Even if the initial data set had its
transactions ordered, the problem would persist, since the
transactions are relabeled prior to tree construction (for im-
proved overlap).

Our solution to this problem is to redistribute and ap-
proximately sort the transactions after the first scan of the
database. Naturally, sorting on disk is quite slow. Tradi-
tional methods for external sorting (such as B-tree insertion
and disk-based merge sort) do not provide an overall perfor-
mance improvement; exact sorting required too much time.
Instead, we leverage domain knowledge and the frequency
information collected in the first scan to approximately sort
the frequent transactions into a partition of blocks. Each
block is implemented as a separate file on disk. The algo-
rithm guarantees that each transaction in blocki sorts be-
fore all transactions in blocki+1, and the maximum size of
a block is no larger than a preset threshold. By blocking
the frequent data set, we can build the tree on disk in fixed
memory chunks. A block as well as the portion of the tree
being updated by the block will fit in main memory during
tree construction, reducing page faults considerably.

We use frequency distributions to choose one of the two
partitioning algorithms listed in Figures 3 and 4 by building
a simple model of the distribution. We build this model us-
ing the top 10% most frequent items. Essentially, if the item
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Figure 6: Arithmetic Partitioning Decision Dia-
gram, for 8 Files.

Input: int N, partition X
Output: int index

CalculateFileNo(int fileNo)
(1) index=0
(2) x = log2|X|
(3) check = x
(4) For (i = 1; i < x; i + +)

(5) If (fileNo mod 2i < 2i−1)
(6) index++
(7) Else
(8) Break
(7) Return index

Figure 7: Recursive Index Calculation.

frequencies follow a geometric series (in descending order),
we partition based on the algorithm in Figure 3, otherwise
we partition based on the algorithm in Figure 4.

We first describe the algorithm in Figure 3. Let X=
|partition|. We define a function such that transactions with
the most frequent item receive the top X/2 of the blocks,
transactions with the second most frequent item receive the
next X/4 of the blocks, and so on. Of these top X/2 par-
titions, the top X/4 are dedicated to the subset which also
contain the second most frequent item. The bottom X/4
blocks of this subset are split into two equal sections. The
top X/8 is dedicated to transactions containing the third
most frequent item exists, and the lower X/8 for those which
do not. This pattern recurses until the exact block number is
known. Therefore, in one scan, each transaction is inserted
into one of X blocks (typically 256), based on its content.
In the case that a partition has a size above our threshold,
we process it recursively.

Let us illustrate this algorithm with an example. Suppose
transaction T = {33, 11208, 11, 678, 14, 91, 278}. After
scanning the data set, calculating frequencies (removing in-
frequent items) and relabeling, the transaction becomes T’
= {1, 2, 4, 6, 10}. Let the number of files |X| = 8, as in
Figure 5. Our task is to determine Xt, the file assigned to
T’. We examine the first element in the transaction, and if it
is the smallest (most frequent) element possible, we assign it
to the upper half of possible files. In our example, 1 = 1, so

we reduce the potential file assignment to 0-3. The second
element is also its minimum (2=2), and thus the file list is
0-1. The third element is not its minimum (4 6= 3), so the
block assigned is 1.

If the item frequency model more closely resembles a lin-
ear distribution, we partition using the algorithm in Figure
4. Effectively, we assign the first N blocks to the most fre-
quent items, and assign the remaining items to the remain-
ing files equally. Lines assign the transaction to either a) a
dedicated file if the item in the index is highly frequent, or
b) a shared file if the item is not highly frequent. High fre-
quency is relative; we allow for a parameter N to distinguish
the threshold for the top items which receive dedicated files.
In practice we set N to 5% of the total number of frequent
items. A decision diagram for this algorithm is presented in
Figure 6.

As stated prior, it may be the case that a file size ex-
ceeds our threshold. If so, we simply recurse on the file with
the same procedure. However, we must calculate the new
start index to continue the partitioning. The algorithm is
provided in Figure 7.

We briefly touch upon a minor optimization. First, for
sub-splitting files which surpass the maximum file size, we
may neglect to build a model of the distribution for that sub-
file. Note that odd file numbers contain transactions whose
last element was not the minimum (most frequent) value
possible, and even valued file numbers contain transactions
whose last element was a minimum. In practice we have
found file parity provides sufficient information to evaluate
which algorithm to use when sub-splitting; even numbered
files are partitioned geometrically and odd numbered files
are partitioned arithmetically.

With the knowledge that consecutive files are in relative
order, tree building can proceed by processing the files in
order with a minimum number of page faults. As will be
illustrated in Section 5, this partitioning technique dramati-
cally reduces the cost of building the main tree on disk, and
provides significant total execution time improvement.

4.2 Improving Spatial Locality
Through the characterization presented in the previous

section, we concluded that approximately 10% of the exe-
cution time is spent on finding frequent items in the condi-
tional pattern base of an item, and an additional 62% of the
execution time is spent on using the results of this step to
create a new projected prefix tree. Both these procedures
have very poor main memory utilization and suffer from a
high page fault rate due to poor data locality.

We present the I/O-conscious prefix tree, a data structure
designed to significantly improve main memory utilization
through spatial locality. It is a modified prefix tree which
accommodates fast bottom-up traversals, and shares many
of the features we presented in the context of cache perfor-
mance optimizations for in-core pattern mining [7]. As has
been shown earlier, the cache-conscious algorithm is not ef-
fective on out-of-core data sets. An I/O-conscious solution
must be mindful of the various OS mechanisms as well as the
unit of transfer between disk and main memory. However,
the principles of alleviating the performance gap between
the cache and main memory also apply to the case involving
main memory and disk.

Given a prefix tree, our solution to improve spatial local-
ity is to reallocate the tree in virtual memory, such that the



Core loop: FPGrowth
Input: A prefix tree D, minimum support mins

(1) For each frequent item i in D

(2) Find number of items j in conditional pattern base of
(-) i with support mins

(3) If j > 0
(4) Build conditional prefix tree P for item i

(5) FPGrowth (P, mins)
(6) End For

Figure 8: Core Loop for FPGrowth

new tree allocation is in depth-first order. We malloc() fixed
sized blocks of memory, whose sum is equal to the total size
of the prefix tree. Empirically, we found that a 4 MB block
size is most effective. Next, we traverse the tree in depth-
first order, and (in one pass) copy each node to the next lo-
cation (in sequential order) in the newly allocated blocks of
virtual memory. This simple reallocation strategy provides
significant improvements, because all algorithms access the
prefix tree several times in a bottom up fashion, which is
largely aligned with a depth-first order of the tree. Second,
our node size is much smaller than the original node size,
because we do not include child pointers, node pointers, and
counts. The node fields node link pointer and count are re-
quired at the start of each bottom up traversal. Therefore,
these fields are stored in a separate structure, without any
performance degradation, as node link pointer and count ac-
cesses are not along the critical path.

4.3 Improving Temporal Locality
Temporal locality states that recently accessed memory

locations are likely to be accessed again in the near future.
Designers of OS paging mechanisms work under the assump-
tion that programs will exhibit good temporal locality, and
store recently accessed data in main memory accordingly.
Therefore, it is imperative that we find any existing tempo-
ral locality and restructure computation to exploit it.

4.3.1 Page Blocking
The goal of restructuring the algorithm is to maximize

reuse of the prefix tree once it is fetched into main memory.
We accomplish this by reorganizing computation, and thus,
accesses to the prefix tree, in the algorithm. Our approach,
called page blocking, is analogous to our tiling techniques
[7] for improving temporal locality in in-core pattern min-
ing algorithms. The core loops for FPGrowth and Blocked
FPGrowth are presented in Figures 8 and 9, respectively. It
operates as follows:

First, we break down the tree into relatively fixed sized
blocks of memory (page blocks) along paths of the tree from
leaf nodes to the root. This is possible because our tree is al-
located in depth first order. The blocks are identified using
a starting and ending memory address. We would also like
to point out that these blocks can partially overlap. Next,
we iteratively fetch each block into main memory. Then for
each frequent item i, we traverse the part of its conditional
pattern base that has leaf nodes located within the block’s
starting and ending address. Thus, once a block is brought
into the main memory, conditional pattern base accesses for
all items that hit the block are managed in main memory.
We would also like to point out that by controlling the size
of the block, one can tune the implementation to better uti-

Core loop after blocking: FPGrowth
Input: A prefix tree D, minimum support mins

(1) For each block b in the I/O-conscious prefix tree
(2) For each frequent item i in D

(3) Find counts ci for each item in the conditional
(-) pattern base of i with node locations in b

(4) End For
(5) Aggregate conditional pattern base counts ci collected across
(-) all blocks for all items in D

(6) For each block b in the I/O-conscious prefix tree
(7) For each frequent item i in D

(8) j = ci = number of items in conditional pattern base
(-) of i

(9) If j > 0
(10) Build conditional prefix tree Pi for item i with
(-) node locations in b

(11) End For
(12) End For
(13) For each frequent item i in D

(14) If conditional prefix tree Pi for item i exists
(15) FPGrowth(Pi, mins)
(16) End For

Figure 9: Core Loops for Blocked FPGrowth

lize the available memory budget. A similar re-structuring
technique is used for generating projected prefix trees. For
further details, please refer to [7].

5. EXPERIMENTAL EVALUATION
To evaluate our I/O optimizations, we employ a typical

current-day desktop machine; an Intel PentiumD with a P-
ATA 320GB hard drive, running 64-bit SUSE Linux 10. Of
this 320GB of disk space, we allocate 170GB for swap pur-
poses (VM). The PentiumD has two cores, but in this work,
we only use 1 core throughout all experiments. We use two
RAM configurations; 256 MB of DDR2 RAM and 1 GB of
DDR2 RAM, and will specify the configuration in use in each
experiment to follow. We believe this machine represents a
readily available machine; we built it for about $500.

5.1 Data Sets
We use several data sets to perform our evaluation. Web-

docs is a 1.48GB data set from the Frequent Itemset Mining
Implementations Repository (FIMI) [8], containing about
1.6 million transactions. This is the largest data set in the
FIMI Repository, and at sufficiently low support, the mem-
ory footprint for the tested algorithms is several times the
size of main memory (using 256MB RAM). In addition, we
generate several synthetic data sets using the IBM Quest
Data Set Generator. D1 is a 1GB data set designed to assist
in our evaluation of our locality improved FPGrowth against
the original FPGrowth. D60 is a relatively sparse data set;
it averages 40 items per transaction and contains 100,000
distinct items. D75 is a much denser data set than D60,
due to its increased transaction length (100), and decreased
number of items (20,000). D60 and D75 are designed to test
the end scalability of our solution. Details on these data
sets can be found in Table 5.

5.2 Impact of Locality Improvements
We first evaluate the impact of spatial and temporal lo-

cality improvements due to our prefix tree modifications and
our page blocking scheme. For this experiment, we use
256MB of RAM. As can be seen in Figure 10, the algo-
rithms behave similarly while in core, but we are able to
improve execution time by 10 to 15-fold when the execution



exceeds main memory. This is a significant improvement,
and is afforded by reducing the time required during the
tree mining phase. In fact, our timing results show that
the tree mining time is reduced by two orders of magnitude.
However, the overall execution time is only reduced by 10 to
15-fold because we incur twice the tree building time, since
we must first construct a prefix tree, and then construct an
I/O-conscious tree. This tree construction is now the domi-
nant time constraint, representing approximately 90% of the
total execution time.

5.3 Impact of Approximate Sorting
We have shown that we can glean a 10 to 15-fold reduction

in execution time by improving the spatial and temporal
locality of the tree mining process, and that the current
bottleneck in execution is the initial tree construction phase.
We now evaluate how approximate sorting can help alleviate
this bottleneck. For this experiment, we use 1GB of RAM.
We set the filesize threshold to be 30% of main memory;
we automate this via the /proc/meminfo system file. As
can be seen in Figure 11, by using approximate sorting, we
are able to reduce execution time on D60 and D75 by up
to 25-fold. This improvement is on top of that afforded by
the spatial and temporal locality improvements. For D60
at 0.2% support, 2041 files were generated, and 53.5 GB of
virtual memory was consumed. The main prefix tree was
29.4GB in size. We note that the number of files generated
did not have an impact on performance, so long as the file
split size was large enough to accommodate a low number
of recursive splits.

In summary, effective approximate sorting of the frequent
transactions after the first data set scan reduces mining times
from a few days to a few hours (on very large data sets), as
the tree building phase is no longer the bottleneck.

5.4 Scalability on Large Data Sets
The goal of this effort is to design an algorithm which

can mine truly large data sets on a relatively inexpensive
machine. To evaluate our progress towards achieving this
goal, we investigate the performance of our algorithm on
the D60 and D75 data sets (presented in Table 5). Re-
turning to Figure 11, we examine how execution time varies
with decreasing support. Our algorithm maintains a rea-
sonable execution time throughout. We would like to point
out that the overall time includes the initial two disk scans.
For small data sets, these times are inconsequential. How-
ever, for large data sets, these scans are costly. On D60
and D75, we require approximately 1619 and 2008 seconds
to touch the entire data set, respectively. This suggests a
lower bound on execution time. When using our algorithm,
we also touch the frequent portion of the data set at least
one more time, due to our approximate hash sorting phase.
Still, this cost is small in comparison to the excessive num-
ber of page faults incurred when using a naive VM-based
solution, or the large number of additional scans required
with the recursive projection-based techniques.

We claim that by improving data locality (and reducing
page fault rate), we can sustain high CPU efficiency on a
64-bit processor. This will allow us to scale to data sets
of any size, independent of the available main memory. To
evaluate this claim, we performed the following experiment
using 1 GB of main memory. We increased the portion of
D75 that we mine, while maintaining a constant support of

Size # Trans # Items Avg. Len.

Webdocs 1.48 GB 1,692,082 5,267,656 177
D1 1 GB 4,700,000 10,000 40
D60 60.5 GB 250,000,000 100,000 40
D75 74.4 GB 130,000,000 50,000 100

Table 5: Data sets used for experimentation.

1.5%. We recorded the execution time, the virtual memory
consumption, and the total CPU utilization, with increasing
data set size. We calculated the CPU utilization by divid-
ing the total user time in the execution by the total wall
time. As seen in Figure 12, CPU utilization is relatively
stable with increasing data set size. More importantly, we
can see that overall system performance does not degrade
as the working data structures in the algorithm move far-
ther out of main memory. For example, the total virtual
memory required increased from 1.5GB to 34GB, but sys-
tem utilization remained at about 20 %. We believe that
with increased disk space, we can mine very large data sets
at relatively low support values.

5.5 Comparison with Existing Algorithms
To compare our algorithm with existing approaches, we

return to the Webdocs data set. Larger data sets are not
suitable for existing algorithms. Here we use 256MB of
RAM. The goal of this experiment is to evaluate how well
existing algorithms cope as they exceed available main mem-
ory, and contrast them with our performance. We include
FPGrowth here because it is the algorithm that we improve
upon. We include AFOPT because its design intrinsically
accommodates large data sets [13] through reduced mem-
ory consumption. However, as shown in Figure 13, when
the virtual memory footprint of AFOPT exceeds the size
of main memory, its performance degrades significantly. At
a support of 20%, all three algorithms must use disk res-
ident memory. The slowdowns in AFOPT and FPGrowth
are attributed to the fact that they were not designed to ex-
hibit high spatial and temporal locality, and thus do not uti-
lize the memory hierarchy efficiently. FPGrowth fairs worse
between the two, as it has a larger memory footprint. In
fact, we have tested all the implementations from the FIMI
repository, including algorithms such as Apriori and Eclat,
and all exhibited the behavior seen from AFOPT and FP-
Growth, when their virtual memory footprint exceeds the
size of main memory. However, our optimized out-of-core
algorithm maintains its efficiency as it spills into disk resi-
dent memory, resulting in over a 400-fold performance im-
provement.

It can be seen that our algorithm uses more virtual mem-
ory than the other two algorithms (Figure 13). This can
be attributed to the space overheads of our page blocking
technique. Even with increased memory consumption, we
do not exhibit a performance degradation as our memory
accesses are localized; this is not the case with the other
considered algorithms.

6. DISCUSSION
Traditionally, in-core data mining solutions have not been

capable of of processing large, out-of-core data sets. There
are two main reasons for this problem. First, 32-bit com-
puting platforms afford a virtual memory of size at most
4GB. Second, even in the presence of a 64-bit address space,
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Figure 10: Evaluation of spatial and temporal locality improvements on Webdocs (left) and D1 (right).
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in-core solutions have not been able to utilize the memory
hierarchy effectively, resulting in very poor CPU utilization.
To this effect, researchers in the data mining community
have spent a significant amount of effort in devising custom,
out-of-core solutions on a per task basis.

In this paper, we propose a very different methodology
for designing out-of-core data mining algorithms. Specifi-
cally, we propose to leverage the 64-bit address space made
available on today’s commodity processor. Furthermore, for
situations in which we are unable to achieve good CPU uti-
lization due to poor data locality, we propose to use data and
computation restructuring techniques to improve spatial and
temporal locality, and thus improve CPU utilization. The
proposed design methodology has two key benefits. First,
the solutions are significantly easier to implement; existing
solutions simply need to be reconsidered from the point-of-
view of data locality. Second, an efficient solution can be
devised using an off-the-shelf PC, making it extremely af-
fordable.

It is our contention that a large percentage of data mining
algorithms will be able to glean the benefits of such a design
methodology. Algorithms in the areas of tree mining, se-
quence mining, and graph mining are particularly amenable.
Solutions to these problems spend a considerable amount of
time estimating the support for patterns, often re-reading
the same blocks of data in a streaming fashion. In all likeli-
hood, the working set for these algorithms will not fit main
memory when mining out-of-core data sets. These algo-
rithms do not necessarily use prefix trees, however, as such
the community could benefit from an investigation into how
their data structures can be made I/O-conscious. Through
localized data placement, I/O-conscious data structures also
have the potential of reducing the average disk seek time.
This in turn can reduce the energy consumption of out-of-
core executions, which is especially important for large scale
data centers.

Trends indicate that emerging architectures will likely in-
corporate Chip Multiprocessing (CMP). CMP designs (also
known as multicore architectures) incorporate more than
one processing element on the same die. They can execute
multiple threads concurrently because each processing ele-
ment has its own context and functional units. With the
availability of additional processing elements, orthogonal to
improvements afforded through improved data locality, one
can improve the I/O performance of an algorithm by em-
ploying a helper thread to prefetch pages from disk to main
memory before they are actually needed. We believe that
such an approach can significantly improve performance in
many situations and are currently investigating approaches
by which an algorithm can efficiently relay information to a
helper thread for prefetching data.

7. CONCLUSION
In this paper, we show that existing out-of-core frequent

itemset mining solutions do not scale to truly large data
sets. To deal with this finding, we present a highly scal-
able solution. The solution, presented in the context of the
FPGrowth algorithm, leverages 64-bit computing capabili-
ties available on today’s commodity processor. Furthermore,
I/O-conscious optimizations such as approximate hash sort-
ing and blocking, afford improved spatial and temporal lo-
cality, and permit the scaling of FPGrowth to out-of-core
data sets. Empirically, we illustrate that our approach scales

to truly large data sets, with sizes beyond those that have
been previously considered in the literature. We believe that
the proposed methodology will be useful in designing out-
of-core solutions for other data mining tasks as well.
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