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ABSTRACT

Spatio-temporal relationships among moving objects, if derived in a
meaningful fashion, can provide useful information about the evo-
lution of an individual object and its interactions with other ob-
jects. However, extracting such useful relationships without user
guidance is a cumbersome and error prone process. In this paper,
we present a visual analysis system which interactively discovers
such relationships from the trajectories of the moving objects. We
describe analysis algorithms to derive various spatial and spatio-
temporal relationships. We, then, present a visual interface through
which the user can interactively select spatial and temporal extents
to guide the process of knowledge discovery. We show the useful-
ness of our proposed algorithms on the datasets originating from
computational fluid dynamics. We also demonstrate how the de-
rived relationships can help in explaining the occurrence of critical
events like merging and bifurcation.

Keywords: Knowledge Discovery, Scientific Analytics, Trajec-
tory Analysis, Feature Extraction, Spatio-temporal Predicates

1 INTRODUCTION

In this paper we describe a visual reasoning and knowledge mining
system to understand the spatial and spatio-temporal relationships1

among evolving features2. In this work, we focus on features stem-
ming from scientific simulations. We describe an interactive visual
interface coupled with a strong analysis component which helps the
user to derive information about the evolution of a single feature
and complex relationships among different features.

A fundamental property of spatio-temporal features is that,the
spatial positions of the features change over time. This change in
positions can be characterized by motion parameters including lin-
ear velocity and angular velocity. However, in scientific datasets,
the extent and the shape of the objects also change frequently and
are important to describe the evolution of the object completely.
The changes in these spatial properties can lead to interesting phe-
nomena like dissipation and creation of new features. For example,
a shrinking object may cease to exist at some later time instant. We
can capture the change in the size of the object by using scale pa-
rameters. The evolution of the individual features can also induce
changes in the relationships among features e.g. two far apart fea-
tures moving towards each other will most likely interact at some
future time instant. These interactions can result in the occurrence
of the critical events including merging and bifurcation [26]. There-
fore, to extract useful and important information from the evolving
features, it is necessary that the spatial and spatio-temporal rela-
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1Please note that if the time interval is ignored or a single time instant is
considered, then the derived relationships are purely spatial

2Features are defined as region of interest in scientific datasets. In this
article we use the terms feature and object interchangeably.

tionships amongst them are correctly identified. Efficient mining of
these relationships forms the major component of the analysis algo-
rithms of our system. To accomplish this task we use the following
attributes to represent the trajectory of an object:i) positions, ii)
change in positions over time, iii) extent and iv) change in extent
over time.

Another important characteristic of the objects is that most of
the time they interact exclusively with other objects present in the
neighboring spatial region(s). Identification of such a region can
help in establishing relationships among the objects. There are in-
finite possibilities for selecting the size and position of such re-
gion(s). Choosing a large area will result in deriving non-existent
relationships. Similarly, choosing a small area will result in missing
some important interactions. The size and position of this neigh-
borhood differs not only across datasets but also varies across dif-
ferent objects in the same dataset. This problem becomes more
complicated when the objects are moving and changing extents. In
such cases, one single method to define the neighborhood for all
the objects can produce suboptimal or even wrong results. Simi-
larly, determining a useful time interval for analysis poses yet an-
other challenge to the whole mining process. Incorrect intervals can
potentially lead to incomplete results, e.g. a very interesting phe-
nomenon will be missed if it occurs just after or before the selected
time interval. Therefore, we contend that each object requires indi-
vidual attention for selecting a meaningful region and time interval
for detailed analysis. To accomplish this task there is strong need
for a visual interface though which the user can interactively se-
lect the extents. Moreover, often the trajectories of different objects
overlaps, therefore, the user also needs the capability to focus on a
smaller part of the trajectory while hiding the other parts. Finally,
as discussed earlier, the extent of the object also plays a very im-
portant role in the whole analysis process. However, displaying the
extents for all the objects for the whole time span of the simulation
will result in a highly cluttered visualization. It will be extremely
difficult to glean any interesting information from such a cluttered
view. Therefore, the extents should be displayed only on the user’s
request. These features together with the interactive selections form
important visualization components in our system.

Both, the analysis and visualization components help users dis-
cover useful information from the datasets efficiently by making
the search process and analytical reasoning more focused and goal
driven. The visualization component enables the user to interac-
tively select interesting spatial and temporal extents to perform
analysis on. The analysis results provide users with the useful in-
formation about the behavior of objects. These results are displayed
using the visualization component. The user uses the displayed re-
sults and feature like zoom and filter to refine the extents. This
process is repeated till the user discovers the information he or she
is seeking or finds some new information.

To summarize, the key contribution of this article are:

1. We present an interactive visual interface allowing the users
to select spatial and temporal extents. Additionally, we also
provide support for thezoom, filter and details on demand
paradigm [3].

2. We present algorithms for automatically deriving various spa-



Figure 1: Overview of the System for Understanding Trajectories of Scientific Objects

tial and spatio-temporal relationships like the topological re-
lationships proposed by Egenhofer [5].

3. We empirically demonstrate the usefulness of our algorithms
on datasets originating from computational fluid dynamics.
We also discuss the use of domain knowledge coupled in our
algorithms for extracting useful information from these tra-
jectories.

The rest of the article is structured as follows: Section 2 presents
the important components of our proposed system. Section 3
presents our motion representation, analysis and visualization al-
gorithms in details. Results on simulation datasets are presented in
Section 4. In Section 5 we review some of the existing research that
is related to our work. Finally, we discuss some of our ongoing and
planned initiatives for this problem in Section 6

2 OVERVIEW AND BACKGROUND

Figure 1 schematically describes our proposed system. The main
components of the system are:

• Analysis1 - Data Transformation: This component primar-
ily deals with transforming the simulation data into a format
which can be used for visualization and knowledge discov-
ery. The process starts by extracting meaningful features (re-
gions of interest) from scientific datasets. The trajectory of
each temporally varying feature is represented by a set of non-
overlapping temporal segments. Within each segment impor-
tant motion parameters linear velocity~v and angular veloc-
ity ~ω are estimated [20]. Apart from being physically intu-
itive and meaningful, this representation also reduces mem-
ory overheads. Moreover, important characteristics about the
motion can also be ascertained by investigating the motion
parameters.

• Visualization - User Interface: The segmented trajectories
are, then, visualized for further analysis. The user can inter-
actively define spatial and temporal extents. The selected ex-
tents are then used by establishing various spatial and spatio-
temporal relationships. The user canzoomandfilter the tra-
jectories to focus on the most interesting and important parts.
Finally, more details about the objects can be accessed if
needed.

• Analysis2 - Deriving Relationships: This component acts
as the backend engine for finding the relationships. In this pa-
per, we focus on directional, navigational and topological re-
lationships. Once the high level relationships are established
the user can further refine them by refining the spatial and
temporal extents. The analysis algorithms can also help ex-
plain the likely cause of critical events like bifurcation and
merging.

The user iterates through component2 and3, reducing the search
space in each iteration to obtain important and meaningful informa-
tion about the object’s behavior.

Our previous research efforts have largely focused on the first
component of the system [14, 13, 19]. Therefore, in this paper,
we concentrate on the other components. However, to make this
paper self-contained we briefly describe our previous work as
it is related to this work. Jiang et.al. [13] presented a general
framework for feature extraction from scientific datasets. We
showed the usefulness of the framework on datasets originating
from computational fluid dynamics and computational molecular
dynamics. In this paper we used the algorithms presented in
[13, 14] for detecting vortices from temporally varying datasets.

Recently, we proposed a parametric scheme for representing the
motion of evolving features [20]. Our representation scheme is
based on estimating important motion parameters including linear
velocity and angular velocity. The change in the size of the object
is characterized by scale parameters. All these parameters together
are referred to as Motion Parameter Vector(MPV ). We used least
square minimization to estimate the parameters between every two
consecutive frames in the dataset. Next, we employed a clustering
algorithm to segment the trajectories into piecewise smooth sub-
trajectories. The clustering algorithm uses the estimated MPV as a
feature vector. We used weighted euclidean distance to compute the
distance between two feature vectors. Each subtrajectory is repre-
sented by a single MPV. We strongly believe that this representation
is physically intuitive and meaningful. The representation also re-
sults in high compression ratio which makes it useful for large scale
simulation datasets. Additionally, the representation also lends it-
self for prediction algorithms. We showed the effectiveness of this
representation for prediction and analysis for datasets originating
from various domains.Please note that in [20] no visual compo-
nent was presented. The focus there was to motivate the need and
evaluation of this representation. Most of the analysis reported in
[20] was performed by trying several spatial and temporal extents.



The cumbersome manual process motivated us to develop this vi-
sual interface.

3 ALGORITHM

In this section we present last two components of the above
mentioned system in details. We first present the basic notation
used throughout the paper.

Basic Notation: S denotes a time varying dataset withN steps
monitoring the movement ofn objectsO = {O1,O2, . . . ,On } An
object Or is represented byK points (landmarks) sampled from
the surface ofO [29, 23]. At theith time step the state ofOr is
represented byOr,i = [{x1
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determining motion parameter vectors(MPV) and segmentation,
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where{P} represents the MPV of thejth sub-trajectory ofOr . The
time interval of thejth segment is[t j

1, t j
2]. The stored{x,y,z} points

are landmarks describing the shape of the object at start of the seg-
ment i.e at timet j

1. Description of the object anywhere else injth

segment can be obtained by recursively applying the parameters to
the shape descriptors.

Next, we describe the main analysis tasks and relationships we
are interested in.Please note that even though the visualization
component precedes the analysis component in Figure 1, we present
the analysis first so that the motivation behind the design of visual
component and user interactions can be explained clearly.

3.1 Analysis2 - Deriving Relationships

The set ofn objects is denoted byO = {O1,O2, . . . ,On }. The
time interval ast = [ ts, te] where ts ≤ te. A single time instant
is denoted bytl . Furthermore,R represents a spatial region with
[Rlx,Rly,Rux,Ruy] denoting the lower (l ) and upper (u) co-ordinates
(x,y) of R. In this section we focus on the deriving the following
spatial and spatio-temporal relationships.

• Directional Relationships - These relationships provide in-
formation about the spatial location of an object with respect
to the other objects inO. A typical query in this scenario is
where is objectOr,l located wrt toOs,l at timetl ? We use
four operatorsleft, right, top and bottomto characterize this
relationship. The actual relations are established by compar-
ing theK landmark points (explained in last section). These
simple operators are then combined to derive advanced rela-
tionships liketop-leftandbottom-rightetc.

• Topological Relationships -Topological relationships help
to identify the connection betweenR and the objectOr at a
time instanttl (denoted byOr,l ). We characterize these re-
lationships byinside, outside and overlapsoperators. The
objectOr,l is said to beinside( outside) R iff the whole ob-
ject is enclosed (not included) inR. Theoverlapis defined if
some part ofOr,l is outsideR. In our representation, we check
the K landmark points ofOr,l againstR. Let IO(p,R) be an
Inside-Outside test which returnstrue is point p lies sideR,
f alseotherwise. This function can be trivially implemented
by checking thex andy value ofp against [Rlx,Rly,Rux,Ruy].

Given this function, various topological relationships can be
derived as:

Or,l is insideR if ∀i ∈ [1,K] IO(Oi
r,l ,R) = true

Or,l is outsideR if ∀i ∈ [1,K] IO(Oi
r,l ,R) = f alse

Or,l overlapsR if ∃i ∈ [1,K] IO(Oi
r,l ,R) = true

The above described topological relationships are defined
only for a single time instant. In case of an evolving feature,
we characterize the spatio-temporal topological relationships
by four eventsenter, leave, disjoint and cross. Or is said to
haveentered(left) R between[ts, te] if Or,s was outside and
Or,e was inside i.e. we check the location ofOr at the start
and the end of the time interval. However, to distinguishdis-
joint andcrossevents we need process very time step because
Or,s and Or,e will be outsideR, in both the cases. Finally,
we derive these relations by using the above describedinside,
outside and overlapoperators as follows:

Or enteredR in [ts, te] if Or,s is outsideRAND Or,e is insideR

Or left R in [ts, te] if Or,s is insideR AND Or,e is outsideR

Or crossedR if Or,s andOr,e are outsideRAND ∃i ∈ [ts, te] Or,i is insideR

Or is disjointwith R if Or,s andOr,e are outsideRAND ∀i ∈ [ts, te] Or,i is
outsideR

• Navigational Relationships - This analysis is used to un-
derstand the motion characteristics of the objects. First the
user can select a spatial region and/or time interval and all
the motion parameters can be displayed. Next, we use the
followsoperator as described by Roddick et.al [24]. Given a
spatial regionR (and/or time interval), this analysis finds if
within R a trajectory demonstrates similar motion to itself or
to other trajectories. In our representation, we find the mo-
tion parameters for each connected trajectory. Next, the dis-
tance between these parameters is calculated. If the distance
≤ user de f ined threshold, then the trajectories are said tofol-
low each other.Please note establishing this relationship is
very similar to the problem of finding matching sub trajectory
in database community [9].

The results can also be viewed in form of a animation, providing
more details about the behavior of the object at each time step. We
discuss this aspect in detail in Section 4.

3.2 Visualization - User Interface

Even though the analysis component seems self-sufficient to un-
derstand the evolutionary behavior of the object, however the main
problem is how to select potentially useful spatial and temporal ex-
tents? Without any visual aids, the answer to this problem requires
a brute force algorithm. For example, assume thatwe want to find
largest regionR such that no object enteredR in [ts, te]. Such an
R can provide valuable information about the underlying physical
parameters which makesRunconducive for any object’s movement
through it. Such anRcan be found by performing exhaustive search
over the whole space changing the size, orientation and position of
Reach time. This process is computationally prohibitive. However,
with visual interfaces the user can start by defining a coarse region
first and refining it by changing the size and orientation to find an
appropriateR. Therefore, the user can identify potential regions
very quickly thereby making the search process more focused, effi-
cient and meaningful.



Figure 2: Overview of the Visual Interface

In this section we describe the visual representation we use.
Specifically, we present two graphs i) spatial graphs (SG) ii) tem-
poral graphs (TG) for representing spatial and temporal information
of the trajectories respectively. Next, we explain each of the graphs
and associated user interactions in details and also point to the use
of these graphs for visual analysis and reasoning.

• Spatial Graphs (SG): This graph displays the trajectories in
xyzspace. Different colors are used for different trajectories.
For clarity, SG only shows the point trajectory of the objects.
These point trajectories are computed by recording the posi-
tion of center of mass of the object at each time step. The user
can access more details by requesting the system to display
the extents and shape of the object.

• Temporal Graphs (TG): This graph describes the temporal
behavior of the objects. For each object the life time ( the time
for which the object existed) is divided into subsegments. The
length of the subsegments is again specified by the temporal
range of each subtrajectory.

• User Interactions: Please recall that for most of analysis
tasks we need a spatial regionR and a time interval[ts, te].
The user can interactively select the spatial regionRand tem-
poral extents[ts, te]. The parts of the trajectory that lie inside
Rand are active during[ts, te] are highlighted in real time. The
user can then choose to zoom all the sub trajectories withinR.
The user also has the ability to hide some of the trajectories to
focus on the visually more interesting trajectories. Once the
user is satisfied with spatio-temporal extents, he or she can
start the analysis part by invoking function calls to the back-
end engine. The results of the analysis are presented to the
user. The results can be displayed either statically or as a an-
imation. Based on the results, the user can refine the search

space and again use analysis tools. This iterative process is
continued until the final desired information is extracted. The
user can not only iterate through the visualization and analy-
sis components, but also can switch among various analysis
components. For example, combining results from topolog-
ical relations and navigational relations can help to predict
if the objects will start interacting in the near future. This
can be done by finding two spatially proximate objects which
are moving towards each other. Spatial proximity can be as-
certained by directional relationships and the direction of the
movement can be found using navigational relationships.

Now we present an overview of our visual interface, highlighting
the use of major parts of the interface. Figure 2 show one snapshot
of our visual system. The top two graphs are Spatial Graph (SG)
and Temporal Graph (TG) respectively. The same color is used
for the objects in all the graphs for establishing correspondence.
The markers onTG indicate the segment boundaries.Please note
that the length of the interval between some markers seems to be
1, however this is not the case. These intervals are small and rep-
resent large change in the motion.The black rectangle shows the
user specified Spatial Region (R). The sliders shown in Figure 2
are used to select the Temporal Extent ([ts, te]. If the relationships
are defined only for a single time instant either both the sliders can
be set to the same value or the second slider is simply ignored. The
Zoomoperation is handled by the lower right frame. This frame also
supportsFilter operations. The user can select object(s) and choose
to hide (show) them. Similarly, moreDetailsare accessed by dis-
playing the extents of the objects. The lower right frame (Analysis)
shows all the operations which our system currently supports. The
Result Window (RW) visually displays the result of analysis. These
results, along with more information, are displayed in text format
in Analysis Result (AR) window.



4 RESULTS

In this section we demonstrate the use of our system on datasets
originating from computational fluid dynamics. We used the sim-
ulation by Kim and Machiraju [15] to generate the datasets. The
features (vortices) are detected by using the algorithms proposed
by Jiang et.al [14]. Each vortex is approximated by an ellipse.
Next, 10 points (landmarks) are sampled from the boundary of
the ellipse. Finally, MPVs are estimated and the trajectory is
segmented. This representation is the input for visualization and
analysis components

• Spatio-Temporal Topological Relationships-Figure 2 is an
example of spatio-temporal topological analysis. TheRW
(Result Window) displays the parts of trajectory which are
active during the selected time interval. In theSG (Spatial
Graph) the parts of trajectory which are active during time in-
terval and lie in the selected spatial regionR are highlighted.
Similarly, the time interval is highlighted inTG (Temporal
Graph). The derived relationships are shown inAR (Analy-
sis Result) window. For example, objects1 and3 crossedR.
Similarly, object4 is disjointwith Rand object2 and5entered
R.

• Directional Relationships-Figure 3(a) shows the derived di-
rectional relationships. In this case, we decided to concen-
trate only on objects3, 4 and5. Other two objects are hidden.
Since this class of relationships is defined only for a single
time instance, we only make use of first slider. Additionally,
R is not needed for directional relationships.Please note ab-
sence ofRis consistent with our definition of directional anal-
ysis. R can be easily accommodated by considering only the
vortices which are insideR. RW shows the position and ori-
entation of vortices at selected time instant (tl = 179). ARdis-
plays the computed relationships. For example, object3 (blue
color) is to the LEFT and BOTTOM of other two objects (4
and5). Please note that if object1 is to the left of object2
then, object2 is to the right of object1. Due to this property,
we report only one relation between two objects. The other
relation is trivially derived.

• Spatial Topological Relationships-Figure 3(b) shows the
derived spatial topological relationships. As in the last ex-
ample, only first slider is used.RW shows the selectedR and
the position of vortices attl = 154. ARdisplays the computed
relationships. Objects1 and4 are determined to beoutsideR
whereas objects2 and3 areinsideR. Object5 overlapsR.

• Explain Mode- Figure 4(a) shows an example of theexplain
mode. This functionality is added to extract detailed infor-
mation, if needed, from the analysis.RW shows the selected
trajectories. Different markers are used to highlight the en-
trance (exit) of features inR. The information along with
time instance in shown inAR. Spatio-temporal analysis pro-
vides the information by deriving relations likeenter, inside
etc. These relationships are established by just checking the
location of the object at the start and the end of the time in-
terval. Therefore, even though these relationships are derived
very efficiently, they can sometimes provide incomplete re-
sults, e.g. object2 startedinsideR and endedinsideR, topo-
logical analysis will returnno crossingas the answer. How-
ever, by using the explain feature we can easily determine that
the object movedoutsideat t = 218 and moved back in at
t = 263. The explain mode is intended to be used in con-
junction with topological analysis to provide more detailed
answers. The user first performs topological analysis, hides

the uninteresting objects (objects4 and5 in this example) and
obtain more information about the interesting objects. The in-
formation can then be used to construct temporal rules. The
rules generated for objects1 and2 are:

Object1 is Insidebetween[200,215]
Object1 is Outsidebetween[216,262]
Object2 is Insidebetween[200,218]

Object2 is Outsidebetween[219,262]
Object2 is Insidebetween[263,272]

These rules can be used to mine temporal relations among dif-
ferent objects by using Allen’s temporal algebra [2]. Allen [2]
describes13 relationships includingbefore, after, contained
byetc which can exist among temporal intervals. An example
of such a rule will beObject1 inside during Object2 inside,
implying that whenever object1 wasinsideobject2 was also
inside. We are currently investigating algorithms for efficient
mining of all such rules. Additionally, the explain mode re-
draws the plot at every time step making it relatively slower.
Therefore, using it instead of topological analysis is not rec-
ommended.

• Navigational Analysis- Figure 4(b) demonstrates the use of
navigational analysis. Only spatial region is needed to find
these relationships.RW shows the zoomed view of the tra-
jectories in the selected spatial region.AR displays the final
relationships. Object5 is found tofollow itself i.e. the object
shows a similar motion which it displayed in some other time
interval. Similarly, object1 is following itself and object3.
Please note that object4 is hidden. Please note thatfollows
is a symmetric relation between two objects. Therefore, we
only display it once.

• Discovering Interesting Spatial Regions-Our system can
be used to interactively discover interesting regions in the
dataset. We present one such example in Figure 5(a). The
goal here was to find the largest spatial regionR such that
no vortex was present inR given a time interval. If the in-
terval covers the entire span of the simulation, then presence
of such an area suggests that the initial simulation parameters
does not allow vortices to enter this area. Figure 5(b) shows
such an area and also the extents of the objects. The initial
selection was made by observing the empty space inSG. We
ran our analysis algorithms on the selected region. In first
few attempts, we found that even though no object enteredR
(spatio-temporal topological analysis), but some objects were
overlapping (through spatial topological operations). Based
on these results we successively refined the area, until no ob-
ject entered or was overlappingR. We were able to findR
after5 iterations of refinement.

• Explaining Critical Events- Figure 5(b) show the output of
our system on another dataset. First of all, from theTG we
can learn that object2 ceases to exist att = 70 and objects
5 and6 are created att = 75. We used our system to estab-
lish that object2 bifurcates into5 and6. Next, we tried to
understand the the process which is most likely responsible
for this event. We selected anR around object2 and the time
interval is selected as[55,80]. By using the spatio-temporal
analysis and explain mode, we found that object1 enteredR
at t= 58 and started interacting with object2. At t = 64, the
distance between objects1 and2 was very small, indicating
stronger interactions. Finally, att = 70, object2 splits into
object5 and6. The whole process of bifurcation takes place
in interval [6875]. During the interval[71,74], the shape of
the object2 was deformed in such a fashion that it cannot be



(a) (b)

Figure 3: (a) Directional Relationships (b) Spatial Topological Relationships

(a) (b)

Figure 4: (a) Explain Mode (b) Navigational Analysis



(a) (b)

Figure 5: (a) Finding area where no vortex entered (b) Explaining the critical event: Bifurcation

correctly represented by an ellipse. Therefore, inSGwe see a
large variation in the position of the center of mass of object
2 (green color). This also explains why we don’t see a single
curve splitting into two curves clearly.

5 RELATED WORK

Our motion estimation algorithm is closely related to trajectory
representation present in existing literature in data mining and
databases. These algorithms can be divided into two broad cate-
gories i) native (xyz) space representation and ii) parametric space
representation. Please see [21] for an excellent survey on most
popular native space representation techniques. Techniques which
exploits one dimensional time series including those based on DFT
[1, 9], DWT [22], SVD [17] are not directly applicable in this con-
text. Kollios et.al [16], Saltenis et.al. [25] and Tao et.al [28] repre-
sented the trajectories by subsegments where each sub-segment has
constant linear velocity. The usefulness of storing linear velocity
instead of actual object location is shown by efficient query process-
ing and the low overhead in terms of updates to the index structure.
All the approaches reviewed so far abstract the object by a point
(typically center of mass). This simplification, even though, pro-
duces highly efficient algorithms misses crucial information. For
example, a extent- and shape-aware based distance calculation be-
tween2 objects is much more meaningful than the one based on
just the center of mass. Moreover, given the center of mass of a ob-
ject at two successive time instants, a translation matrix (and hence
linear velocity) which optimally maps one point to another can be
derived. Estimation of both angular and linear velocity from two
points is an ill-posed problem. Additionally, since only points are
considered, object scaling is not defined. Therefore, by using point
based representation we cannot completely characterize the motion.

Allen [2] proposed temporal interval algebra. The author
described13 basic relationships which can hold among different

time intervals. Few example of such relationships areDuring, After,
Before. Egenhofer [5] presented9 intersection models to establish
topological relationships likemeet, inside, overlapbetween2d
objects. The model finds the relationships by considering9
possibilities between boundary, interior and exterior of one object
with the corresponding parts of other object. Erwig and Schnei-
der [8] extended these ideas to describe spatio-temporal predicates.
The authors described8 basic spatio-temporal predicates like
disjoint, inside, meets. Recently, the authors also presented some
guidelines on the representation of a sequence of spatio-temporal
predicates [7]. Recently, we [29, 30] presented algorithms for
mining frequent spatial patterns from scientific datasets. The
main goal of that work was to find spatial patterns and use that
information to reason about the critical events. Study of the
motion of individual objects was not performed. Additionally,
navigational, topological, directionalandinteractionanalysis was
not discussed in this previous work.

Hochheiser and Shneiderman [12] presented a tool TIME-
SEARCHER for visualizing and interactively querying time series
datasets. Recently Lin et.al. [18] proposed VizTree for pattern dis-
covery, anomaly detection and querying in large scale time series
datasets. Chittaro and Combi [4] presented different approaches
for representing temporal relations. However, these tools were de-
veloped for primarily for analyzing only temporal data. Hamarneh
and Gustavsson [10] presented algorithms for modeling and seg-
menting2d time varying shapes. Even though the segmentation al-
gorithm is similar in some ways to our clustering algorithm but no
explicit modeling of motion parameters is done. Eickhorst et.al [6]
proposed spatio-temporal helix to model the trajectory of the ob-
ject. The authors showed the use of this representation for compar-
ing two trajectories. However, visualization and analyzing relation-
ships among objects was not the focus of [10, 6]. Hao et.al [11]
proposed methods for visualizing large scale time varying molecu-
lar datasets. Finally, Stockinger et.al [27] demonstrated the use of



bit map indexing for interactive querying and visualization for large
scientific datasets.

6 CONCLUSIONS AND DISCUSSION

In this article we presented a visual analysis system for knowledge
discovery from time varying scientific datasets. Motion parameters
are used to represent the trajectories of the features. The parametric
trajectories are presented visually to the user. The user interacts
with the visual interface and invokes the analysis engine to extract
spatial and spatio-temporal relationships of interest.

Currently, we are extending the framework to incorporate a pre-
diction module which will predict not only the positions of the ob-
jects but also the most likely interactions among the objects. We are
also investigating efficient algorithms to derive temporal relations
[2] and convert them to visual representation. The other aspect we
would like to address is to handle streaming datasets. Most of our
analysis algorithms are fast enough to obtain real time performance.
Therefore, we believe that it should not be too difficult to extend our
framework for applications requiring analysis of streaming data.
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