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Abstract
Frequent pattern mining is a fundamental data mining process
which has practical applications ranging from market basket data
analysis to web link analysis. The challenge in pattern mining is to
find all possible groups of items or values which occur in at least
σ objects of a database, where σ is user specified parameter. In
this work, we show that the state-of-the-art frequent pattern mining
algorithms are inefficient when executing on a shared memory mul-
tiprocessor system, due primarily to poor utilization of the memory
hierarchy. To improve the efficiency of such algorithms, we pro-
pose novel techniques designed to afford effective parallelization.
Specifically, we present memory performance improvements, task
partitioning strategies, and task queuing models designed to max-
imize the scalability of pattern mining on SMP systems. Empiri-
cally, we show that the proposed strategies afford significantly im-
proved scalability and performance. We also discuss implications
of this work in light of recent trends in micro-architecture design,
particularly chip multiprocessors (CMPs).

1. Introduction
Over the past decade, advances in data collection and storage tech-
nologies have resulted in large and dynamically growing data sets
at many organizations. Many companies already have data ware-
houses in the tera-byte range (e.g. FedEx, UPS, Walmart). Simi-
larly, scientific data has reached gigantic proportions (e.g. Genomic
data banks). While database technology has provided us with the
basic tools for accessing and manipulating such data stores, the is-
sue of how to make end-users understand this data has become a
pressing problem. The field of data mining, spurred by advances
in data collections and storage technologies, concerns itself with
the discovery of knowledge hidden in these large data sets. Today,
data mining applications constitute a rapidly growing segment of
the commercial and scientific computing domains.

Frequent pattern mining [1] is an immensely popular data min-
ing approach which aims to discover groups of values that co-occur
frequently in a data set. There are several instantiations of the fre-
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quent pattern mining problem. Examples of these include frequent
itemset mining [1], frequent sequence mining [3], frequent sub-
graph1 mining [18], and frequent tree mining [7]. While the na-
ture of the patterns being discovered by these instantiations vary,
they share a common algorithmic structure. For instance, in fre-
quent itemset mining, we aim to discover groups of items that co-
occur frequently in a transactional data set. Similarly, in frequent
sub-graph mining we aim to discovery sub-graphs that co-occur
frequently in graph data sets.

One challenge in frequent pattern mining is that the search
space grows exponentially with the number of items in the data
set, forcing runtimes to be quite long. Frequent pattern mining
is made even more difficult when mining graphs due to the sub-
graph isomorphism challenge. A simple chemical data set of 300
molecules can require many hours to mine when the support is set
sufficiently low. Parallel architectures can improve these execution
times when supplied with a scalable parallel program.

Based on the common algorithmic structure shared by the vari-
ous frequent pattern mining instantiations, in this paper we identify
the following problems in the state-of-the-art. First, frequent pat-
tern mining algorithms typically exhibit poor temporal locality. In
addition, spatial locality is poor as well. Most depth-first pattern
miners employ pointer-based structures, such as prefix trees. These
data meta structures are constructed such that parent and child
nodes seldom are on the same cache line. To illustrate, the itemset
mining algorithm FPGrowth has been shown to be the fastest algo-
rithm in this domain, yet it has an L2 hit rate of just 43%[11]. Also,
in many cases the working sets scale with data set size. This results
in poor cache utilization and increased traffic to the main memory
sub-system when processing large data sets, limiting scalability on
SMP systems. Second, extant parallelization strategies for frequent
pattern mining result in significant load imbalance. This is espe-
cially true of algorithms that handle complex data types such as
graphs. The net result is poor system utilization.

To alleviate the aforementioned bottlenecks, we present vari-
ous computation re-structuring techniques to sustain high perfor-
mance with increasing problem size. Specifically, we make the fol-
lowing contributions. First, we present strategies to improve tem-
poral locality in parallel frequent pattern mining algorithms. The
proposed optimizations allow for improved scalability on SMP sys-
tems due to reduced contention at the memory sub-system. Second,
we present a dynamic task partitioning model to handle the load
imbalance associated with frequent pattern mining algorithms that
handle complex data sets. To realize effective dynamic task parti-

1 We will use the terms subgraph and substructure interchangeably.
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tioning, we evaluate the use of various task queuing models and
show that a distributed queuing model affords the best balance of
data locality, concurrency, and locking costs. We empirically evalu-
ate the effectiveness of the proposed techniques on state-of-the-art
frequent itemset and frequent sub-graph mining algorithms. While
most of our experiments are conducted in the context of SMP sys-
tems, we will discuss how this work will influence data mining al-
gorithm design on CMP systems.

The rest of this paper is organized as follows. We will present
a brief background in frequent pattern mining together with chal-
lenges in Section 2. In Section 3, we will present the proposed op-
timizations followed by an experimental evaluation in Section 4. A
discussion on how we believe this work will influence data mining
algorithm design on emerging systems will be presented in Section
5. Related work will be presented in Section 6, and finally, conclu-
sions will be presented in Section 7.

2. Parallel Pattern Mining Challenges
Briefly, the frequent pattern mining problem can be described is as
follows: Let O = {o1, o2, · · · , on} be a set of n objects, and let
D = {d1, d2, · · · , dm} be a set of m database entries, where each
entry di is a subset of O, together with a set of relationships defined
amongst the objects. For example, in frequent itemset mining a
database entry is a transaction. A pattern is a subset of O, and
possibly a set of relationships amongst the objects (edges in graph
mining). The support of a pattern p is

∑m

j=1
(1 : i ⊆ dj), or

informally speaking, the number of entries in D that contain p. The
frequent pattern mining problem is to find all patterns in D that
have support greater than a minimum support value, minsupp.
At times we refer to a frequent one item, defined to be an instance
of the smallest length pattern p found to be frequent in D. There
are usually many unique frequent one items for a given problem
instance.

Depth-first frequent pattern mining algorithms share a common
algorithmic structure, as depicted in Figure 1. These algorithms
are recursive in nature. At each step in the recursion, first we find
all frequent objects in the database (D). Next, for each of these
frequent objects, we append the object to the parent pattern, and
construct a projected database D′ ⊆ D, D′ is the subset of D that
includes the new frequent object. Finally, this projected database,
along with the new pattern, is passed down the recursion. This
procedure is carried out for each frequent object in D, at each step
in the recursion.

The most popular approach to parallelize a frequent pattern min-
ing algorithm is to partition the work along the for loop (Figure 1)
at the first level in the recursion. Therefore, in parallel frequent pat-
tern mining, a task involves finding all frequent patterns that start
with a certain frequent object2. All existing approaches statically or
dynamically partition these coarse-grained tasks across the proces-
sors of an SMP [33, 15].

To achieve a high level of scalability in a parallel algorithm,
designers must overcome several fundamental obstacles. These are
load imbalance, efficient utilization of the memory hierarchy, and
redundant computation. We outline these issues in the context of
pattern mining below.

2.1 Avoiding Load Imbalance

A fundamental challenge when designing parallel algorithms is to
maintain a balanced load on the system, such that each node is
working at full capacity for the duration of the overall execution.
This challenge is exacerbated in pattern mining because the time to
mine a task is not known a priori. It is generally accepted to be the

2 In order to define the starting object, we usually impose an ordering on the
objects in a pattern.

Input: A databaseD, minimum support mins

Output: Set of all frequent patterns
Initially: prefix=∅

Procedure Find-σ-Patterns (D, prefix, mins)
(1)For each frequent object o in D

(2) Output o ∪ prefix as frequent
(3) Find D′ ⊆ D which contains o ∪ prefix
(4) Find-σ-Patterns(D′,o ∪ prefix, mins)

Figure 1. Structure of a typical frequent pattern mining algorithm.

greatest challenge when parallelizing any frequent pattern mining
algorithm [8].

2.1.1 Task Partitioning

The basis for effective load balancing is a task partitioning mech-
anism possessing sufficient granularity so as to allow each node to
continue to perform useful work until the mining process is com-
plete. In itemset mining, for large databases, frequent one items
generally suffices. However, for more complex patterns, this is not
the case. In substructure mining, a single frequent one item may
contain 50% or more of the total execution cost. This is because
task length is largely dependent on the associativity in the dataset.
In molecular data sets, for example, the edge C-C (representing a
carbon-carbon bond) is much more frequent than C-P (a carbon-
phosphorus bond), and it will be involved in a majority of the fre-
quent patterns. The histograms in Figure 2 illustrate the degree of
imbalance for both synthetic and real world graph data sets. Al-
though both workloads in the Figure show a degree of imbalance,
it is clear that the real data set is far less parallelizable, as only a few
tasks require almost 100% of the mining time. The synthetic data
set affords many more tasks with significant mining times, thus im-
proving its potential for proper load balancing. As our target is real
world data, extant task partitioning does not suffice.

2.1.2 Task Allocation

The challenge in task allocation is to develop an allocation strategy
that works in conjunction with a partitioning algorithm to eliminate
processor idle time. Extant partitioning and allocation strategies
for general pattern mining[21] result in significant idle time, which
lowers scalability. Broadly speaking, two allocation models exist,
static task allocation and dynamic task allocation. Under static
allocation, tasks are assigned to nodes a priori. Because the total
number of tasks in pattern mining is unknown, one must create an
assignment function which maps a task to a node. For example, a
common allocation scheme is to assign a task to the node which
is modulo the task (given an appropriate hashing function); Such
static techniques invariably suffer a high performance penalty due
to insufficient system load balance.

Several dynamic allocation strategies can be chosen. In global
queuing, all processors share a common queue. It affords high
sharing, but with high queuing costs. Hierarchical queuing lowers
queuing costs because each node has a dedicated queue without
a lock. However, since processors can only access queues along
their path in the hierarchy, load balance suffers. Distributed queuing
attempts to glean the best of both strategies. Each node has a queue
with a lock. Nodes enqueue into their own queue, but may steal
from other queues if their queue is empty. It should be the case that
nodes without work explicitly seek work from other queues, so as
to avoid idle nodes. This active stealing minimizes idle time, at the
cost of an increase in implementation complexity.
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Figure 2. Task time histograms for level-3 partitioning with synthetic data (left) and real data (right).

2.2 Avoiding Poor Memory System Utilization

Frequent pattern mining algorithms exhibit poor spatial and tempo-
ral locality[26]. For example, although FPGrowth has been shown
to be the fastest itemset mining algorithm for a variety of data sets
[13], it has an average L2 hit rate of merely 43% [11]. This is in
part due to its traversal of prefix trees, which are pointer-based.
These accesses lack temporal locality due to minimal reuse of the
projected data set. In addition, these trees grow proportionally with
the data set size, thus working sets do not fit in cache. However,
because the algorithm accesses the tree in a predictable fashion,
locality improvements can increase hit rates. The problem of poor
locality is exacerbated in graph mining, because the access pattern
of the meta structures used is not predictable.

An additional constraint on shared memory systems is that main
memory access comes at a premium. While shared-nothing clusters
have the benefit of independent memory systems for each process-
ing node, SMPs processors must vie for the memory bus, and share
available main memory. An excessive number of main memory ac-
cesses can lead to contention, limiting overall scalability. Programs
that exhibit poor data locality typically exhibit high bus utilization
because most cache line fetches are not reused. Consequently, we
must improve memory system performance to limit contention and
maximize scalability on SMP systems.

A final practical concern is that malloc() system calls are typi-
cally serialized. Although researchers [4] have devised methods to
lessen the constraint, parallel allocation of multithreaded programs
is still an open problem. Challenges such as fragmentation, false
sharing, and blowup hinder these allocators 3.

A final concern with the memory hierarchy is that multiple
tasks may share data structures in memory. Until all tasks with a
reference to an object are completed, the object must reside in main
memory. These shared data structures greatly hinder performance
because they consume excessive main memory.

One such structure is an embedding list. An embedding is list of
mappings between a potentially frequent object and its locations in
the database. For itemset mining, embedding lists are quite simple,
merely transaction ID lists. However, for graph mining, embedding
lists are more expensive because one must store a mapping for each
edge in the subgraph. To complicate matters, each subgraph may
appear more than once in a database graph. Full embedding lists
have been shown to provide a performance improvement [22] in
serial graph mining implementations because they allow for fast
discovery of child graph candidates. However, the dependence on

3 http://parasol.tamu.edu/ rwerger/Courses/689/spring2002/day-3-
ParMemAlloc/

the memory structure is costly in a parallel setting, because all child
graphs of the same parent must be mined before the parent’s state
can be free’d. This effectively creates a synchronization constraint,
and stresses the memory subsystem. In addition, full mappings
consume excessive memory, limiting the size of the problem which
can be solved. An efficient algorithm must explore and optimize
the trade off between no embeddings and full embeddings.

2.3 Minimizing Extraneous Work

Given a balanced load and efficient memory system performance,
the last major obstacle to an excellent parallel pattern mining algo-
rithm is extraneous work. This extraneous work may come in the
form of a) redundant computation, b) additional work due to par-
allelizing the serial algorithm, and c) queuing costs. We consider
redundant work to be computation performed once in a serial algo-
rithm but more than once in a parallel algorithm.

Let W be the work performed by a serial algorithm. In system
with n nodes, a parallel implementation can at best do the same
work, plus queuing costs q.
(1) Σn

1 wi = W + q

This system would then be performing no extraneous work, save
queuing costs. Note that this assumes we have no caching effects.

3. Algorithmic Improvements
In the following section we detail our solutions to the challenges
outlined in Section 2. As a base, we start with the state-of-the-art
in serial pattern mining; FPGrowth for mining frequent itemsets
and gSpan for mining frequent sub-structures. We would like to
point out that, Gaston [22], another serial frequent sub-structure
mining algorithm, could be considered here. However, we find
empirically4 that its heavy dependence on the use of embedded lists
leads to two important problems. First, it places a lot of dependency
constraints which limits the available parallelism. Second, it trades
off computation for memory, resulting in a very large memory
footprint. The second issue has severe implications for bandwidth
constrained systems such as CMP systems.

3.1 Improving System Load Balance

3.1.1 Task Granularity

Our solution to handle the task granularity issue is to allow the size
of a task to change depending on the state of the system. We term
this dynamic task partitioning. In dynamic task partitioning, each
node makes a decision at runtime for each child; the child may be

4 These results have not been presented due to space constraints.
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mined by the creating node at that time, or enqueued as a new task.
This decision is based on the current load balance in the system. We
do not require a specific mechanism to make this decision, because
in part the decision is based on the queuing mechanism used. This
will be explained in more detail in section 3.1.2.

For comparison, we implement several static partitioning mech-
anisms, which we term level-wise partitioning. The goal of level-
wise partitioning is to create sufficient tasks to allow the work to be
balanced between the nodes. Level-wise partitioning deterministi-
cally enqueues all children of the frequent one items to a given
depth of recursion. For example, in the context of sub-structure
mining, when employing level-one partitioning, each frequent one
edge is enqueued. These tasks are then mined to completion by the
dequeuing node. In level-two partitioning, a task is made for each
child of a frequent one edge, and then each task is enqueued. Level-
two tasks are then mined to completion by the dequeuing node.
Level-n partitioning implies level-(n-1) partitioning. For example,
level-5 partitioning will enqueue all tasks 5 levels deep in the search
space. Figure 3 compares dynamic partitioning with level-wise par-
titioning. The level-wise partitioning is set to perform level-2 par-
titioning (Figure 3(left)). Independent tasks are shaded gray5. In
Figure 3(right), a task whose size was allowed to grow dynami-
cally has been circled. As we can see from the figure on the right,
the parent task A−B had two candidates, namely A−B −C and
A − B − E. Task A − B − E was enqueued, but A − B − C
was mined by the miner of A−B. This task then had an additional
task A − B − E, with two children, both of which were kept and
mined by the miner of A−B. Thus task A−B dynamically grew
based on system input, whereas in the left figure it remained one
recursive call.

3.1.2 Task Allocation

In this section we examine our options for a queuing model to
accommodate dynamic task allocation. Several queuing models are
available; we describe them below. Each queue can be either First-
In-First-Out (FIFO) or Last-In-First-Out (LIFO).

A global (or central) queuing model is a model in which each
node adds and removes tasks from the same queue. A single mutex
is required for all queuing and dequeuing. Contention is an obvi-
ous concern, because operations on the queue are serialized. One
benefit is that there is maximum task sharing amongst nodes. Any
task enqueued into the system is readily available to any idle node.
Another benefit is ease of implementation. If a node finishes a task,
and there are no other tasks in the global queue, it sleeps. When a
node enqueues a task, it awakens all sleeping nodes. Termination
occurs when a node finds no tasks in the queue and all other nodes
are sleeping.

Hierarchical queuing is designed to allow task sharing between
nodes. Each node has its own dedicated queue, which does not
have a mutex. Nodes enqueue and dequeue from their own queue.
If this queue is full, a node will enqueue into a shared queue.
Conceptually, this queue is a level above the dedicated queues.
This shared queue can either be above a subgroup of nodes, or
over all nodes (i.e. easily extensible to more than two levels). If
it is over a subset, then only that subset adds and removes from it.
When a node’s dedicated queue is empty, it attempts to dequeue
from the shared queue. This shared queue has a mutex, and occurs
some contention. If the shared queue is for a subset of nodes, then
there will be another shared queue above it, which is for multiple
node groups. This hierarchical structure ends with a queue with
unlimited capacity at the top, which is shared by all queues. A node
sleeps when its queue and all queues above it are empty. If a node

5 As an optimization, each node actually keeps 1 child task, and enqueues
the others.

Input: A database D, minimum support mins

Output: All σ-frequent patterns.
Method: Call Mine().
Initially: Q = (σ-1 items)

Procedure Mine()
(1) while(Q!=empty)
(2) Frequent Pattern p = Q.dequeue()
(3) D’ = Subset of D containing p
(4) Find-σ-Patterns(s,D′)

Procedure Find-σ-Patterns(p,D)
(1)if (minimumCode(p)) //if s is a canonical label
(2) Add p to Results
(3) Extension-Patterns C =
(4) C = Find All single Item subpatterns for p in D

(5) for each Child ci in C
(6) if (ci is frequent)
(7) Frequent Pattern p’ = p + ci

(8) D′

i
’ = Subset of D containing p’

(9) if (timeToMine)
(10) Find-σ-Patterns(p’,D′

i
)

(11) else
(12) Q.enqueue(p’,D′

i
)

Figure 4. Pseudo code for dynamic partitioning in frequent pattern
mining.

spills a task from a local queue to a global queue, it awakens the
other nodes in the group. Termination occurs when a node finds no
other tasks, and all other nodes are sleeping. The hierarchical model
allows for task sharing, while affording fast enqueue and dequeue
operations in most situations because the local queue has no lock.

In the distributed queuing model, there are exactly as many
queues as nodes. Each queue is unlimited in capacity, has a mutex,
and is assigned to a particular node. The default behavior for a
node is to enqueue and dequeue using its own queue. Although
this incurs a locking cost, there is generally no contention. If a
node’s queue is empty, it searches other queues in a round robin
fashion, looking for work. If all queues are empty, it sleeps. When
a node enqueues a task, it wakes all sleeping nodes. Before a node
sleeps, it checks whether other nodes are sleeping. If all other
nodes are sleeping, the algorithm terminates. The distributed model
affords more task sharing than the hierarchical model, at the cost of
increased locking. Also, as the size of the local queue decreases
in the hierarchical model, it more closely resembles the distributed
model.

The basic algorithm is detailed in Figure 4. In line 1 the pattern
p is verified to be minimal. This step is required to avoid extraneous
work when mining complex patterns having isomorphism, such as
general graphs. In line 4 all the objects which contain the pattern
p are mined for new, extended patterns. In lines 5-11, all candidate
patterns which occur in at least σ database entries are recursively
mined. Line 8 checks a boolean condition, which is based on the
partitioning scheme and granularity used, to decide whether to
mine the child directly or enqueue the task. The insight is that each

The value of the boolean timeToMine can be determined using
several different schemes. With a global queue, it is natural to check
the size of the queue. If it is above a minimum value, then the
processor which created the task mines the task without queuing;
otherwise it enqueues the child as a new task. With distributed
queues, an upper limit on the number of tasks queued in the system
is used as a threshold. Hierarchical models set a minimum size for
any queue in its hierarchy. A more involved decision could be made
based on the rate of decay of the size of a queue, a direction for
future work.
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Figure 3. Level-wise Partitioning (left) vs Dynamic Partitioning (right) for graph mining.

3.2 Improvements to Memory System Performance

As discussed previously, frequent pattern mining algorithms ex-
hibit poor temporal locality. This is primarily due to the fact that
although the projected data set is re-used when mining for each fre-
quent object, due to the depth-first search space ordering, the re-use
is not close in time. Consequently, the projected data set needs to
be repeatedly fetched into cache every time it needs to be accessed.
There is also a potential for re-using the projected data between it-
erations of the for loop shown in Figure 1. However, as we process
the projected data set for each frequent object, the ordering of the
frequent objects being arbitrary, we do not effectively re-use the
projected data set. This results in poor temporal locality and poor
cache utilization.

In order to improve temporal locality in frequent pattern mining
algorithms, one can restructure computation so as to re-use con-
tents of the projected data set once it is fetched into cache. The
restructuring is depicted in Figure 5. Essentially, we break down
the projected data set into fixed size tiles, and each frequent ob-
ject is processed on a tile-by-tile basis. This significantly improves
temporal locality, improves cache utilization, and minimizes con-
tention on the main memory subsystem.

This methodology has been used to improve temporal locality
in frequent itemset mining by breaking down the prefix tree, which
in the data structure for the projected data set, into tiles [11]. This is
accomplished by re-ordering the tree in depth first order and using
an address range in this re-ordered tree to specify a tile.

In graph mining, we improve temporal locality by tiling ac-
cesses to the projected graph database. Since multiple candidates
search the same data set graphs, and these graphs may be large,
we can reduce cache miss rates by searching a data set graph for
multiple candidates before loading the next graph into cache.

For example, let g be a frequent subgraph. Let H be the data
set graphs containing g. We call H g’s embedding list. Let C be a
set of candidates for g. Recall that a candidate c ∈ C is an edge
we can add to g to create a new frequent subgraph. This edge may
add an additional node as well, or merely create a cycle in g. It is
intuitive that each graph g + c must have an embedding list which
is a (potentially proper) subset of H. It is also intuitive that we
must search each h ∈ H for each c ∈ C. The data set graphs
are typically much larger than the frequent subgraphs. Depth-first
graph miners such as Gaston and gSpan follow the structure for
each c in C; for each h in H;. We reverse this to for each tile
of H; for each c in C;, where the set of all tiles is a partition
of H. By tiling H, we can control the working set. The result is
improved temporal locality for accesses to each data set graph h,
thus reducing miss rates and improving overall execution time.
We believe that such designs are especially important for CMP
systems, which are known to provide limited memory bandwidth
per processing core.

Input: A database D, minimum support mins

Output: Set of all frequent patterns
Initially: prefix=∅

Find-Frequent-Patterns (D, prefix, mins)
(1)For each tile t of D

(2) For each frequent pattern p in D

(3) Find D′ ⊆ t that has p ∪ prefix
(4) D′

p = D′

p ∪ D′

(5)For each frequent object p in D

(6) Output p ∪ prefix as frequent
(7) Find-Frequent-Patterns(D′

p,p ∪ prefix, mins)

Figure 5. Restructuring frequent pattern mining algorithms to im-
prove locality

We believe that if the work is balanced in the system, having
the creator of a task mine the child will always be more efficient
than enqueing the task, due to the benefits of affinity [19]. We
incorporate this notion into our partitioning algorithm to further
improve temporal locality by dynamically growing tasks to include
their candidates. As mentioned, graph g + c is always located in
a subset of the graphs of its parent g. If the same processing node
mines which mines g also mines g + c, a percentage of the data
set graphs containing g will already be in the working set for that
processor. Thus we aggressively attempt to schedule candidates on
the same processing node as the parent.

3.3 Improvements to Reducing Extraneous Work

For itemset mining, redundant work is not difficult to avoid. How-
ever, general substructure mining is complicated by subgraph iso-
morphism. To verify a graph g has not been previously mined by
any other node, extent parallel strategies must search through a
global list of mined items. This is quite expensive and requires
regular global aggregation operations. Several labeling and nor-
malization systems have been proposed [22, 31, 20]. We leverage
DFScodes [31] because a processor can determine if the graph is
redundant without global knowledge of the graphs mined by other
nodes (as seen on Line 1 of Figure 4).

4. Experimental Results
We implement our algorithms in C++ using POSIX threads. All
experiments allocate one thread per processor, which we term a
node.

On a single node, our two pattern mining algorithms compare
favorably to the state-of-the-art. We implemented our own gSpan
code, since only the binary is accessible. Serial execution times for
our gSpan implementation are comparable, we typically take about
20% less time than the authors’ binary to process the same data
set. Unfortunately, we cannot compare to gSpan on data sets with
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Data set Graphs Node Lbls Edge Lbls
Weblogs 31181 9061 1

PTE1 340 66 4
T100k 100000 1000 50

Table 1. Data sets used for the graph mining experiments.

more than 256 node labels, as that was the maximum allowable
for the binary provided by the authors of gSpan. The FP-Growth
implementation we use is based on recent work described in [11].

We employ several machines to evaluate our work; a) an SGI
Altix 3000 with 64 GB of main memory and 32 1.3 Gigahertz
Intel Itanium 2 processors, b) an SGI Altix 350 with 32GB of
main memory and 16 1.4GHz Intel Itanium 2 processors, and c)
a Pentium 4 with 512 MB of main memory. All three machines run
Linux.

4.1 Data Sets

For itemset mining, we make use of the Webdocs data set6. It is
the largest in the FIMI repository, with 1.7 million transaction, 5.3
million unique items, and 1.5GB in size. For graph mining, we em-
ploy the data sets shown in Table 1. PTE1 is a data set of molecules
classified as carcinogens by the Predictive-Toxicology Evaluation
project7. HIV1 is a data set of active (CA) molecules which have
been screened for anti-HIV1 activity by the National Cancer Insti-
tute8. Weblogs is a data set of web sessions, generated from web
server request and response logs[28]. T100k is a synthetic data set
made from the PAFI toolkit9.

4.2 Load Balance

4.2.1 Dynamic Partitioning

To evaluate our task partitioning strategies, we employ the Weblogs
and PTE1 data sets. Both data sets exhibit a high differential for
frequent one edge mining times, and are difficult to properly load
balance. We use distributed queues for these experiments. The
results are presented in Figure 6.

Level-wise partitioning of the search space does not provide an
even distribution of the tasks. Even when partitioning to 10 levels
into the recursion tree, scalability is hindered. The differences in
scalability between the static partitioning models is primarily due to
load balancing. Full partitioning enqueues each child task, regard-
less of the state of the system. As illustrated in Figure 6, Dynamic
Partitioning outperforms all static partitioning models evaluated.
Dynamic partitioning provides 27-fold speedup on 32 processors,
whereas levelwise partitioning, even to the 10th level of recursion,
can only provide 15-fold speedup.

4.2.2 Dynamic Task Allocation

To evaluate our allocation models, we executed them on several
data sets for general substructure mining, using dynamic partition-
ing. As noted earlier, all three models use dynamic allocation. We
present results on the Weblogs data set (Figure 8). Distributed queu-
ing clearly outperforms both global queuing and hierarchical queu-
ing. Contention on the global queue is not a major limiting factor
in scalability at 8 nodes, but there is a clear gap between distributed
queuing and global queuing. Distributed queuing affords a speedup
of 7.85, while global queuing affords a speedup of 7.3. This gap
in scalability is expected to widen because contention on the lock
for the global queue will increase with increasing nodes. Hierar-

6 http://fimi.cs.helsinki.fi/data/webdocs.pdf
7 http://web.comlab.ox.ac.uk/oucl/research/
8 http://dtp.nci.nih.gov/docs/aids/aids data.html
9 http://www-users.cs.umn.edu/ karypis/pafi/
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Figure 7. Parallel speedups for itemset mining using on Altix 350
for Webdocs.

chical queues perform poorly because task sharing is far too low.
As seen in Figure 2, the Weblogs data set has only a few frequent
one edges with a significant number of child jobs. These jobs are
not propagated to distant nodes in the hierarchical queue structure,
particularly those on the opposite side of the hierarchical tree.

FIFO vs LIFO had no statistically significant impact. This is
because once a node enqueues a task, it is unlikely to have high
temporal locality when it is dequeued, regardless of where it is
located in the queue (top or bottom). Some data sets with low
frequent one tasks benefit slightly with a FIFO queue because the
children of the large tasks are more likely to be large as well, and
the sooner they are distributed, the better the load balancing.

4.3 Memory System Performance

The performance difference between full partitioning and dynamic
partitioning is primarily due to the poor cache performance exhib-
ited in full partitioning10. We perform a working set study to com-
pare the temporal locality of the two strategies in the context of
graph mining. We use Cachegrind 11 on a single processor machine
(Pentium 4 2GHz with 1GB RAM). Because Cachegrind currently
does not profile multiple threads, we simulate 32 threads by allow-
ing a single thread to remove from any point within 32 locations
from the tail of the queue with equal probability. As seen from the
results in Figure 9, dynamic partitioning reduces the miss rates by
50%. This is due to the improved temporal locality. In dynamic
partitioning, there is a much higher probability that the processor
which mines a parent task will also mine its child tasks. Child pat-
terns are extensions of parent patterns, thus the database objects
which embed a child must be a subset of the database objects which
embed its parent. As such, the database objects which embed the
child task’s pattern are much likelier to be in cache.

In addition, we evaluate our temporal improvements in the con-
text of overall scalability. To measure the scalability of the paral-
lel versions of FP-Growth with and without the locality optimiza-
tions, we use an SGI Altix 350 system. This SMP has 32GB of
main memory and 16 1.4GHz Intel Itanium 2 processors. We report
speedups on the Webdocs data set. Note that the speedups reported
on our improved implementation are relative to the uniprocessor
improved implementation. Similarly, the speedups reported on the
parallel un-optimized implementation are relative to the uniproces-
sor un-optimized implementation.

Figure 7 shows the speedups obtained on 2, 4, 8, and 16 pro-
cessors for the Webdocs data set. An evaluation on other data sets

10 This was corroborated through simulation (excluded due to space con-
straints), where we could eliminate queuing costs
11 http://valgrind.org/info/tools.html
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Figure 6. Partition model Scalabilities on Weblogs (left), and PTE1 (right).
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Figure 9. Working sets for full-partitioning vs dynamic partition-
ing.

can be found elsewhere [12]. We can see that the optimizations af-
ford superior scalability (12x) when compared with those provided
by the unoptimized parallel implementation (9x). We attribute this
to the improved memory system utilization for the optimized im-
plementation. In the case of the unoptimized implementation, an
excessive number of cache misses results in frequent accesses to
main memory, potentially resulting in contention. This experiment
indicates that such optimized designs are key to achieving good
scalability on present-day SMP architectures.

Finally, we evaluate overall memory consumption. Figure 10
provides memory consumption as a function of the number of pro-
cessors used in the system for graph mining on the PTE1 data set.

As a comparison, we provide the memory consumption for par-
allel12 MoFa [21], kindly provided by the authors. The illustrated
low memory consumption is directly related to the minimal embed-
dings used. As seen in the Figure, our optimized algorithm (which
is based on gSpan [31]) uses a constant amount of memory (5MB),
while MoFa’s memory consumption increases with the number of
threads of executions (300MB on 8 processors). For embeddings,
we merely store pointers to nodes in the data set where construc-
tion for the current pattern should initiate. As a comparison to se-
rial mining algorithms, this is slightly more state than unoptimized
gSpan [31] but much less state than the full embeddings used by
Gaston EL [22]. We note that their implementation is in Java. How-
ever, it is clear from the documentation of the algorithm that in
MoFa, additional threads require additional memory to improve ex-
ecution time, regardless of the programming language.

4.4 Eliminating Extraneous Work

Our parallel algorithms do not perform work which does not exist
in their serial counterparts, save queuing costs; we do not require
additional operations to maintain correctness in the parallel algo-
rithm, such as aggregation operations. This has been shown else-
where [31, 17]. We believe that queuing costs are not a significant
impedance because with our distributed queuing model, the com-
mon case is to enqueue and dequeue from the local queue.

12 More information regarding the MoFa can be found at the conclusion of
Section 6.
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4.5 Scalability

We provided scalability for itemset mining in section 4.3. For
graph mining, we measure both weak and strong scalability. To
measure strong scalability, we used the full data set and increased
the number of nodes. On 32 nodes, the scalability ranges from 27.4
to 22.5 over the four data sets, as seen in Figure 11. We attribute the
overall excellent scalability to efficient use of the memory system,
and a lack of processor idle time afforded by the improved load
balancing. Weblogs has the lowest scalability at 22.5. This can be
attributed to its increased memory traffic. The frequent graphs in
the Weblogs data set are larger than those in the other data sets,
which requires the algorithm to traverse a larger percentage of
each of the database graphs, deeper into the recursion. Scalability
generally increases as support is reduced, because there are more
tasks, and those tasks can be mined by the creating node.

We also measure weak scalability of our algorithms. We present
weak scalability for graph mining here. We partitioned the synthetic
data set T100k into 32 equal chunks, and executed the algorithm
with a number of chunks proportional to the number of nodes. Ide-
ally, we would scale work precisely with increasing nodes. Graph
mining runtimes are highly dependent on the associativity and dis-
tribution of the data, so we tuned support in each experiment to re-
turn a graph result set proportional to the number of nodes. We use
the synthetic data set T100k for this experiment because we believe
its partitions more closely resembles the properties of the full data
set. The results are presented in Figure 8. The algorithm clearly ac-
commodates the increase in data set size without a degradation in
performance.

5. Discussion and Future Work
Throughout this work, our focus has been on removing the bottle-
necks of scalability. we found that poor performance of the mem-
ory subsystem greatly reduced overall scalability. Temporal locality
was low due to streaming accesses to large data objects. We altered
the algorithms to reduce working set sizes through tiling, and ul-
timately lowered cache misses. In addition, we used succinct data
structures to avoid excessive main memory consumption, and we
reduced synchronization constraints of shared memory objects to
minimize idle time. Also, heap allocation was a challenge. Most
operations in graph mining use data containers whose size is not
known a priori, so we use heap space. For example, when search-
ing for a graph in the database, it is not known in how many graphs
it will be embedded. Our solution was to give each node its own
allocation of heap space for recursive calls.

5.1 Implications for CMP Architectures

Chip Multiprocessing (CMP) designs (also known as multicore
architectures) incorporate more than one processing element on the
same die. They can execute multiple threads concurrently because
each processing element has its own context and functional units.

CMP systems have significant differences when compared to
existing platforms. To begin with, inter-process communication
costs can be much lower than previous parallel architectures. CMP
systems can keep locks on chip, either in specially designed hard-
ware, or in a shared L2 cache. A direct consequence of lower lock-
ing costs is an improved task queuing system. Therefore, algorithm
designers should consider a much finer granularity when targeting
these systems. In this work we have designed a partitioning mech-
anism which accommodates allocation of work at each level of the
mining recursion, which is a very fine grain parallelism. Future
work could improve on this for CMP systems by allowing multiple
cores to search different graphs for the same candidate. For exam-
ple, suppose frequent subgraph g has embedding list H . To mine
for candidates of g, we must search each graph h ⊆ H for g. We
could schedule individual cores to tile sets (or blocks) of H, such
that the same cores search the same subsets of H as the algorithm
progresses deeper into the search space.

Several important issues with CMP systems arise when dis-
cussing the memory hierarchy. We believe that off chip bandwidth
will be limited in CMP systems, much more so than with SMP de-
signs. While clusters have bandwidth which scales with increasing
processing elements, CMP systems do not. CMPs are even more
limited than SMPs in this regard, because each node in an SMP has
independent access to the memory subsystem. CMP systems are
limited by the size of the chip because there are practical limits to
the number of pins which can be placed on a single chip. Although
not significant with two cores, as systems scale to 32 and 64 cores,
off chip bandwidth will be a significant concern. Our path tiling
optimization, where the size of each tile can be controlled, lends
itself to such an approach. Also, as witnessed in Figure 9, we have
chosen a design with low offchip bandwidth requirements. We ac-
complish a low memory footprint by maintaining very little state
for embedding lists. We keep only pointers to seed nodes where
occurrences must be grown.

CMP systems will have much smaller caches than their SMP
counterparts. This is predicated by the real estate constraints of the
chip, since for a fixed chip size each additional core will use silicon
previously dedicated to cache. As such, CMP systems require sig-
nificant redesign to maintain fixed-sized working sets. This allows
the algorithm to scale with both the problem size and the number
of cores. We accomplish fixed working set sizes by tiling accesses
in the main loop of our pattern mining algorithms; in paths of a
prefix tree for itemset mining, and graphs in the projected data set
for graph mining. Recall in Section 2, we stated that typical depth
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first pattern mining algorithms do not exhibit super linear speedup.
By restructuring computation for smaller tile sizes, and by assign-
ing tiles to different cores, it may be possible to reduce the working
set, thus affording the possibility for super linear speedup. We are
currently evaluating this possibility by performing detailed simula-
tion of our codes for CMP architectures.

Finally, recent research has given rise to the possibility of
hardware-assisted task management[6]. An anticipated outcome
of such research is that the overheads associated with task manage-
ment will be significantly lowered in next generation processors.
This fits in well with the fine-grained task partitioning, allocation
and queuing schemes presented and evaluated in this paper.

6. Related Work
6.1 Frequent Itemset Mining

Agrawal et al. [1] presented Apriori, the first efficient algorithm
to solve this problem. Apriori traverses the itemset search space
in breadth-first order. Its efficiency stems from its use of the anti-
monotone property: If a size k-itemset is not frequent, then any size
(k+1)-itemset containing it will not be frequent. The algorithm first
finds all frequent 1-items in the data set, and then iteratively finds
all frequent l-itemsets using the frequent (l−1)-itemsets discovered
previously.

This general level-wise algorithm has been extended in several
different forms leading to improvements such as DHP [23] and
DIC [5]. DHP uses hashing to reduce the number of candidate
itemsets that need to be considered through each data set scan.
Furthermore, it progressively prunes the transaction data set as it
discovers items that will not be useful during the next data set
scan. DIC [5] processes the data set in chunks and considers new
candidate itemsets as they are discovered through the scanning of a
chunk.

Zaki et al. proposed Eclat [35] and several other algorithms that
use equivalence classes to partition the problem into independent
subtasks. The use of the vertical data format allows for fast support
counting by set intersection. The independent nature of subtasks,
coupled with the use of the vertical data format, results in improved
I/O efficiency.

Another popular approach to frequent pattern mining is to di-
rectly find all maximal [14] or closed frequent itemsets [34], with-
out generating all frequent itemsets in the data set. The benefit of
this approach is that maximal or closed frequent itemsets can be
used to enumerate all frequent itemsets.

6.2 Graph Mining

Advantages for representing data as graphs has been widely studied
[9, 10, 18, 29, 32, 36]. Several serial algorithms exist which enu-
merate frequent subgraphs. FSG [18] mines for all frequent sub-
graphs using an APRIORI-like breadth-first strategy. Efficiency is
gained by storing intermediate representations, and using vertex in-
variants to develop a canonical labeling system.

GSpan [31] uses a combination of depth-first and breadth-first
trajectories to discover frequent patterns. Unlike previous meth-
ods, it only grows graphs with candidates existing in the data set.
For canonical labeling, the authors define a mechanism called DFS
coding for labeling graphs. This new labeling system reduces the
search space considerably. It produced a significant reduction in ex-
ecution time over previous methods. In addition, gSpan consumes
relatively little memory.

Another recent serial graph miner is Gaston [22], developed by
Nijssen and Kok. It incorporates embedding lists using an efficient
pointer-based structure. This provides an improvement in execution
time at the cost of significantly increased memory consumption.
The authors build on depth first traversals to specialize labeling

systems for all three structures. A limitation of embedding lists
is that the parent-child dependencies of the data structure hinder
efficient parallelization.

6.3 Parallel Pattern Mining

There have been several research efforts exploring parallel min-
ing for frequent patterns. We only mention the most relevant works
here. Agrawal and Shafer [2] presented several Apriori-based par-
allel formulations for frequent pattern mining. They target shared-
nothing architectures. Count Distribution (CD) parallelizes the fre-
quent itemset discovery process by replicating the candidate gen-
eration phase on all processors and parallelizing the counting pro-
cess. Each iteration is followed by a global reduction operation to
assimilate counts. This approach suffers from excessive synchro-
nization and communication overheads. Data Distribution (DD)
partitions both, the candidates, as well as the data, among the pro-
cessors. However, this approach requires communication of locally
stored transactions between processors, which is an expensive op-
eration. This has been improved upon by Han et al. [16] through
intelligent data distribution. A Hybrid scheme was also proposed,
which partially replicates the candidates between the processors.
Parthasarathy et al. presented a hash tree-based parallel algorithm
for mining frequent patterns on an SMP [27]. This method uses
equivalence classes to partition the problem space into independent
subtasks. The independent nature of these subtasks minimizes the
synchronization overhead, making the mining process scalable.

Wang and Parthasarathy [30] developed a parallel algorithm for
their Motif Miner toolkit [25]. Their parallelization strategy cannot
be directly applied to the more general graph mining problem.

Our own efforts in sequence and itemset mining have shown us
that static load balancing models behave poorly in pattern mining
because the time to mine even a single task is highly variable
[24]. We expect graph mining to exhibit worse behavior. Some
researchers [8] have used random sampling to combat this problem
for other frequent pattern algorithms, although it has not been
shown to be effective for graph mining, since random sampling
may not capture important relations among nodes.

Zaki [33] proposed parallel partitioning schemes for sequence
mining. The author illustrates the benefits of dynamic load balanc-
ing in shared memory environments. However, a key difference is
that estimates for task execution time (used by the author) are far
easier to compute in sequence mining than for graph mining. Gu-
ralnik and Karypis had similar findings in [15].

7. Conclusion
We have shown that algorithms which incorporate runtime analysis
as a controlling mechanism for task allocation and granularity can
greatly improve parallel pattern mining performance. In addition,
we have illustrated that distributed queuing provides the best mix
of sharing and locking for this class of workloads. Finally, we have
provided novel algorithmic improvements, designed to increase the
efficiency of the underlying memory subsystem, which greatly im-
prove end scalability. These techniques are general purpose to pat-
tern mining; we demonstrate efficacy from two ends of the pattern
spectrum, namely frequent itemset mining and frequent substruc-
ture mining. The end result is a decrease in mining runtimes by
up to a factor of 27 on 32 nodes, which is a major improvement
over extant methods. In the near future, we plan to improve upon
this by incorporating dynamic state management for shared cache
architectures such as future chip multiprocessor systems. As CMP
systems are increasing in both availability and popularity, efficient
algorithms specifically designed to leverage their strengths become
paramount.
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