
Towards Object based Trajectory Representation and Analysis

Sameep Mehta, Raghu Machiraju, and Srinivasan Parthasarathy
Department of Computer Science and Engineering

The Ohio State University
{mehtas, raghu, srini}@cse.ohio-state.edu

1. ABSTRACT
In this article, we present trajectory representation and

analysis algorithms for tangible object features found in
temporally varying datasets. Rather than modeling the fea-
tures as points, we take attributes like shape and extent
of the feature into account. Our contention is that these
attributes play an important role in understanding the tem-
poral evolution and interactions among features. The pro-
posed representation scheme is based on motion and shape
parameters including linear velocity, angular velocity, etc.
We use these parameters to segment the trajectory instead
of relying on the geometry of the trajectory. Navigational
and topological relationships can be readily derived from our
representation. We also show how our scheme lends itself for
predicting and understanding interactions among features.
We evaluate our algorithms on real datasets originating from
three different domains. We show the accuracy of the motion
and shape parameter estimation by reconstructing trajecto-
ries with high accuracy. Finally, we discuss how the analysis
coupled with domain knowledge can help in mining valuable
information from the datasets.

2. INTRODUCTION AND MOTIVATION
Moving objects pose unique and exciting challenges in

spatio-temporal data mining and databases. The key issues
include representing, analyzing, and indexing the movement
of the objects to gain better understanding about the evolu-
tion of an individual object and also to understand complex
relationships among objects. The problem becomes even
more challenging if the temporal behavior is characterized
not only by the change in position of the object but also
in terms of change in shape, size and object type. In this
paper, we present such a representation scheme for object
trajectories. We show how the representation can be used
for establishing a variety of relationships among objects.

The main motivation behind our work comes from simple
observations about objects and features1 originating from
scientific datasets. These objects have shape and size, i.e.
they occupy some volume in space. Modeling these ob-
ject with a single representative point, e.g. center of mass,
amounts to loss of meaningful information. This abstraction
can often result in misleading information about the motion
characteristics of the object. Consider a simple example in
Figure 1(a) where an object, is moving and rotating simulta-
neously along the y axis. The blue line shows the trajectory

1Features are defined as Region of Interest (ROIs)in scien-
tific datasets. In this paper we use the term feature and
object interchangeably

of the center of mass of the object. By analyzing the trajec-
tory using a point based representation, we can only learn
about the translational motion of the object. The informa-
tion about the rotational component cannot be extracted.
However, instead of a single point, if we record the position
of K representative points of the object, along its surface,
the presence of rotational motion can be detected, resulting
in a better and more accurate description of the motion. In
this paper, we refer to trajectory derived by monitoring a
single representative point of the object as a Point Trajec-
tory and the trajectory generated by taking in account the
shape and extent is referred to as a Object Trajectory.

Another important characteristic of objects is that most of
the time they interact exclusively with other objects in the
same spatial neighborhood. To capture such interactions,
correct neighborhood relationships should be established .
To determine these relationships precisely, it is imperative
that the size of the objects is taken into account for distance
calculations. In this case also, a point based representation
will lead to erroneous conclusions. Moreover, in scientific
features, the extent of objects can also change over time.
Ignoring this information can also result in an inaccurate
and incomplete description of these relationships and will
hamper the overall mining and prediction process.

For example, consider, Figure 1 which shows the point
trajectory and object trajectory of two objects by green and
blue color. The solid line represents the observed trajectory
till time t. Initially, both the objects were circular how-
ever one object changes its shape to an ellipse. Suppose we
want to find at what time, will these object collide (merge)?
The dotted line shows the predicted path of the object by
using the point trajectory. The line segments intersection
corresponds to the meeting time of objects. The dotted
black circles shows the path of the object without taking
the shape change into account. Finally, the dotted red ob-
jects find the intersection point of the objects by considering
the change in the shape. The shape and extent aware tech-
nique is clearly more accurate. We would also like to note
that, even when the object boundaries are touching (and
therefore, the objects are definitely interacting), the centers
are quite far away (distance ∼ 14 units). Therefore, using
point trajectories, this interaction will either be missed or
will be captured at a much later time.

Based on the above mentioned arguments, we believe that
representation of a trajectory should consider the shape, ex-
tent and the change in the shape. Moreover, it should also
consider description of the motion of an object. Porkaew
et.al [25] categorized the trajectory representation in two

0 1 2 3 4 5 6 7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Y

X

Z

−10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

X

Y

−15 −10 −5 0 5 10
−20

0

20
0

10

20

30

40

50

60

70

80

90

100

X

Y

T
im

e

(a) (b) (c)

Figure 1: (a)Point vs Object Trajectory (b) Effect of Shape change (c) Geometry vs Parameters

broad categories Native Space (NS) and Parametric Space
(PS). In NS, the d dimensional space is represented by a se-
ries of line segments or curves in d+1 dimensions, time being
the extra dimension. In PS, the trajectory is represented by
its motion parameters. Our representation includes the mo-
tion parameters. However, instead of concentrating only on
linear velocity ~v, we estimate angular velocity ~ω and scal-
ing co-efficient ~s as well. The choice of using parametric
representation is primarily based on three reasons i) This
representation provides a meaningful description of the mo-
tion as understood by humans, ii) it lends itself very well for
analysis and prediction for spatial-temporal data and iii) the
change in extent is much easier to account for in this repre-
sentation than in the native space one. We derive the motion
parameters by using the affine transformation matrix [22].
This matrix specifies the translation, rotation and scaling
matrices. All the estimated parameters are collectively re-
ferred to as the Motion Parameter Vector (MPV).

The movement of objects are based on laws of physics, re-
sulting in smoothly varying trajectories which implies slow
and gradual change in MPV. We take advantage of this prop-
erty by segmenting the trajectory into sub-trajectories, such
that the motion in each sub-trajectory can be represented
by the same MPV. We believe that this segmentation is
more meaningful than the segmentation based on geometry.
Geometry based segmentation algorithms detect the change
point by using different metrics, for example change in cur-
vature. Consider the trajectory in Figure 1(c). Using geome-
try, we can find four piecewise smooth linear sub-trajectories
(curves with degree 1). Increasing the degree to 2 will re-
sult in two sub-trajectories. However, by using the motion
vector we can describe the whole trajectory by one MPV
. One might argue that a higher degree polynomial could
have approximated the trajectory in a better fashion using
a single component. The argument is valid, however finding
the right degree is often very difficult and is unlikely to be
same across several trajectories. If polynomials of different
degrees are used across different trajectories, then the tra-
jectories cannot be compared with one another easily. The
nice feature of our representation is that we don’t have to
change the definition of MPV based on the trajectory. For
example if an object is not rotating, then the estimate for the
angular velocity will be zero. Similarly for a rigid body (i.e.

no scaling) the estimated scaling co-efficients will be again
zero. Therefore, different trajectories can be compared us-
ing a single notion of similarity, although the weights across
different elements of MPV will need to be determined.

Our final goal in proposing a new representation scheme is
to understand the evolution of an object and its relationship
with other objects present in spatio-temporal dataset. We
identify a set of analysis strategies which help in attaining
these goals. The strategies include deriving navigational and
topological relationships using MPVs. Our representation
can also be used for explaining and finding likely causes for
critical events in scientific datasets. Finally, we show the
usefulness of our MPVs for predictive analysis. To reiterate,
the key contributions of this article are:

1. We develop algorithms for object based trajectory anal-
ysis. The features are modeled as objects with shape
and extents as opposed to abstracting each object to
a single point.

2. We present robust and intuitive methods for repre-
senting object trajectories by using important motion
parameters. Additionally, we also capture the change
in the extent of the objects.

3. We show how our representation lends itself towards
understanding and predicting the evolutionary behav-
ior of a objects. Additionally, complex relationships
among objects can also be easily derived.

4. We empirically demonstrate the usefulness of our al-
gorithms on datasets originating from three different
domains. We also discuss the use of domain knowl-
edge coupled in our algorithms for extracting useful
information from these trajectories.

The outline of the paper is as follows: Section 3 presents
basic problem definition, our parameter estimation and seg-
mentation algorithms. Section 4 describes what kind of anal-
ysis can be performed based on our representation. Results
on various datasets are provided in Section 5. In Section 6,
we present a brief survey and highlight how our proposed
methodology is related to existing literature. Finally, in
Section 7 we comment on conditions under which our al-
gorithms should be used and also outlines our ongoing and
planned initiatives for this problem.

3. TRAJECTORY REPRESENTATION
The trajectory representation algorithms is divided into

two steps. The first step takes the 3D objects as input and
estimate the motion parameter vector (MPV). In the sec-
ond step the MPVs are used to segment the trajectory into
piecewise smooth sub-trajectories.

Basic Notation: S denotes a time varying dataset with N
steps monitoring the movement of an object O, where O is
represented by K points (landmarks) sampled from the sur-
face of O [32, 26]. At ith time step the state of the object in
native space is represented by Oi = [{x1

i , y
1
i , z1

i } . . . , {xk
i , yk

i , zk
i }].

The position of jth landmark at ith time step is denoted by
Oj

i . The time between two successive time steps is denoted
by δ. In the parametric space the jth sub-trajectory is de-
noted by Op

j and is represented by the following feature vec-
tor

{[tj
1, t

j
2], [{x1

t
j
1
, y1

t
j
1
, z1

t
j
1
} . . . , {xk

t
j
1
, yk

t
j
1
, zk

t
j
1
}], {P 1

j , P 2
j . . . P M

j }}

where {P} represents the MPV of the jth sub-trajectory.
The time interval of jth segment is [tj

1, t
j
2]. The stored

{x, y, z} points describe the shape of the object at start of
the segment i.e at time tj

1.

Object Trajectory in Native Space: The trajectory in
native space is obtained by concatenating the object repre-
sentation for all time steps i.e [O1, O2 . . . , ON].

Object Trajectory in Parametric Space: The trajec-
tory in parametric space is obtained by concatenating the
feature vector for all sub-trajectories i.e. [Op

1 , Op
2 . . . , Op

J],
where J represents the total number of sub-trajectories ob-
tained after the segmentation algorithm.

3.1 Transformation and Physical Parameters
In this section we present the algorithm for finding phys-

ical parameters given a object trajectory in native space.
The change in position and orientation of the object can be
characterized by its linear velocity ~v and angular velocity
~ω. These parameters suffice when the size of the object is
constant during its lifetime. However, this assumption does
not often hold for real data. To account for this, we also
compute scaling vector ~s of the object. For 3 dimensional
objects, all size of all three parameters is 3× 1. Let Ot and
Ot+1 be representation of object O at tth and (t + 1)th time
step. Ot and Ot+1 are related as :

Oi+1 = S ∗R ∗Oi + T (1)

where S is 3×3 diagonal matrix with scale co-efficients on di-
agonal, R is a 3×3 rotation matrix and T is 3×1 translation
matrix. ~v is calculated by differentiating the T w.r.t time i.e.
∂T
∂δ

. Similarly, the angular velocity is calculated by follow-

ing equation ~ω = ∂R
∂δ
∗R−1. The scaling vector ~s is specified

by the diagonal entries of S. The Motion Parameter Vector
(MPV) which describes the motion between between ith and
(i + 1)th time step is denoted by Pi = [~v, ~ω, ~s].

If [R̂, T̂ , Ŝ] are the best estimates of R, T and S respec-
tively, then the reconstruction error [8] is given by the fol-
lowing error function:

e2
i,i+1 =

K∑
j=1

||Oj
i+1 − (Ŝ ∗ R̂ ∗Oj

i + T̂)||2 (2)

The error between any two time steps tp and tq where 1 ≤
p ≤ q ≤ N can be obtained by adding (integrating in con-
tinuous case) all the individual errors. The combined error
function Ep,q is denoted as:

E2
p,q =

tq∑
t=tp

e2
t,t+1 (3)

The optimal values of R̂, T̂ and Ŝ are those which minimizes
the error function:

min
R̂,T̂ ,Ŝ

E2
p,q (4)

Once we have estimated the matrices, the motion param-
eters can be calculated as follows: we set q = p + 1 i.e.
we find the parameters between every two consecutive time
steps resulting in a (N − 1)× d parameter matrix P , where
d is the length of each MPV. If we set p = 1 and q = p + N ,
then the method reduces to finding a single set of parame-
ters, for the whole trajectory. Similarly, fixing q = p + L, is
same as segmenting the trajectory in N

L
sub-trajectories and

estimating a single set of parameter for each sub-trajectory.

We use the well known Levenberg-Marquardt optimiza-
tion [20] for estimating the parameters which minimizes the
above mentioned error function. The Levenberg-Marquardt
method is a standard technique for nonlinear optimization,
which employs gradient descent to search for minima of the
error function. The initial condition is set randomly and
number of maximum steps allowed is set high, when the
function is invoked for the first time. The function returns
the estimated parameter set P1. For the second function in-
vocation, instead of randomly setting the initial conditions
we use P1 and also decrease the number of maximum allowed
steps to reduce the computational time. This strategy relies
on the assumption that for a object moving under physical
laws, the change in the motion is smooth if no external force
is applied. Therefore we expect to find P2 close to P1. If
the data follows a Gaussian distribution, then the optimal
set of parameters can be estimated by using Singular Value
Decomposition [31].

3.2 Segmentation
So far, we have obtained the MPV Pi thats maps Oi to

Oi+1 ∀ i ∈ [1, N − 1]. Next, similar MPVs are clustered to-
gether to obtain sub-trajectories. We use a distance based
clustering algorithm. We impose a constraint in the clus-
tering algorithm so that each segment is continuous in time
i.e Pi is added to jth cluster iff the last MPV added to the
cluster was Pi−1. A segment of length M is represented by
(ShapeDescriptor, Parameters, TStart, TEnd) such that
TStart−TEnd = M and TStart < TStart+1 < . . . < TStart+M

Distance Function: The MPV Pi can be thought of as a
point in d dimensional space (d = 9 for three dimensional
objects and d = 6 for two dimensional object). Instead of
using the Euclidean distance metric over the whole space,

we can calculate the euclidean distance in subspaces (linear
velocity (~v), angular velocity (~ω) and scaling (~s) and com-
bine these distances to obtain the final distance between two
points. If E(A, B) represents the euclidean distance between
d dimensional points A and B, the total distance D between
Pi and Pi+1 can be calculated as

D(Pi, Pi+1) = E(~vi, ~vi+1) + E(~ωi, ~ωi+1) + E(~si, ~si+1) (5)

However, this formulation gives equal importance to all
d dimensions which might produce misrepresented clusters.
Consider a case where the object is rotating very slowly but
moving very fast, in such a scenario we would like to assign
more weight to the ~v than to ~ω. Similarly, an object can have
a large velocity component in the x direction but moves very
slowly in other directions. Therefore, we use a d dimensional
importance vector I in distance calculations. The jth entry
of I specifies the weight assigned to jth dimension. The
weighted distance W (A, B) between two d dimensional point
is given by:

W (A, B) =

√√√√
d∑

i=1

Ii ∗ (Ai −Bi)2 (6)

Finding I manually can be cumbersome and error-prone.
Therefore, we present an technique which automatically finds
I. The idea is intuitively motivated by the fact that we
want to assign more importance to fast changing parame-
ters. Therefore, we assign Ii a value which is directly pro-
portional to the variance in the ith dimension. Let V =
(σ2

1 , σ2
2 , . . . , σ2

d) be the variance in each of the d dimen-
sions (calculated over whole trajectory). Ii is calculated

as V (i)∑d
j=1 V (j)

. Thus the distance D between Pi and Pi+1 is

calculated as:

D(Pi, Pi+1) = W (~vi, ~vi+1)+W (~ωi, ~ωi+1)+W (~si, ~si+1) (7)

Segmentation Algorithm: Figure 2 shows the pseudo
code for the segmentation algorithm. The input is the pa-
rameter matrix P of size (N − 1) ∗ d and Pi denotes the ith

row of the matrix. ε specifies the error threshold. The first
segment is initialized by the first MPV and the distance from
next MPV is calculated using the distance metric discussed
above. If the distance is ≤ ε, then length of the segment is
increased by 1 and the average value of the parameters is
calculated and stored. If distance is ≥ ε, then a new segment
is initialized. Now, the next MPV can only be added to this
new segment, thereby maintaining the temporal continuity
in each sub-trajectory.

In this section, we described the algorithms for extracting
the physical parameters from the 3D object trajectories and
the associated representation scheme. Then, we presented
the segmentation algorithm which divides the trajectory into
smaller piecewise smooth sub-trajectories. In next section,
we present the trajectory analysis techniques.

4. TRAJECTORY ANALYSIS
A multidimensional feature vector is generated and stored

for each sub-trajectory. The feature vector includes
(Shapedescriptor, Objectid, MPV, Tstart, Tend). The shape
descriptor stores the information about the shape at Tstart.

input: (P, ε)

out: Seg

int num = 1

Seg[num].left = 1

Seg[num].right = 1

Seg[num].param = P1

Seg[num].length = Seg[num].right - Seg[num].left

for i: 2 to N-1

if(Distance(Seg[numsegment], Pi) ≤ ε)

Seg[num].right = i;

Seg[num].param =
Seg[num].param∗Seg[num].length+Pi

Seg[num].length+1

Seg[num].length++;

else

num++;

Seg[num].left = i;

Seg[num].right = i;

Seg[num].param = Pi;

Seg[num].length = 1;

end if

end for

Figure 2: Pseudo code for Segmentation algorithm

Apart from feature vector and shape descriptor, we also
store other domain dependent information. Given an ob-
ject id O and time interval [T1, T2], we select all the sub-
trajectories of object O whose time interval overlaps with
[T1, T2]. Once we have all the sub-trajectories, we can use
our analysis tools to understand the evolutionary behavior
of one object and also the complex relationships among ob-
jects.

The techniques help to identify important objects and
time instants. The definition of ”important” is domain de-
pendent. For example, a baseball moving with very high
angular velocity may not be surprising however a defect
structure in molecular dynamics with the same character-
istics may point to some important physical process. Ad-
ditionally, we also want to understand the process which
triggered a critical event. Silver and Wang [28] suggested
five basic critical events to understand evolutionary behavior
of objects. The events are Creation, Dissipation, Merging,
Bifurcation and Continuation. Creation event at t = i refers
to formation of a new feature which was not observed at
t = i − 1. Similarly, dissipation event implies that the fea-
ture cease to exist t = i + 1. Merging event occurs when
two or more features join. Bifurcation is exactly opposite
of merging. Finally, continuation implies no change in the
object. To reiterate, the main motivation is to provide tech-
niques which will make the search process more focused and
analytical reasoning more efficient.

Navigational Analysis: This analysis aids in under-
standing the motion characteristics of a object. The useful
information which can be derived and used in analysis pro-
cess are:

• N1:What was the average (maximum and minimum)
of velocity (angular velocity, sub-trajectory length and
size) of object A between time [Tm, Tn]?

• N2: What was the trend in speed (angular speed and
size) of the object A between [Tm, Tn]?

• N3: Which object displayed most (least) changing mo-
tion(size) between [Tm, Tn]?

Once we have selected the set of relevant sub-trajectories,
answering N1 is trivial since we store all the required quan-
tities. N2 can be answered by further investigation of all
the sub-trajectories of A between [Tm, Tn]. The trend is cal-
culated by checking if the speed (magnitude of velocity) is
decreasing or increasing. N2 can help in understanding the
evolution of the object. For example, a negative trend in the
size will imply a shrinking object. Similarly, positive trend
in speed will imply accelerating object.

N1 and N2 provides motion and extent statistics about a
single object, whereas N3 is designed to compare the motion
of different object and select one with the desired property.
N3 extracts basic motion statistics (accessed via N1) for
all objects and computes (weighted by lengths) variance for
each object. Clearly, the object with lowest variance de-
notes least changing object. For example, if object A was
represented by only one sub-trajectory, then σ2

A = 0. This
analysis aids in identification of meta stable objects, which
can then be further studied by domain experts. Please note
that this analysis may look very simple, but the simplicity
arise from our representation scheme. The same cannot be
done in Native Space Representation (NSR) since no motion
information is explicitly available.

Explanatory Analysis: This analysis tool aids in un-
derstanding complex relationship and to explain the critical
events. We use our representation for understanding the
following:

• E1: Did object O crossed, entered or left a given area
R between [Tm, Tn]?

• E2: What all objects are present in neighborhood of
object O between [Tc−h, Tc−1]?

One concern is that, all the above questions need the rep-
resentation of the object in native space. However, we can
very efficiently recover the native representation of the ob-
ject using our feature vector. For each sub trajectory, the
feature vector stores the native representation at the start of
the sub-trajectory and the corresponding MPV. The MPV
can, then, be applied to initial position to reconstruct the
position at any time instant in that sub-trajectory. This
reconstruction might induce some error. However since the
trajectory segmentation algorithm is based on motion vec-
tors, the reconstruction error is expected to be small. The
object O1 at time m is denoted by NS1,m in native space.

E1 describes some simple topological queries. O1 is said
to have entered R if NS1,m is outside R and NS1,n is inside
R. For this paper, we consider O to be inside R, if at least
n of its landmark points are inside R, where n ≤ K. The
parameter n governs how much minimum overlap is needed
for a object to be considered inside of R. If n is set to 1, this
test is effectively the same as in case of a point trajectory.
Similarly, if n is set to K, the overlap test reduces to con-
tainment test. More advance relationships as described by
Egenhofer [7] and Papadimas [21] can be easily accommo-
dated. An extremely useful variant of E1 is: Find R, such
that no object entered R between [Tm, Tn]?. Identification of

such an R can help explain many properties. For example,
in CFD such an R will represent an area where the veloc-
ity field is weaker or aligned differently than all other parts.
Thus, any path through R requires more energy and hence
will not be taken. However, finding such a R without con-
straints will be computationally prohibitive. Therefore, we
use a simplified version of E1, where the size and orientation
of R is pre-defined but the actual position is not. A sliding
window approach is employed to find the position. We place
R such that the one side of R aligns with the boundary of
the grid. Next, the native space representation of all the
objects is calculated at Tm. If any object overlaps with R,
then R is shifted by n units and the same procedure is fol-
lowed. If no object overlaps at Tm, then the positions for
Tm+1 is calculated. This process is repeated till either we
find an R with which no object overlaps between [Tm, Tn]
or R cannot be shifted. The latter case implies absence of
such an R, with which no object overlaps.

E2 is used to understand the process that triggered a
critical event for O. Tc represents the time of critical event
and h ≥ 1 represent how much historical (past) data we
want to analyze. The neighborhood is defined by a region
R around O. In the first step the native space representa-
tion of each object is calculated at Tc−h and the overlap test
with R is conducted. The object ids of all the objects which
pass the overlap test is stored. This process is repeated till
Tc−1. The stored information can be now used to explain
the start of interactions and critical events. A increase (or
decrease) in the number of neighbors of O can mark the be-
ginning (or end) of interactions and can point to a potential
cause of a critical event. Note: E2 can explain bifurcation,
dissipation and continuation events. However, merging and
creation cannot be explained. Both merging and creation
events results in formation of a new object at Tc. Since this
object was not present in [Tc−h, Tc−1], the area R cannot
be defined and thus the neighborhood test cannot be per-
formed. We present a scheme to handle the merging event
in Section 5 with the defect case study. We are currently
investigating the strategies to handle the creation event.

Predictive Analysis Prediction truly exposes the use-
fulness of our representation. Assume we have a parametric
representation of object O1 between [T1, TN]? We consider
two types of predictions:

• P1: What is the expected position of O1 at time TN+D?

• P2: What objects can interact with O1 in next D time
steps?

P1 can be answered simply by accessing the last sub-
trajectory of the object and successively applying the cor-
responding motion vector on shape descriptors. This kind
of analysis only make sense if there is only one object. In
case of multiple objects, O1 can actually, interact with other
objects in D steps which will result in a trajectory different
from our predicted one.

P2 handles the case when more than one object is present
in the dataset. In this case, we predict the position of all
the objects for 1 time step only. Next, E2 is used to find if
any object’s predicted position is in O1’s neighborhood. If
no such object is found, we can predict for the next step and
repeat the procedure. This is continued, till we find a object
in O1’s neighborhood or we have predicted the position for

D steps. If we find such a object in O1 neighborhood, then
we mark that object as a possibility for interaction.

The quality of prediction is highly dependent on the value
of D. Assigning a very large value to D is a unrealistic and
may not produce correct results. A simple upper bound
on the value of D can be easily derived. Assume that a
trajectory of length N is segmented into J segments. The
expected length of each segment is B = N

J
, which means on

average the motion changes every B time steps, which im-
plies that we can only predict upto B − 1 time steps which
acts as our upper bound. The parameter D can take the val-
ues between 1 and B − 1. In most of the physically derived
datasets, the change in motion is very smooth. Therefore,
we can expect a very small value of J and therefore a rea-
sonably high value for B.

Example: We present one example to demonstrate the
usefulness of the proposed analysis on a vortex datasets
VD1. The simulation starts with four vortices. In the course
of simulation the vortices go through a number of changes
including change in position, size, and number. Figure 3(a)
shows the vortices (solid black objects) detected from VD1
at t = 40. The green markers represent the position of the
reconstructed trajectory after MPV estimation and seg-
mentation. The area R1 , represented by dotted boundary,
is defined to show the use of E1 and area R2, represented
by solid boundary, is used to demonstrate the usefulness of
E2. Figure 3(b) and (c) shows the snapshot of simulation
at t = 80 and t = 120 respectively. Using E1 we are able to
capture the entrance of vortex V 1 in R1 between time inter-
val [40, 120]. Even though V 1 is moving out of R1, according
to our inside-outside test, it is still considered inside. Please
note that if we change the time interval to [40, 140], we can
capture that V 1 has crossed R1. Similarly, if time interval
[90, 140] is used we can capture that V 1 left R1.

Figure 3(c) shows a bifurcation event where vortex V 2
split into two smaller vortices. We employed E2 to find a
potential cause for this event, with Tc = 120 and h = 70.
Please recall h is used to specify the number of past time
steps to be used. We found that vortex V 4 entered R1 at
t = 60 which can point to the start of interaction among V 4
and V 2. At T = 110, the distance between the V 1 and V 2
grew smaller, which indicates stronger interactions. These
interactions are the most likely cause of bifurcation event at
T = 120. We would also like to point that at T = 60, even
though the objects were interacting, the center of objects
were quite far away.

Figure 3(a)-(c) also demonstrates the effectiveness of the
parameters estimation algorithm. For example, the shape
of V 1 has changed considerably from Figure 3(a) to Fig-
ure 3(c). However, this change is captured effectively by
scaling parameters as reflected by the positions of the re-
constructed sample points (green markers).

Figure 3(d) shows the use of P1 and P2. Due to space
constraints, we are forced to present the prediction
at two different times in the same figure. For P1
please pay attention only to the gray ellipse. For
P2, consider rest of the plot. We used P1 to predict the
position of V 1 at t = 120. Figure 3(c) shows the position
of V 2 as generated from the simulation. It is evident from
the plots that the position and orientation was captured ac-
curately. The overall change in shape is also captured very
well. Please note that right now, we only handle affine trans-
formations, therefore, non-rigid deformations cannot be cap-

tured. This is one of the subject for further study. Next, we
used P2 for predicting interactions for V 2. We found that
V 4 is expected to enter the neighborhood of V 2 (defined by
R2) at t = 62. In reality, V 4 entered R2 at t = 60 which is
very close the predicted value.

5. RESULTS
In previous section, we presented results on one vortex

dataset. In this section, we present results on baseball datasets,
another vortex dataset and a defect dataset.

5.1 Case Study 1 : Baseball Trajectories
We generated a collection of baseball trajectories based

on the simulation model described in [1]. The model take
into account air drag, gravity, initial velocity, angular ve-
locity and angle of throw. Based on all these attributes we
can generate different kinds of baseball trajectories namely,
slide ball, fast ball, curve ball etc. This case study is very
useful because it helps us to evaluate the quality of our pa-
rameter estimation and segmentation algorithm. We control
the input parameters and we also have access to simulation
parameters at every time step. Therefore, we can check the
simulation parameters against the derived parameters for
evaluating the quality of MPV estimation. Please note that
the parameters from the simulation are not used in trajec-
tory analysis algorithms. They are only used to compare the
final results. For the other two case studies we don’t have
the luxury of knowing the actual motion parameters. At
every time step we sample 20 points from the surface of the
ball. These points are considered as the shape descriptors
for the baseball.

Figure 4 shows the results of motion parameter estimation
using four different techniques. Figure 4(a) shows the result
when only point trajectory was considered. This method
fails to capture the rotational aspect of motion. Figure 4(b)-
(d) show the original trajectory with dotted lines and the
re-constructed one with solid lines. The direction of the ar-
row (shown only on solid lines) shows the direction in which
the ball is moving. Figure 4(b) shows the original and recon-
structed trajectory using global fitting i.e. one set of motion
parameters are estimated which fits whole of the original
data optimally in least square sense. Figure 4(c) shows the
result, when instead of using our segmentation algorithm,
a fixed size segmentation (40 steps) is used i.e. a single ~v
and ~ω is estimated for every 40 time steps. In some parts of
the trajectory, this scheme performs very well, however in
other parts the performance is really bad. This behavior is
not very surprising, if the segment boundaries align with the
actual motion change boundary, the results are very good.
However, if a motion changes within a segment, the error is
high. Figure 4(d) shows the results of our algorithms.

For a simulation of 8, 000 time steps, we found 9 sub-
trajectories. The root mean square error between origi-
nal and re-constructed trajectory was 11.1, 4.8, and .83 for
global, fixed segmentation and our approach respectively.
The root mean square error between the actual and esti-
mated parameters (averaged over all sub-trajectories) was
9.34, 3.86, and .51 for global, fixed segmentation and our
approach respectively. The low RMSE error in both cases
show our approach’s effectiveness in capturing the motion
parameters.

5.2 Case Study 2 : Vortex Trajectories

(a) (b)

(c) (d)

Figure 3: Vortex Datasets 1: (a) This dataset starts with 4 vortices (b) Start of interactions between vortices
(c) Bifurcations Event (d) Predicted Positions and Interactions.

−10
−20

−30
−40

−3
−3.5

−4
−4.5

−5.0
−5.5

−4

−3

−2

−1

0

1

2

3

XY

Z

−40
−30

−20
−10

0
10

−5

−4.5

−4

−3.5

−3
−6

−4

−2

0

2

4

X

X

Y

Z

(a) (b)

−40

−30

−20

−10

0

−5

−4.5

−4

−3.5

−3
−4

−3

−2

−1

0

1

2

3

X
Y

Z

−40

−30

−20

−10

0

−5

−4.5

−4

−3.5

−3
−4

−3

−2

−1

0

1

2

3

XY

Z

(c) (d)

Figure 4: Baseball Trajectory (a) Using only center of mass (b) Global parameter estimation (c) Fixed length
segmentation (d) Proposed approach.

Figure 5: Vortex Dataset 2: Visualizing the vortex
trajectories at different times of simulation

The vortex datasets was generated using the algorithm
proposed by Kim et.al [13]. We use the vortex detection
algorithm presented by Jiang et.al [11]. The shape of a vor-
tex is approximated by an ellipse. Next, 10 points were
sampled from the boundary of the ellipse. These sampled
points are used to estimate the motion parameters between
two vortices in consecutive time steps. Figure 5 shows the
snap shots of simulation and results at different times. The
topmost plot at each time shows the actual vortices and
the green markers denote the sampled boundary points for
the reconstructed motion at a given time instant. The
first plot can be used to qualitatively evaluate our param-
eter estimation and segmentation algorithms. For a re-
constructed trajectory with zero or negligible error, all the
markers should lie on the actual object boundary (if ob-
ject is a perfect ellipse) or very close to the object bound-
ary otherwise. The lower plot shows the evolution of the
object. The extent and orientation of the object is rep-
resented by the length and tilt of the corresponding ma-
jor axis. The minor axis is not shown for aesthetic rea-
sons. We have generated a movie file for both the vortex
datasets. The files can be accessed at http://www.cse.ohio-
state.edu/∼mehtas/Video/index.html. Using our analysis
method E1 we were also able to find a rectangular region
(shown by the dotted rectangle in the first plot), where no
vortex entered during the whole simulation. Moreover, while
analyzing the MPVs, we found that the three vortices to the
left of the box always moved in clockwise fashion whereas the
vortices on right always moved in counter-clockwise fashion.
All these phenomenon can be easily seen in the video file.

5.3 Case Study 3 : Defect Trajectories
Our last dataset originate from Computational Molecular

Dynamics (CMD). The features of interest in this domain
are defect structures. We used the algorithms presented by
Mehta et.al [17] for defect detection. The 8 corners of the
3d minimum bounding box of each defect are used as shape
descriptors. Till now we have shown the examples of 3 types
of critical events, creation and bifurcation in V 1, continua-
tion in V 1 and V 2. This specific datasets was selected to
show our approaches to explain the merging event. This
simulation starts with two separate defect structures which
merge at 5000th time step. Figure 6 shows the evolution of
the defects. In the figure, we have projected the defects to
xy plane. The dotted line shows the movement of center
of mass of the defects. The solid line depicts the extent of
the defects. We would like to point out that, even when
the defect boundaries are touching (a precursor to merging
event), the center of mass of the defects are far apart (3d
distance=8 units). We note that, by using the point trajec-
tories, we would not be able to find when exactly the event
initiated.

The description of E2 given in Section 4 cannot handle
merging events. We now briefly discuss the modification to
E2 for explaining a merging event. Every merging event is
accompanied by dissipation of two or more features. For
example in Figure 6, after the two small defects merged to
form a larger defect, both the smaller defects ceased to ex-
ist. Therefore, for explaining a merging event, we search
the neighborhood of all the dissipated features starting at
Tc−h till Tc−1. If two or more objects are detected in each
other neighborhood, then it is highly likely that these ob-
jects merged to form the new defect. For example in Fig-

Figure 6: Defect Datasets: The figure shows the
merging of two defects to form a new bigger defect.

ure 6, the two defects are in each other’s neighborhood when
there boundaries are touching. With this modified definition
of E2, we were able to explain the merging event success-
fully. Previously, we also demonstrated the use of this ap-
proach in 2D case [33].

6. RELATED WORK
Our work is related to trajectory representation and spa-

tial temporal query processing present in existing literature.
First of all, we would like to note that there are signifi-
cant differences between trajectory and time series data [6].
Techniques presented with respect to one dimensional time
series like the ones based on DFT [3, 9], DWT [24], SVD
[16] are not directly applicable in this context.

The trajectory representation can be broadly classified
in two categories Native Space Representation (NSR) and
Parametric Space Representation (PSR). Here we concen-
trate on the use of parametric space representation. Please
see [18] for an excellent survey on most popular NSR tech-
niques.
Cai et.al [5] proposed the use of Chevesheyv polynomials for
global approximation of the trajectory. Recently Ni et.al [19]
extended the idea which allows variable length trajectory
and also facilities using different degree polynomials for dif-
ferent trajectories However, in both the efforts a d dimen-
sional trajectory is treated as d separate one dimensional
trajectories. Such an approach will lead to loss of interde-
pendence among dimensions. For example in case of circular
motion the position of xt+1 is given by xt∗cos(θ)+yt∗sin(θ),
which is dependent on yt (value of y at previous time step).
Moreover, in our case each object is represented by K points
which will lead to 3 × K time series. Chen et.al [6] and
Bakalov et.al. [4] extended 1 dimensional Piecewise Aggre-
gate Approximation [12] to handle d dimensional trajectory.
The method partitions the space, assign a symbol to each
grid cell and approximates the trajectory by the symbols of
grid cells which contains some part of the trajectory.
Kollios et.al [14] represented the trajectory by its velocity
and used kdB tree to index and process predictive queries.
Saltenis et.al. [27] used a very similar representation and
showed that PS indexing is very well suited for predicting

the future position of the object. Tao et.al [30] presented
TPR* tree which indexes linear velocities of the objects. The
usefulness of storing linear velocity instead of actual object
location is shown by better prediction and low overhead in
terms of updates to the index structure. Porkaew et.al [25]
compared the trajectory representation in Native and Para-
metric space for historical queries. All these methods divide
the trajectory into segments with constant velocity. Agrawal
et.al [2] presented a scheme to index trajectories with non-
linear motion. However, the problem definition was different
from ours. In that work, the authors assumed that the mo-
tion parameters are known in advance for all trajectories
and concentrated in indexing. Recently Tao et.al. [29] pre-
sented a recursive function based algorithm for learning the
motion type of an object. The algorithm define parame-
ters: retrospect f and horizon to find the motion type. For,
simple motions small f suffices however, for complicated mo-
tion types a larger retrospect is needed. Thus the choice of
retrospect is very crucial and different trajectories may be
represented by using different retrospect. For a d dimension
object, the algorithm need to estimate d2 × f parameters.
The paper reports f = 6 as good choice for most motions in
2D i.e. d = 2. Assuming that f = 6 holds for higher dimen-
sions also, then in best case scenario, 32×6 = 54 parameters
are needed for a three dimensional trajectory. Finally, the
quality of the results may degrade in the presence of noise.
All the approached reviewed so far abstract the object by
a point. Given the position of object at two successive
time instants, a translation matrix (and hence linear ve-
locity) which optimally maps one point to another can be
derived. Estimation of both angular and linear velocity from
two points is an ill-posed problem. Additionally, since only
points are considered, scaling is not defined.
The most closely related work to the one presented in this
paper is by Hadjieleftheriou et.al [10] and Kollios et.al [15].
The proposed solution take into account the change in ex-
tent of the object. The basic notion is to segment the d
dimensional trajectory into smaller sub trajectories using
the geometry. Then for each subcomponent, find d polyno-
mial functions such that each one optimally fits one of the d
dimensions. The whole trajectory can be described by col-
lection of all these functions. At a conceptual level this work
and ours are totally different. Foremost, the main focus of
work described by the author in [10] is indexing and not
motion description. No explicit modeling the velocities or
scaling parameter was described. We highlighted some other
differences in Figure 1(c) in Section 2. We again mention
that treating each dimension of a trajectory as individual
time series can results in unintuitive representation of the
trajectory.

Recently, we [32, 33] presented algorithms for mining fre-
quent spatial patterns from scientific datasets. The main
goal of that work was to understand the evolution of spa-
tial patterns and use that information to reason about the
critical events. Study of the motion of individual objects
was not performed. Additionally, predictive, navigational,
topological and interaction analysis was not discussed in this
previous work.

7. DISCUSSION AND CONCLUSIONS
In this article we presented algorithms for extracting mean-

ingful and easy to understand representation of object tra-
jectories. Instead of treating the object as a point, we take

into account the shape and extent of the object. We would
like to point out that, our goal was not to develop generic
time series analysis methods. Our algorithms are specifi-
cally geared towards understanding the motion behavior of
physical objects. For such objects, the motion has been
traditionally understood in terms of speed, and direction.
For time series datasets like stock prices or sensor data, this
scheme may not produce meaningful representation. We also
capture the change in size of the object, which is very com-
mon in scientific datasets, by using scaling parameters. The
algorithms performs extremely well on datasets originating
from three different sources.

In this article, we only consider rigid transformations.
Due to this constraint, we cannot fully quantify the change
in shape of the objects. With scaling parameters we only
capture the change in extent of the object. Currently, we
are exploring algorithms for estimating non-rigid transfor-
mations like stress and strain. These parameters play an
very important role in crack and fracture propagation in
materials. In this paper we used R tree for storing and
retrieving sub-trajectories. In the future, we would explore
the use of other advanced and efficient spatial-temporal data
structures like TPR [27], TPR* [30] and TB [23]. Currently,
we are also developing a visualization framework to support
interactive analysis and reasoning for the object trajectories
through user interface.

8. ACKNOWLEDGMENTS
All authors contributed equally to the intellectual con-

tent of this article. This work is funded by the following
NSF grants NGS-0326386, ACI- 0234273 and NSF Career
Award IIS-0347662. The authors would like to thank Dr
David Thompson and Monika Jankun-Kelly from Depart-
ment of Aerospace Engineering, Mississippi State University,
Dr Ming Jiang from Livermore National Labs and Yootai
Kim, Department of Computer Science and Engineering,
Ohio State University for providing Computational Fluid
Dynamics datasets and helping in analyzing the results. We
also thank Dr John Wilkins, Department of Physics, Ohio
State University for providing datasets for Computational
Molecular Dynamics.

9. REFERENCES
[1] R. K. Adair. The Physics of Baseball . HarperCollins

Publsiher, 2002.

[2] C. C. Aggarwal and D. Agrawal. On nearest neighbor indexing
of nonlinear trajectories. In Principles of database systems,
2003.

[3] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast
Similarity Search in the Presence of Noise, Scaling, and
Translation in Time-Series Databases. In Very Large Data
Bases (VLDB) Conference, 1995.

[4] P. Bakalov, M. Hadjieleftheriou, E. Keogh, and V. J. Tsotras.
Efficient trajectory joins using symbolic representations. In
International conference on Mobile data management, 2005.

[5] Y. Cai and R. T. Ng. Indexing spatio-temporal trajectories
with chebyshev polynomials. In SIGMOD Conference, 2004.

[6] L. Chen, M. T. Özsu, and V. Oria. Robust and Fast Similarity
Search for Moving Object Trajectories. In SIGMOD
Conference, 2005.

[7] M. J. Egenhofer. Reasoning about binary topological relations.
In Symposium on Large Spatial Databases, 1991.

[8] D. Eggert, A. Lorusso, and R. Fisher. Estimating 3-d rigid
body transformation: A comparison of four major algorithms.
MVA, 9:272–290, 1997.

[9] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
Subsequence Matching in Time-Series Databases. In SIGMOD
Conference, 1994.

[10] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and
D. Gunopulos. Efficient indexing of spatiotemporal objects. In
Extending DataBase Technology, 2002.

[11] M. Jiang, R. Machiraju, and D. Thompson. Geometric
verification of swirling features in flow fields. In Proceedings of
IEEE conference on Visualization, 2002.

[12] E. J. Keogh and M. J. Pazzani. A simple dimensionality
reduction technique for fast similarity search in large time
series databases. In PAKDD, 2000.

[13] Y. Kim and R. Machiraju. Swirling Images. In
OSU-CISRC-1/06- TR03, 2006.

[14] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing
mobile objects. In Principles of database systems, 1999.

[15] G. Kollios, V. J. Tsotras, D. Gunopulos, A. Delis, and
M. Hadjieleftheriou. Indexing animated objects using
spatiotemporal access methods. IEEE Transactions Knowledge
and Data Engineering, 13(5), 2001.

[16] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently
supporting ad hoc queries in large datasets of time sequences.
In SIGMOD Conference , 1997.

[17] S. Mehta, K. Hazzard, R. Machiraju, S. Parthasarathy, and
J. Wilkins. Detection and visualization of anomalous structures
in molecular dynamics simulation data. In IEEE Visualization,
2004.

[18] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal
Access Methods. IEEE Data Engineering Bulletin, 2003.

[19] J. Ni and C. V. Ravishankar. Pa-tree: A parametric indexing
scheme for spatio-temporal trajectories. In International
Symposium on Spatial and Temporal Databases, 2005.

[20] J. Nocedal and S. Wright. Numerical Optimization . Springer,
New York, 1999.

[21] D. Papadias, Y. Theodoridis, T. K. Sellis, and M. J. Egenhofer.
Topological relations in the world of minimum bounding
rectangles: A study with r-trees. In SIGMOD Conference,
1995.

[22] R. Parent. Computer Animation- Algorithms and Techniques
. Morgan Kauffman, 2002.

[23] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches
in query processing for moving object trajectories. In VLDB,
2000.

[24] K. pong Chan and A. W.-C. Fu. Efficient Time Series Matching
by Wavelets. In ICDE, 1999.

[25] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile
objects in spatio-temporal databases. In International
Symposium on Spatial and Temporal Databases, 2001.

[26] C. Rao and S. S. and. Statistical analysis of shape of objects
based on landmark data. In Proc Natl Acad Sci USA,
93(22):1213212136,, 1996.

[27] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the positions of continuously moving objects.
SIGMOD Rec., 29(2), 2000.

[28] D. Silver and X. Wang. Tracking and visualizing turbulent 3d
features. IEEE Trans. Vis. Comput. Graph., 3(2), 1997.

[29] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and
indexing of moving objects with unknown motion patterns. In
SIGMOD Conference, 2004.

[30] Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: An optimized
spatio-temporal access method for predictive queries. In
VLDB, 2003.

[31] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Trans. Pattern
Anal. Mach. Intell., 13(4), 1991.

[32] H. Yang, S. Parthasarathy, and S. Mehta. A generalized
framework for mining spatio-temporal patterns in scientific
data. In KDD, 2005.

[33] H. Yang, S. Parthasarathy, and S. Mehta. Towards
association-based spatio-temporal reasoning. In IJCAI:
Workshop on Spatio-temporal Reasoning, 2005.

