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ABSTRACT
In this article, we present an algorithm for detecting peri-
odicity in time series datasets. The algorithm leverages the
frequency characterization and autocorrelation structure in-
herent in a time series to estimate its periodicity. We extend
the methods to handle non-stationary time series by tracking
the candidate periods using a Kalman filtering technique.
We also address the interesting problem of finding multi-
ple interlaced periodicities. We show the effectiveness of
our approach on many publicly available real datasets and
demonstrate the robustness of our approach in the presence
of noise and missing data values.

1. INTRODUCTION
Periodicity is an interesting property of many time series

datasets. A period can be informally defined as a self re-
peating pattern. This pattern provides useful information
about the inherent structure in cyclic datasets. Cyclic pro-
cesses are ubiquitous, e.g. rotation and revolution of earth,
solar activity, climate and temperature changes, power con-
sumption in urban areas, human heart beat and respiration
processes and number of hits on websites. The importance
of periodicity can be gauged by the fact that basic concepts
such as the number of hours in a day and number of days in
a year are motivated by the periodic nature of earth’s move-
ment. The human respiration pattern is another examples of
an important periodic process. Deviations from normal peri-
odic behavior are observed in many diseases. Periodicity can
be used to derive the signature of normal breathing patterns
and thereby facilitating abnormality detection. The power
consumption in urban areas also tends to demonstrate a pe-
riodic behavior which allows energy companies to analyze
the power consumption patterns to facilitate proper plan-
ning. Similarly, operating systems and database systems
often use periodicities to detect the periods of low activities
to schedule maintenance tasks. Many day-to-day activities
of human beings also show periodic behavior. For example,
a person walking, running, waving the hand and jumping are
remarkably periodic processes. Cutler and Davis [3] showed
the usefulness of periodicity for object classification and dis-
criminating among different motion types. Periodicity not
only helps to understand the properties of a single time se-
ries, but can also capture complex relationships among mul-
tiple time series. For example, our analysis shows that heart
rate, chest volume and blood oxygen concentration can be
related through their periodic patterns. Recently, Vlachos
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et al. [19] also demonstrated the use of structure based de-
scriptors for clustering of time series. The authors showed
that a periodicity based feature vector often outperforms
shape based descriptors for a variety of signals.

To reiterate, if detected robustly, periodicity can aid in
various time series tasks like classification, clustering, com-
pression, abnormality detection and discovery of hidden re-
lationship among attributes. The periodicity detection task
is not difficult in very simple cases such as when the signal is
a sinusoidal wave -a single period for the whole data. Unfor-
tunately, such datasets are rarely found in real life. Most of
the time series datasets exhibit one or more of the following
properties: i) non-stationarity, ii) interlaced cyclic patterns
and iii) data contamination.

Non-stationarity is the property attributed to the change
in the underlying distribution of the data generating process.
This change can result in different periodicities at different
times. Many datasets also exhibit more than one period-
icity in the same part of the data, i.e. the series is com-
posed of multiple periods. One such example, the SunSpot
series, was reported by Kanjilal et al. [9]. The authors re-
ported presence of three periods at 10, 11 and 12 years.
Please note that multiple periodicities in the non-stationary
case should not be confused with multiple periodicities in the
interlaced case. In the former scenario, the periodicity is
gradually changing due to change in the data and only one
period is observed in each portion of data, while in the lat-
ter case multiple periods are present at every time instant.
Data contamination often occurs due to measurement er-
rors in data acquisition methods resulting in noisy datasets.
Incomplete datasets or missing values further compound to
the problem. Pearson et al. [14] reported that it is common
for many datasets to have as much as 30% of missing values.

In this article we present algorithms that take into account
the above-mentioned properties of the dataset in detecting
their period(s). The proposed techniques find the periodic-
ity in a stationary time series by using a combination of time-
frequency and autocorrelation analysis. Non-stationarity is
handled by using sliding window techniques with Kalman
filtering to compute the periodicities detected in each win-
dow. Multiple interlaced periods are found by repetitively
removing the high energy components of the data and find-
ing the periodicity on the remaining signal. We use a comb
filter to efficiently accomplish this task. Missing data is
handled by treating the data as an unevenly sampled sig-
nal. The time-frequency and autocorrelation analysis lends
itself easily to the analysis of unevenly spaced datasets. Fi-
nally, we demonstrate that our design of using the infor-



mation simultaneously from time-frequency and autocorre-
lation analysis makes the algorithms robust to the presence
of noise. To reiterate, the proposed algorithm is able to
handle non-stationary, multi-periodicity and contaminated
datasets. We empirically evaluate performance of our algo-
rithm on various publicly available datasets originating from
various domains such as astronomy, meteorology, medicine,
mathematics, automotive, video surveillance and geography.
We also present results describing how this approach can be
used to discover hidden and complex relationships among
attributes of multi-dimensional time series.

The rest of the article is organized as follows: In Section 2,
we present background and related work. Section 3 presents
the details of our algorithms, along with motivating exam-
ples. Results are given in Section 4, followed by discussion
and conclusions in Section 5.

2. BACKGROUND AND RELATED WORK
In this section, we define the period of a random process

provide a brief survey of existing algorithms for periodicity
detection.

Definition 1. A wide-sense stationary random process z(t)
is said to be be mean-square periodic, if ∃ T > 0 such that

Rzz(τ) = Rzz(τ + T ),∀ τ,

where Rzz(τ) is the autocorrelation fucntion corresponding
to z(t). The period of this process is then defined to be the
smallest such T .

It can be shown [16] that a mean-square periodic process
also obeys our intuitive definition of periodicity:

z(t) = z(t + T ). (1)

Existing periodicity detection algorithms can be broadly
classified in two groups: time domain methods and fre-
quency domain methods. Time domain methods make use
of autocorrelation functions while frequency domain meth-
ods make use of spectral density functions.

The primary motivation of using time domain methods [2]
(also known as autocorrelation based methods) stems from
the observation that if z (t) is periodic with period T , then
Rzz(τ) will also exhibit a period of T . The peak of Rzz(τ)
occurs when τ = 0. Depending on how “strongly periodic”
z(t) is, the peak value may also obtained at the values of τ
that correspond to the period T and multiples of T . Time
domain methods are useful and efficient in detecting period-
icities when the time series is approximately characterized
by a sinusoid uncontaminated by noise. However, for other
signals, the performance degrades rapidly.

Spectral or frequency domain methods decompose a sig-
nal into it’s constituent frequencies. The main motivation
behind the use of frequency domain methods is that the
power spectral density of z(t) is a line spectra consisting of
impulses located at multiples of 2π

T
with heights (areas) de-

termined by the corresponding Fourier coefficients of Rzz(τ).
Recall that Rzz(τ) is the autocorrelation with time lag of τ
corresponding to z (t). If, the Fourier co-efficients are ex-
tracted directly from the signal, the resulting decomposi-
tion is known as the periodogram [17]. Although, frequency
based methods mitigate some the drawbacks of time do-
main methods, power loss of the impulsive frequencies due
to spectral leakage pose a serious problem [12].

Recently, Vlachos et al. [19] identified some of these is-
sues and presented an algorithm which sequentially uses
both time and frequency domain methods for periodicity
detection. The authors first detect potential candidates of
periodicity by using the periodogram. In the next stage, all
candidate periods are evaluated against the auto-correlation
function (ACF). The periods which do-not lie on the “hill”
of ACF are discarded. The rest of the periods are refined
further, if needed. However, the issues of non-stationarity,
contaminated datasets and multiple periodicities are not ad-
dressed by the authors. A combination of time and fre-
quency domain methods have also been proposed in the
context of pitch detection for speech signal processing (see
e.g. [11, 20]). Typically, these methods filter the speech
signal using a bank of bandpass filters that simulate the hu-
man cochlea. Each filter output then undergoes a nonlinear
compression, followed by the computation of the autocorre-
lation. The autocorrelations are then summed across differ-
ent filters and the largest peak with a certain range in the
resulting sum is deemed to be the pitch period [11]. How-
ever, the algorithms are not generalizable across domains
and often find applicability in the pitch estimation problem
only.

Pearson et al. [14] proposed a spectral estimation tech-
nique for periodicity detection in non ideal datasets. How-
ever, no discussion of non-stationarity and multiple peri-
odicities was provided. Kanjilal et al. [9] used eigen value
analysis instead of Fourier transform to perform spectral
decomposition. Their algorithm performed well in detecting
multiple interlaced periods. However, their technique needs
a separate training phase that utilizes a part of the data.
Moreover, the authors make an unrealistic assumption that
this training data is noise-free.

Another body of related work stems from the sequence
mining literature. Ozden et al. [13] presented an algorithm
to find periodic patterns in transactional datasets. A time
stamp is associated with each transaction. The primary
goal is to find association rules which repeat themselves
throughout the dataset. Han et al. [6] discussed an algo-
rithm for mining partial periodic patterns. Yang et al. [21]
extended the algorithm to mine partial and asynchronous
patterns. Finally, Yang and Lee [22] proposed algorithms
to mine non-redundant partial periods. However, all these
algorithms are developed for transactional datasets, which
represent discrete time sequence. In the context of contin-
uous time series, some form of binning algorithm has to be
employed as a pre-processing step. The final results will
therefore be extremely sensitive to the number of bins and
the discretization scheme.

3. ALGORITHMS
In this section we first present an algorithm for detect-

ing the periodicity in a stationary time series. The algo-
rithm yields robust estimates of the period by analyzing
the data in the joint frequency-autocorrelation domain. We
then discuss the shortcoming of this algorithm when it is
applied to non-stationary datasets. For such datasets, we
propose a sliding-window approach that independently es-
timates a period within each window. These estimates are
then smoothed using a fixed-interval Kalman smoother. Fi-
nally, we discuss an extension to handle time series that
contain multiple interlaced periodic processes within. The
key intuition is to iteratively estimate the period in the data
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Figure 1: Determination of the period of a wideband signal. (a) Spectrogram of a motor current signal (best
viewed in color). (b) The corresponding summed autocorrelation. (c) A pulse train corresponding to the
detected period overlaid on the original signal.

by successively subtracting the harmonic components corre-
sponding to the detected period.

3.1 Periodicity in Stationary time series
We first propose an algorithm to detect periodicity in a

stationary time series data. The algorithm finds the pe-
riodicity by combining time-frequency and autocorrelation
analysis. The signal is first decomposed into a short-time
frequency representation by using a spectrogram analysis.
Specifically, a 256-point discrete Fourier transform (DFT)
is computed on successive 256 length portions of the sig-
nal generated by applying a running rectangular window to
the signal. Consecutive windows are shifted by 1 sample.
The outputs from the short-time Fourier transform analy-
sis are then used to compute the corresponding short-time
magnitude spectra. Spectrograms provide a powerful tool
to analyze a signal in time and frequency domain simulta-
neously. They monitor the evolution of spectral components
across time. A spectrogram plot for the motor current sig-
nal from [5] is shown in Figure 1(a). The x-axis is time in
increasing order and y-axis is frequency in increasing order.
The lighter the color in the spectrogram, the more the sig-
nal power (magnitude) at that frequency. Notice that the
signal is wideband and contains harmonics across frequen-
cies. However, there is also considerable smearing of the
harmonic powers. This could be mitigated to a certain ex-
tent by using either more points in the DFT analysis or by
a window designed to minimize smearing (e.g. Kaiser) [12].
However, this comes at the cost of assuming either that the
signal has the same period for the extended analysis length
or certain a priori properties of the signal that would enable
the optimal window design [12].

It can also be seen from Figure 1(a) that the fine-shift
along the time dimension causes the spectrogram to retain
the periodicity property along its time axis too. Note that
this occurs across different frequencies. To exploit this prop-
erty, the evolution of each DFT coefficient across time is
considered to form a time series. However, each DFT coeffi-
cient cannot be analyzed independently due to the smearing

problem described above. Hence, we use the discrete cosine
transform of the DFT magnitude to partially decorrelate [12]
the different spectral time series. Then, for each such series
the discrete-time autocorrelation is computed as

RZZ [m] =

N−m−1∑
n=0

(Z[n]Z[n + m]), (2)

where Z[n] is the n
′th order decorrelated coefficient. The re-

sulting autocorrelations are summed across different orders.
Figure 1(b) shows the plot of the summed autocorrelations
for the motor current data. Note that the resulting autocor-
relation is periodic. The various peaks in Figure 1(b) denote
the integer multiples of the period. We calculate the gradi-
ent at each point of this curve and pick the point that has
highest gradient. The corresponding autocorrelation lag in-
dex gives the period of a signal. For example, the first peak
in Figure 1(b) is the dominant period for the motor current
case. For verification, Figure 1(c) shows the original signal
overlaid with a pulse train at the detected periods given by
the dotted lines.

Aside from combining the individual advantages of fre-
quency decomposition and autocorrelation, the joint time
and Fourier analysis improves the robustness of periodicity
detection. For example, if the original broadband data were
to be corrupted by narrowband noise, the periodic struc-
ture in the noise-free frequency components would still allow
for accurate estimation. Similarly, addition of time-limited
broadband noise is handled by integrating the information
spectral information across across time.

3.2 Periodicity in Non-stationary time series

Definition 2. A random process z(t) is non-stationary, if
∃ n ∈ Z+ such that the nth order probability distribution
function changes across time.

In this paper, we consider the particular case of non-stationary
random processes that possess time-varying periods. The



0.5 1 1.5 2 2.5

−0.5

0

0.5

Time (s)

V
al

ue

0.5 1 1.5 2 2.5
0

1

2

3

4

Ti
m

e 
P

er
io

d 
(s

)

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

Ti
m

e 
P

er
io

d 
(s

)

Figure 2: Periodicity Detection for the non-
stationary case.

top graph in Figure 2 shows an example of one such non-
stationary time series. The dataset has three different fre-
quencies, which can be easily seen to occur at distinct time
intervals. Our approach to handle such signals is motivated
by the observation that even though the periodicity varies
globally but it remains unchanged locally. Specifically, we
apply a sliding rectangular window of length M with an
overlap between adjacent windows of length o. Within each
window we use the stationary version of the algorithm, as
explained in Section 3.2, to find the periodicity. Since the
point where the change in period occurs is unknown, we will
get some windows within which the data generated will en-
compass different periods. One solution to this problem is
to use a large value of o. In the limit, o can be as large as
M − 1. However, this incurs a large computational cost. In
practice, one may trade-off the computational burden with
the desired time accuracy. The middle graph in Figure 2
shows the result of applying stationary version on the win-
dowed signal. Note that the stationary version does not per-
form well in the regions where the signal changes its periods.
There is a lot of noise in results (notice the big peak). The
red lines in top graph indicates the time instances where the
period changes are detected. Notice that the results contain
small errors.

We smooth the results using a Kalman Filter [1]. The
time-variation of periods is modeled as an auto-regressive
(AR) process. For simplicity, we have assumed that this
variation can be modeled as a second-order AR process. The
state space model of this system is

x (m) = F (m) x (m− 1) + Gv (m) , (3)

y (m) = Hx (m) + w (m) . (4)

In the above, y (m) is the estimated period within a par-
ticular window as described above; m is the index of that
window.

F (m) =

[
a1 (m) a2 (m)

1 0

]
, (5)

where a1 (m) and a2 (m) correspond to estimated AR coeffi-

cients at window m. We let G = [1 0]T and H = [1 0] . The
system Gaussian noise v (m) and the observation Gaussian
noise w (m) are zero mean with variances vv (m) and vari-
ance vw (m). The conditional state mean x (m|m− 1) that
corresponds to the desired period sequence and the error
covariance V (n|n− 1) are predicted as:

x (m|m− 1) = F (m− 1) x (m− 1|m− 1) , (6)

V (m|m− 1) = F (m− 1) V (m− 1|m− 1) F T (m− 1)+

GQ (m− 1) GT ; (7)

and tracked by the Kalman filter as:

x (m|m) = x (m|m− 1) + K (m) (y (m)−Hx (m|m− 1)) ,
(8)

V (m|m) = (I −K (m) H) V (m|m− 1) , (9)

where K (n) is the Kalman gain computed as:

K (m) = V (m|m− 1) HT
(
HV (m|m− 1) HT + vw (m)

)−1

.

(10)
Due to the overlap between consecutive windows, we ex-

pect a smooth change in the detected period. Hence, the
observations noise related variance vw (m), is set to be the
absolute time-difference of x (m− 1|0 . . . m− 1). The pa-
rameters of the AR model a1, a2 and vv are estimated in
each window using the Yule-Walker method [17]:




rxx (0) rxx (−1) rxx (−2)
rxx (1) rxx (0) rxx (−1)
rxx (2) rxx (1) rxx (0)







1
a1

a2


 =




vv
0
0


 , (11)

where rxx (k) is the autocorrelation sequence corresponding
to x (m− 1|0 . . . m− 1).
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Figure 3: Periodicity Detected in the non-stationary
case after Kalman Smoothing. Periods shown only
for a selected portion.

Finally, the filtered periods are smoothed by the following
fixed-interval Kalman smoother.



A (m− 1) = V (m− 1|m− 1) F T (m− 1) V −1 (m|m− 1) ,
(12)

x (m− 1|J) = x (m− 1|m− 1)+

A (m− 1) (x (m|J)− x (m|m− 1)) , (13)

V (m− 1|J) = V (m− 1|m− 1)+

A (m− 1) (V (m|J) − V (m|m− 1)) AT (m− 1) , (14)

where J is the number of sliding windows applied to the
signal. The bottom graph in Figure 2 shows the final result
after Kalman smoothing. Notice that the three different fre-
quencies are correctly identified. The vertical bold (green)
line in top graph shows the time instances which our al-
gorithm detects as the places of changes in signal periods.
Note also that the three periods detected also closely match
the actual values and we are able to segment the signal us-
ing periodicities. Figure 3 shows the original signal with
detected periods (represented by vertical line segments).
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Figure 4: Time series with multiple interlaced peri-
ods.

3.3 Detection of Multiple Interlaced Periodic-
ities

Thus far, we have presented algorithms which perform
when there is only one period in whole or parts of a time se-
ries. However, many data sets have interlaced periods occur-
ring simultaneously. For example, consider the time series
in the bottom row of Figure 4. The data has two alternat-
ing frequencies. To handle such cases, we adopt a sequential
detection and pruning approach. We use the existing algo-
rithm to find the primary period. This period is used to
design a comb filter [8]. A comb filter, in general, is a filter
that resonates a “selected” frequency and all harmonics of
that frequency. We set the “selected” frequency to be the
inverse of the detected period, thereby constructing a filter
which will only let pass the harmonics corresponding to the
detected period.

The transfer function of a comb filter is given by

P (l) =
1− l−e

1− (1/e) l−e
, (15)

where e is the primary period detected. This filter is used to

“select” those harmonic components of the signal that occur
at integer multiples of 1/e. The is accomplished by:

S(l) = z ⊗ P (l) (16)

We then subtract the comb filtered version S(l) from the
original signal, z (t) and re-run the algorithm on resulting
data. This process is continued iteratively until the comb fil-
tered signal contributes to no more that 10% to the original
signal power. The bottom graph in Figure 4 shows the origi-
nal signal. The middle part shows the period corresponding
to first primary frequency. The top part shows the signal
after the primary frequency is removed. We super impose
the period detected in the remaining signal.

3.4 Robustness to Missing-data
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Figure 5: Periodicity detection for an incomplete
dataset.

Incomplete datasets potentially pose another problem to
our approach as missing data corrupts the accuracy of the
DFT calculations. Since this is the first step in all our algo-
rithms, any errors caused in this step can be catastrophic.
To mitigate the effect of missing data on our algorithms, we
consider the time series with missing data to be a time series
with unevenly sampled data and represent each sample by a
2-tuple (time instant, actual value). This enables us to use
the algorithm for DFT calculations with unevenly sampled
data as proposed by Press and Rybicki [15]. Figure 5 shows
a time series with 20% missing data overlayed with a pulse
train at the detected periods. From the figure, we can see
that the proposed algorithm is robust to missing-data. A
detailed study of the effect of missing data is presented in
next section.

Summary
In this section, we have proposed algorithms for periodicity
detection that enable us to handle non-stationary datasets
containing possibly simultaneous periodic processes. Hence,
given a particular dataset, our analysis starts by first apply-
ing a sliding window to the signal. Then, within each win-
dow, we estimate the dominant period by using the Fourier
decomposition followed by an autocorrelation analysis. These
estimates are then smoothed across time. In those win-
dows that yield a non-zero period estimate, we reexamine
the data for other potential periods. An iterative algorithm



that first detects a plausible period and then subtracts its
harmonic components performs this reexamination. Finally,
we have demonstrated how our algorithms are able to handle
missing-data by performing Fourier analysis with unevenly
sampled data.

4. RESULTS
In this section we present the results of our proposed

algorithm on various datasets. These datasets originate
from very different domains like astronomy, meteorology,
medicine, mathematics, automotive, video surveillance and
geography. All the datasets unless otherwise noted are from
The UCR Time Series Data Mining Archive [5].

4.1 Dataset Description and Detected Period-
icities

Figure 11 shows the results on 14 publicly available datasets.
The plot shows the actual series and the vertical lines show
the periodic segment. The gap between two successive verti-
cal lines specifies the detected period. The x axis represents
the time (or index) and the y axis represents the actual value
of the series.

Motor Current- This dataset classifies the state of motor
in 3 classes: Healthy, Broken Connector and Broken Bar.
Figures 11(a) and 11(b) show the results on one broken con-
nector and one broken bar. We have already shown the
results for the healthy case in Section 3, Figure 1(c). The
size of each series is 1× 1500.

Eamonn noGun- This dataset is a two-dimensional time
series of x and y co-ordinates. Figure 11(c) shows the de-
tected periodicity for only the x co-ordinates. Figure 11(d)
shows the results for the y-coordinates. The size of data is
2× 8853.

Great Lakes- This data monitors the water level of 5 lakes
Erie, Huron, Ontario, StClair, Superior. Figures 11(e) and 11(f)
shows the results for Ontario and StClair respectively. The
size of the dataset is 5× 984.

Pseudo Periodic- This is a synthetic dataset where the
signal appears highly periodic, but never exactly repeats
itself. This can be thought of as the presence of random
noise in the data. The datasets contains 10 pseudo periodic
datasets generated from 10 different simulation runs. We
show the results on first 4 signals shown in Figure 11(g-j).
It is evident that even when the signal is not exactly repeat-
ing, we are able to find the right periodicity. The total size
of dataset is 10× 100, 000. For the figures we have reduced
the dataset size by sampling every 50th point.

A- A.dat dataset was used in the Sante Fe competition1 .
A.dat is a univariate time record of a single observed quan-
tity, measured in a physics laboratory experiment. The size
of A.dat is 1× 1000. A.cont provides approximately 10, 000
points beyond the end of the competition data set. Please
note that since the dataset comes from same experiments,
the inherent periodicity should be same. This is precisely

1http://www-psych.stanford.edu/∼andreas/Time-
Series/SantaFe.html

what we found. A period of 9 was found in both the datasets
as shown in Figure 11(k-l). Also note that it may appear that
A.cont has more periods. This is because the time range
shown(1− 200 is double the one shown for A.dat (1− 100).
This was done intentionally to show that the signal’s ampli-
tude and mean do not effect our periodicity detection algo-
rithms.

Daily Temperatures - Melbourne, Australia- This dataset
contains the average minimum and maximum temperature
of Melbourne, Australia2 for a period of 10 years resulting
in 3650 values. In both series, we found the period to be
exactly 365 days, i.e. 1 year. Figure 11(m) and 11(n) show
the result for minimum and maximum daily temperature re-
spectively.

Flutter: Non Stationary Dataset- This data originates
from industry. No other description about the data is avail-
able. The size of the data is 1024× 2. The second attribute
is the attribute of interest and is used for analysis. This data
exhibits non-stationarity. We used our algorithms for seg-
mentations and periodicity detection algorithm. We used a
window size of 10. Figure 6(a) shows the original data. The
vertical lines show the result of the segmentation algorithm;
we found 4 different segments. Figure 6(b) shows the de-
tected period in the second segment [200 − 320]. Similarly,
figure 6(c) shows the result on the next segment [340−500].
Please note that periodicity was not detected on a priori seg-
mented signals. The segmentation is a by-product of our
algorithm when dealing with non-stationary signals.

Sunspots: Multiple Interlaced Periodicities- The dataset
provided monthly mean sunspot numbers for 240 years. The
size of the datasets is 1 × 2880. The periodicity in sunspot
series dataset is known to be 11 years which is very close to
actual observed period of 11 years and 27 days. We success-
fully detected 132 months (11 years) as the primary period.
However, when searching for the presence of other possible
interlaced periods, we found two additional periods at 120
months (10 years) and 540 months (45 years).

Figure 8(a) shows the original signal and the primary pe-
riod of 132 months. The next plot shows the signal after
the frequencies corresponding to the primary period are re-
moved. The detected period is 120 months. Figure 8(c)
shows the final period (540 months), detected after filtering
the frequency components associated with the secondary pe-
riod. Kanjilal et al. [9] also report three periodicities at 11,
10 and 12 years (in order) on this dataset. We did not find
the period at 12 years. The authors would like to point out
that period of 45 years is not simply concatenation of 4 pe-
riods of 11 years. The last periodicity was detected from the
dataset after we have already removed the frequency com-
ponent corresponding to the first and the second periods.
Therefore, we are not grouping multiple periods of 11 years
to find this larger period.

ECG Dataset: Discovering Hidden Relationships-
Detection of periodicities can reveal hidden relationships
between seemingly uncorrelated variables. For example, the
top panel in Figure 9 shows how the three variables of heart
rate (blue), chest volume (green) and blood oxygen con-

2http://www-personal.buseco.monash.edu.au/∼hyndman/TSDL/
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Figure 9: Periodicity detection for multivariate
ECG dataset

centration (red) vary in the Sante Fe ECG dataset3. As
the figure shows, the sample values of these variables are
uncorrelated although from physiological studies we know
that they must be correlated. Indeed, this correlation may
be observed in the variation of the detected periodicities of
the three variables. The correlation coefficients between the
trajectories of the detected periods of heart rate and chest
volume is 0.39, between heart rate and blood oxygen concen-
tration is 0.52 and between chest volume and blood oxygen
concentration is 0.78. The corresponding values computed
directly on the samples are −0.07, 0.67 and −0.02. Hence,
only the the correlation between the heart rate and the blood
oxygen level can be observed directly. Therefore, we believe
that periodicity can be a useful derived attribute that can
reveal how seemingly uncorrelated variables are related.

4.2 Periodicity Detection in Incomplete Dataset
In this section we show the results highlighting the robust-

ness of our algorithm when handling incomplete datasets.
We choose three different datasets i)a synthetic sine series
generated at 70 Hz, ii) the healthy motor current data (see
Section 3) and iii) the Sunspot numbers. We found the pri-
mary period in each of the dataset. Next, we randomly re-
moved 10% of the data and detected the period again. This
experiment is run systematically by varying the percentage
of missing data from 10% to 40%. Figure 7 show the de-
tected periods on the incomplete data. For comparison, we
also show the periodicity with complete data (shown by a
horizontal line). Even when 40% of the data is missing, the
detected periodicity is very close to the true one. The max-
imum deviation as percentage of true periodicity is 0.84%,
7.84% and 1.52% for the sine wave, the motor current and
the SunSpot numbers respectively. Note that the motor cur-
rent data is sampled at a very high sampling rate of 33300
Hz. Hence, even a very small error in the estimate of the
period in terms of samples translates into a large error in
the period estimate in terms of seconds.

4.3 Periodicity Detection in Presence of Noise

3http://www.physionet.org/physiobank/database/santa-
fe/

We now discuss the performance of our algorithm in the
presence of noise. We generated a series of same length as
the original signal by sampling from a uniform distribution
U ∼ [−1, 1]. We then scaled the noise such that

∑
(signal)2

=
∑

(noise)2. Finally, we multiplied noise with β, where
β specifies the signal to noise ratio and added the resulting
scaled noise to the signal. We systematically varied β in the
range [0, 1] in steps of 0.1. At β = 0, no noise is added and
at β = 1, the contribution of noise and signal are the same.
We ran the experiments on the same three datasets used
in studying impact of missing value. For all three datasets
we found the same periodicity till β = 0.9. At β = 1, the
quality of results start degrading and the correct periodicity
is not discovered. Thus, even when the noise strength is as
high as 90% (at β = 0.9) of original signal, we are able to
identify the correct periodicity information. We attribute
this nice property of our algorithm to the simultaneous use
of information from both time-frequency autocorrelation do-
mains.

4.4 Avoiding False Positives
In this section, we evaluate the quality of results for the

case where no period is present in the input signal. Instead
of using a signal which is comprised of noise, we have decided
to use a one dimensional logistic map [10, 18]. The function
is recursively defined as x(k) = x(k− 1) + r ∗ (1− x(k− 1)).
The function generates a strictly periodic signal for values
of r ∈ [3.0, 3.57]. However, when r > 3.57, the signal is
chaotic. We generated two signals with r = 3.5687 and
r = 3.92. We then concatenate these two signals to form
one large signal. Our periodicity detection results are shown
in Figure 10. The top graphs shows the segmentation of
the signal. We correctly detect two different signal periods.
The periodicity in the first part was detected as 32, which
matches the theoretical value of the periodicity of this signal
at r = 3.5687. However, in the next segment, no period was
detected. Figure 10(b) shows the resultant periods on the
first segment.

5. DISCUSSION AND CONCLUSIONS
In this article, we have presented robust periodicity de-

tection algorithms for cyclic time series datasets. The al-
gorithms combine information from the time-frequency do-
main and the autocorrelation space to find meaningful peri-
ods. The algorithms are extended to handle non-stationary
datasets, multiple interlaced periodicities and incomplete
datasets. We have also showed that the design of our al-
gorithm makes it highly robust to the noise. We empirically
evaluated the quality of results of our algorithms on a large
number of time series datasets. We also showed the pro-
posed algorithm can discover hidden relationships among
attributes in multidimensional time series.

If the true period of a signal is T , in a few cases our al-
gorithm discover 2 ∗ T as the true period. In such cases, we
manually divide the periodicity by the factory of 2 after a
visual inspection of the signal.

For the non stationary case, we have used a sliding win-
dow over the length of the signal. Except for the change
points, the signal is assumed to be stationary within each
window. Deciding the optimal window size is highly depen-
dent on the signal. For a slowly (fast) changing signal, the
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Figure 11: Experimental Evaluation on several publicly available datasets
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window length should be high (low). In all our experiments,
we have fixed the length of the window at 128.

The two issues discussed above can be handled if some do-
main knowledge about data generating process is available.
For example in speech analysis, the size of the sliding win-
dow is usually fixed at 10 ms and any period greater than 2
ms is not allowed [7].

Future work will attempt to detect joint periods in multi-
dimensional datasets and also analyze data from even wider
range of domains than the ones reported here. A potentially
interesting application involves the problem of segmenting
human motion trajectories [4]. We believe that periodic-
ity could be a important cue that characterizes individual
human motions.
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