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ABSTRACT
Frequent itemset pattern mining is an important problem in data
mining and has been studied extensively. Efficient mining algo-
rithms exist to identify a complete set of frequent itemset patterns
from data. However, sizes of the discovered patterns are usually
quite large which would hinder their interpretability and applica-
tion. Thus effective methods of summarizing these itemset patterns
become necessary.

In this paper, we propose a novel approach to concisely repre-
sent a large number of frequent itemset patterns. In our approach,
probabilistic graphical models are employed for the summariza-
tion task. More specifically, items are taken as random variables
and Markov Random Field (MRF) models on these variables are
constructed based on frequent itemset patterns and their support in-
formation. The summarization proceeds in a level-wise fashion.
Statistics of smaller itemsets are used to construct an MRF model,
and then supports of larger itemsets are inferred from the model.
If the estimation error is within a user-specified tolerance, we by-
pass these itemsets, otherwise we use these itemsets to augment the
MRF model. At the end of the process, all the itemset patterns in
the resulting model afford a concise representation of the original
collection of itemset patterns.

Extensive empirical study on real datasets show that the new ap-
proach can effectively summarize a large number of frequent item-
set patterns. In our quantitative assessment we find that our ap-
proach compares favorably with a state-of-the-art summarization
scheme in most cases.

1. INTRODUCTION
The problem of mining frequent patterns, particularly associa-

tions among items in transactional datasets, is an important one
with many applications. Efficient algorithms to compute frequent
patterns and rules associated with these patterns exist [2, 26, 10, 25,
8]. However, often times in many real-world problems the num-
ber of frequent patterns mined for various parametric settings is
extremely large leaving the end-user swamped when it comes to
interpreting and summarizing the results. As a result researchers
have turned to various strategies to summarize the number of pat-
terns the user is asked to examine. This has led to research on
problems such as mining of closed itemsets [17], maximal itemsets
[9], non-derivable itemsets [5], and more recently profile patterns
[22].

Closed itemsets summarize itemsets by reusing their inherent
representation. Basically, a frequent itemset is closed if none of
its parent itemsets have exactly the same support. Similarly, a fre-
quent itemset is maximal if none of its parent itemsets are frequent.
Non-derivable itemsets (NDI) reduce the output size by eliminating
redundant patterns from original set of frequent itemset patterns.

More specifically, those patterns that are exactly derivable from its
subset patterns using some combinatorial principle (e.g. inclusion-
exclusion [5]) are pruned.

Closed itemsets and non-derivable itemsets are lossless forms
of compressing frequent itemset patterns, i.e. the full list of fre-
quent itemsets and associated frequency counts (used for comput-
ing itemset rules) can be exactly derived from the compressed rep-
resentation. Note that researchers have pointed out that for some
datasets and support thresholds we have |NDI| < |Closed|, while
other datasets and support thresholds have |Closed| < |NDI| [5].

Maximal itemsets allow greater compression when compared with
closed patterns, but the representation is lossy – the list of frequent
itemsets can be exactly computed but the exact frequency counts
associated with each frequent itemset cannot be determined. There
are some other lossy representations besides maximum itemsets.
Top-k patterns approach by Han et al. [11] presents the most fre-
quent k closed itemsets to the end-user. Error-tolerant patterns
by Yang et al. [23] and Pei et al. [19] allow certain amount of
fluctuations when evaluating supports of itemset patterns. A recent
approach by Afrati et al. [1] uses K itemsets to recover a collec-
tion of frequent itemsets. However, it is not clear how to recover
the support information in their approach.

It is important to note that the number of closed, maximal or non-
derivable itemsets could still be very large, thus we need to further
compress them. Furthermore, we want a summarization approach
which takes into account the frequency information as well. Gener-
ally speaking, the end-user may be interested in those itemset pat-
terns that can best represent the original collection of itemsets and
their associated frequency as well. Towards this goal, recently Yan
et al. [22] proposed an itemset summarization approach, namely
pattern profile. The authors demonstrate that the approach can ef-
fectively summarize itemset patterns on a wide variety of datasets,
resulting in good compression while retaining high accuracy.

However, the approach has several limitations in our opinion.
First, from an efficiency perspective it is not clear how well this ap-
proach will scale to large datasets. Essentially the proposed strat-
egy needs to repeatedly scanning the original dataset to achieve
good summarization quality, which would become very expensive
when dealing with large datasets. Although approximate profiles
can be used to limit scans during the summarization process, there
will be a significant effect on summarization quality [22]. Finally,
the resulting pattern profiles can be quite unbalanced in terms of
their size and distribution. There is no way to control this and it
can result in poor interpretability.

In this paper we present an approach to summarizing itemset pat-
terns obtained from frequent itemset mining algorithms. The objec-
tive can be stated as follows. Given a collection of frequent item-
set patterns, compute a concise summary representation such that



the list of frequent itemsets as well as there associated frequency
counts can be computed (reasonably) accurately. The approach we
present relies on some well established ideas in probabilistic graph-
ical models and probabilistic inference. The key idea is to derive
a probabilistic graphical model summary of the data from the set
of frequent non-derivable patterns. This would serve as the profile
summary of the dataset. Subsequently the list of frequent itemsets
and associated counts can be computed using probabilistic infer-
ence methods available in the literature.

The new summarization scheme yields a much more condensed
representation of frequent itemset patterns. The resultant repre-
sentative itemset patterns can be thought of as generalized non-
derivable patterns. This is a very nice property considering that in
many cases, non-derivable patterns can already give a much con-
densed representation of the original collection of frequent item-
sets. Furthermore, there is no need to scan the original dataset dur-
ing the summarization. We only rely on the information of the
itemsets to summarize themselves. This is desirable for truly large
datasets where repeated scans can be very expensive.

Our experimental results show that the proposed approach com-
pares favorably with the recently proposed idea of profile patterns
on the axes of accuracy, space and performance. Specifically we
find on real datasets that the proposed approach is much more ac-
curate given the same space budget, and under certain conditions
(dataset properties and user-controlled parameters) faster than pro-
file patterns.

The rest of the paper is organized as follows. We state the prob-
lem of the itemset pattern summarization and briefly go over the
related probabilistic graphical model in Section 2. In Section 3 we
detail our proposed probabilistic model based itemset summariza-
tion approach. We present experimental results in Section 4 and
related work in Section 5. Finally, we discuss future work and con-
clude in Section 6.

2. PROBLEM STATEMENT
AND BACKGROUND

Let I be a set of items, i1, i2, . . ., id. A subset of I is called
an itemset. The size of an itemset is the number of items it con-
tains. A transactional dataset is a collection of itemsets, D =
{t1, t2, . . . , tn}, where ti ⊆ I . For any itemset α, we write the
transactions that contain α as Dα = {ti|α ⊆ ti and ti ∈ D}. In
the probabilistic model context, each item corresponds to a distinct
random variable1.

Definition 1. (Frequent itemset). For a transactional dataset D,
an itemset α is frequent if |Dα| ≥ σ, where |Dα| is called the
support of α in D, denoted as s(α), and σ is a user-specified non-
negative threshold.

Frequent itemsets satisfy the important Apriori property: any
subset of a frequent itemset is also frequent. All existing frequent
itemset mining algorithms rely on this property to prune the search
space. Since the number of subsets of a large frequent itemset is
explosive, it is more appropriate to mine closed frequent itemsets
or non-derivable frequent itemsets only. We define these below.

Definition 2. (Closed frequent itemset). A frequent itemset α is
closed if there does not exist an itemset β such that α ⊂ β and
Dα = Dβ .

1In this article we use these terms – item, (random) variable – in-
terchangeably

Definition 3. ((Non-)derivable frequent itemset). A frequent item-
set α is derivable if its support can be exactly inferred from its
sub-itemsets and their supports based on the inclusion-exclusion
principle. Otherwise it is non − derivable.

We refer the readers to [5] for more information about non-derivable
frequent itemsets and the inclusion-exclusion principle.

2.1 Itemset Pattern Summarization
The itemset pattern summarization problem is formally stated as

follows: given a collection of frequent itemset patterns, we want to
find a more concise representation such that the original collection
of itemset patterns and their supports information can be reasonably
recovered. Additionally, the summarization should be tunable in
terms of controlling the trade-off amongst often competing metrics,
namely summarization quality, summary size or compactness, and
efficiency.

As noted above closed itemsets and non-derivable itemsets have
been shown to be two successful concise representations of a col-
lection of frequent itemsets. In many cases they can significantly
reduce the number of itemsets in the representation without infor-
mation loss. However, sometimes they can be still quite large which
is why new summarization schemes must be found.

2.2 Markov Random Field (MRF) Model
An MRF model is an undirected graphical model in which ver-

tices represent variables and edges represent correlations between
variables. The joint distribution associated with an undirected graph-
ical model can be factorized as follows:

p(X) =
1

Z(ψ)

�

Ci∈C

ψCi
(XCi

)

where C is the set of maximal cliques associated with the undi-
rected graph; ψCi is a potential function over the variables of clique
Ci and 1

Z(ψ)
is a normalization term to ensure a valid distribution.

A clique is a subset of vertices in the graph that are fully-connected.
A maximal clique is a clique that cannot have more vertices added
and remain a valid clique. We associate with each maximal clique
a non-negative and real-valued potential function.

The MRF model fully specifies the conditional independence
among variables. The Markov property states that for all disjoint
vertex subsets a, b and c in the graphical model, whenever b and c
are separated by a in the graph, then the random variables associ-
ated with b, c are independent given the random variables associ-
ated with a alone.

2.2.1 Using Frequent Itemset Patterns to Construct
an MRF Model

The idea of using frequent itemset patterns to construct an MRF
model was first described by Pavlov et al. [18] in their work on
query selectivity estimation on sparse binary data. Essentially given
a query whose selectivity is to be estimated they first identify subset
patterns of the query that are frequent. Each such pattern is taken
as a particular constraint on the true underlying distribution which
generates the data. Among all feasible distributions satisfying these
constraints, the one with the maximal entropy (“as uninformed as
possible”) is picked as the estimate for the true distribution. They
show that this maximum entropy distribution is equivalent to an
MRF model. There is a simple algorithm, called iterative scaling
that one can use to learn an MRF model from a given set of item-
set patterns. It has been shown [18] that this MRF model is very
effective in estimating the selectivity of queries.
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Figure 1: An MRF Example

The following gives an example of the maximal entropy distri-
bution and the corresponding MRF model from a set of itemsets.
Suppose we have collected the itemsets as x1, x2, x3, x4, x5, x1x2,
x1x3, x2x3, x3x4, x4x5 and x1x2x3. Let xQ be {x1, x2, x3, x4,
x5}. Then the maximal entropy distribution on xQ has the follow-
ing product form:

p(xQ) = µ0 · µ
I(x1=1)
1 · µ

I(x2=1)
2 · µ

I(x3=1)
3 · µ

I(x4=1)
4

·µ
I(x5=1)
5 · µ

I(x1=x2=1)
6 · µ

I(x1=x3=1)
7 · µ

I(x2=x3=1)
8

·µ
I(x3=x4=1)
9 · µ

I(x4=x5=1)
10 · µ

I(x1=x1=x3=1)
11

where I() is an indication function for the corresponding con-
straint and the constants µ0, . . ., µ11 are estimated from the data.
Figure 1 shows the corresponding MRF model. In particular,
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While our work is clearly inspired by the work by Pavlov et al.
[18], there are several key differences between the two – we will
outline these in the ensuing sections.

3. ALGORITHM
Our goal is to use a smaller number of itemset patterns to con-

struct an MRF model over all involved variables and then use it
to summarize a much larger collection of the frequent itemset pat-
terns.

LEMMA 1. Given a transactional dataset D, the MRF model
M constructed based on all of its σ-frequent itemset patterns is
exactly the same as M ′, the MRF model constructed based on all
of its σ-frequent non-derivable itemset patterns only.

Proof sketch: This is due to the universal applicability of the
inclusion-exclusion principle. When we use all σ-frequent non-
derivable itemsets to construct an MRF model, the model will keep
the exact support information for these itemsets. Later when we use
the model to infer the support for other itemset patterns, the deduc-
tion has to satisfy the inclusion-exclusion principle, thus yielding
exact estimations.

LEMMA 2. Given an itemset pattern α and all of its non-derivable
sub-itemsets and their support estimations, i.e., ŝ1, . . ., ŝl (true
supports are s1, . . ., sl, respectively). If these estimations are error
bounded by e1, . . ., el, i.e., |ŝ1 − s1| ≤ e1, . . ., |ŝl− sl| ≤ el, then
the support estimation for α, ŝ(α), derived from these sub-itemsets
is error bounded by e1 + e2 + . . .+ el.

Proof sketch: We infer the support of the itemset by applying the
inclusion-exclusion principle based on its sub-itemsets’ support. If
a sub-itemset is non-derivable, we use its support estimation di-
rectly, otherwise we recursively apply the inclusion-exclusion prin-
ciple to derive its support estimation. It’s easy to see that e1 + e2 +
. . . + el is the maximally possible error accumulation.

Motivated by the above lemmas, we focus on the task of summa-
rizing non-derivable itemset patterns. These patterns capture non-
redundant distribution information of the data according to Lemma 1.
Furthermore, if we summarize these patterns well, the summariza-
tion quality for all other derivable patterns will be error bounded
according to Lemma 2.

3.1 Summarizing Itemset Patterns Using MRF
Models

The basic idea of our proposed approach is very simple. We use
statistics of smaller itemset patterns to construct an MRF model,
and then use this model to infer the supports of larger itemset pat-
terns thereafter. If the estimations are accurate enough (within a
user-specified error tolerance), we bypass the corresponding pat-
terns. Otherwise we will use the extra information from these item-
sets to augment the model. The summarization proceeds in a level-
wise fashion. First, all 1-itemsets are collected and used to con-
struct an MRF. Then we infer the supports for all 2-itemsets. We
bypass those 2-itemsets whose supports are well estimated from the
model and use the information of all skewed 2-itemsets to augment
the model. Next, we move on to process all 3-itemsets and so on.
This process will be repeated level by level until we process all the
itemset patterns. At the end of the process, all itemsets remaining
in the resulting model afford a concise representation of the original
collection of itemset patterns.

Essentially we keep picking out the skewed itemset patterns and
add their information to the probabilistic model. Thus we expect
that the final resulting model to be able to faithfully capture the
most significant dependency information in the data, and therefore
summarize the original patterns well. From another angle, we try
to squash the original collection of itemset patterns by eliminating
redundancy from it. As we know, the MRF model fully specifies
the conditional independence in the data, thus if an itemset pattern
does not introduce any extra significant dependency information to
the current model, it will be pruned. Furthermore, we introduce a
parameter δ to tune in the granularity of the summarization. δ spec-
ifies the error tolerance during the summarization. If the estimation
error is within the tolerance, we bypass the corresponding pattern.
Otherwise we take it as skewed. Through specifying the error toler-
ance, δ provides a mechanism to trade-off between summarization
accuracy and space budget.

The formal summarization algorithm is presented in Figure 2.
Note that this algorithm can be easily extended to a more general
summarization scheme, that can be applied to summarize any col-
lection of itemset patterns. In our study, we do not pursue this
direction and we focus on summarizing a complete collection of σ-
frequent itemset patterns. The time complexity of the summariza-
tion algorithm is dominated by the MRF model learning process,
which we will describe below.

3.2 Learning MRF Models
As been mentioned in Section 2, the iterative scaling algorithm

can be used to learn an MRF from a set of itemsets. Figure 3
presents a high-level outline of a computationally efficient version
of the algorithm given by Jelinek et al. [12]. During the learning
process, we need to repeatedly update the model to force it to sat-
isfy the current itemset constraint. The model updating relies on



Algorithm: Itemset Pattern Summarization Algorithm (C, δ)
Input: Collection of itemset patterns C;

Error tolerance threshold δ;
Output: Reduced collection of itemset patterns R;
1. Obtain all 1-itemset patterns in C

and their supports; Use them to initialize R;
2. k = 2;
3.While k < MAX LEV EL
4. Use itemsets in R to construct an MRF model M ;
5. Obtain all k-itemset patterns in C and their supports;
6. For each k-itemset pattern p:
7. Estimate s(p) and calculate the estimation

error e;
8. if e > δ then add p to R;
7. k + +;
8. return R;

Figure 2: Itemset pattern summarization algorithm

Algorithm: Learning MRF using itemsets (C)
Input: Collection of itemsets C;
Output: MRF model M ;
1. Obtain all involved variables v

and choose an initial approximation to M
(typically uniform over v);

2. While (Not all constraints are satisfied)
3. For (each constraint ci)
4. Update M to force it to satisfy ci;
5. return M ;

Figure 3: Iterative Scaling Algorithm

the support estimation for the current itemset constraint. Thus we
need to keep making inferences on the current model. If the itera-
tive scaling algorithm runs k iterations and there arem itemset con-
straints, the time complexity of the algorithm will beO(k×m×t),
where t is the average inference time over a constraint. Thus the
efficient inference is crucial to the running time of the learning al-
gorithm. In our study, we exploit two inference engines, the Junc-
tion Tree inference algorithm and the Markov Chain Monte Carlo
(MCMC) inference algorithm.

3.2.1 Junction Tree Inference Algorithm
The junction tree algorithm is a general exact probabilistic in-

ference framework. The general problem here is to calculate the
marginal probability of a variable or a set of variables, given the ob-
served values of another set of variables. In our context, there is no
observed variables, and our goal is to calculate the marginal proba-
bility associated with the itemset patterns. The idea of the junction
tree algorithm is to find a way to decompose a global computation
on a joint probability into a linked set of local computations. The
key point of this approach is the concept of locality. The junction
tree is a particular data structure which fully exploits the graph-
theoretic locality for efficient probabilistic inference.

Specifically, the junction tree algorithm decomposes the origi-
nal model into a hyper-tree, in which each node consists of a set
of variables in the original model. Two sets of variables associ-
ated with two tree nodes could overlap, and the overlapped part is
called the separator of the two tree nodes. Particularly, each tree
node corresponds to a unique maximum clique in the graph formed
by triangulating the original model. Furthermore, the junction tree

needs to satisfy the running intersection property, i.e., for every
pair of cliques V and W , all cliques on the path between V and
W contain V ∩W . Beliefs of the tree nodes propagate along all
distinct paths respecting a two-phase message passing protocol in
the junction tree. When the propagation terminates, the clique po-
tentials and separator potentials are proportional to local marginal
probabilities. In other words, global consistency is achieved, which
implies that the inference problem within a tree node can be solved
independently of the other tree nodes.

The time complexity of the junction tree algorithm is determined
by the maximum number of variables a tree node contains in the
junction tree (also known as the treewidth of the original graphical
model). More specifically, the time complexity is exponential in the
treewidth of the model. If the underlying MRF model is relatively
simple (with a relatively low treewidth), then the junction tree al-
gorithm can yield exact inferences very efficiently. On the other
hand, when the model becomes complex (the treewidth becomes
large), then the exact inference will become slow, sometimes even
become intractable in which cases we have to resort to approximate
inference algorithms.

3.2.2 MCMC Inference Algorithm
MCMC is a general method for simulating from complicated dis-

tributions [7]. In our study, we used a particular type of MCMC
algorithm known as a Gibbs sampler to draw dependent samples
from the joint posterior distribution from which we evaluate the
marginal probabilities corresponding to the itemset patterns. Specif-
ically, we specify a full conditional distribution p(xi|−xi) for each
variable xi in our MRF model, where −xi is the set of variables in
the graph not including xi. Then we draw samples from it. Note
that the Markov property indicates that it suffices to condition on
the neighboring variables of xi in the MRF model. The Gibbs sam-
pling proceeds by sampling each hidden variable from the condi-
tional distribution, given the current values of the other variables
in the graph. Marginal probabilities can be estimated by summing
over the samples. Note that the Gibbs sampling scheme yields ap-
proximate inferences. The quality of the approximate inference
is usually reasonably good when the sample size is large enough.
Additionally, to diminish the effect of the starting distribution, we
generally discard certain amount of early iterations, referred to as
burn in [7]. We base on the iterations later to make the inference.

3.3 Generalized Non-derivable Itemsets
The probabilistic model based summarization scheme returns a

subset of the original collection of itemsets as its summary to the
end-user. Similar to what pointed out in [22] that pattern profiles
can be viewed as generalized closed itemsets, the resulting item-
sets in our summarization approach can be viewed as generalized
non-derivable itemsets. First, we construct the probabilistic mod-
els based on the non-derivable itemsets. As a result, all the item-
sets in the final summary are non-derivable. Second, we allow cer-
tain error tolerance when summarizing the itemset patterns. If a
particular itemset respects the currently known conditional inde-
pendence structure specified by the model, we take its support as
known. Note that it might be the case that we are not able to de-
rive an itemset’s support based on the inclusion-exclusion princi-
ple only, however we are able to derive it according to the further
conditional independence information. In contrast, previously an
itemset is derivable only when its support can be completely deter-
mined from the support of its sub-itemsets based on the inclusion-
exclusion principle only. We see that essentially we relax the re-
quirement for an itemset to be “derivable”, which will significantly
increase the number of derivable patterns. Furthermore, the more



k n m d

Chess 75 3196 118252 0.493
Accidents 468 340183 11500870 0.0722
Mushroom 119 8124 186852 0.193

Web 294 32711 98654 0.0102

Table 1: General characteristics of the datasets. k is the num-
ber of distinct items, n is the number of records, m is the num-
ber of total items and d = m

kn
is the density index.

relaxation we allow, the more derivable patterns will be, implying
a more compressed summarization.

4. EXPERIMENTAL RESULTS
In this section, we examine the performance of our proposed ap-

proach on real datasets. We compare the probabilistic model based
summarization approach (abbreviated as PM in figures presenting
experimental results) against the state-of-the-art pattern profile sum-
marization scheme (abbreviated as PP in figures presenting exper-
imental results). The summarization algorithm is implemented in
C++. The junction tree and Gibbs sampling inference algorithms
are implemented based on Intel’s Open-Source Probabilistic Net-
works Library2. Also, we implement the pattern profile summa-
rization algorithm in C++ and we tune in it to achieve similar per-
formance to that reported in [22].

4.1 Experimental Setup
All the experiments are conducted on a Pentium 4 2.66GHz ma-

chine with 1GB RAM running Linux 2.6.8. We use the implemen-
tation of apriori algorithm in [4] to collect the σ-frequent itemsets
and the corresponding closed itemsets. We use the implementa-
tion in [6] to collect all σ-frequent non-derivable itemsets. Below
we detail the datasets and performance metrics considered in our
evaluation.

Datasets: We use four publicly available datasets in our exper-
iments: the Chess dataset with 3196 transactions and 75 distinct
items; the Accidents dataset with 340183 transactions and 468 dis-
tinct items; the Mushroom dataset with 8124 transactions and 119
distinct items; the Microsoft Anonymous Web dataset with 32711
transactions and 294 distinct items. The first three datasets are pub-
licly available at the FIMI repository 3 and the last Web dataset is
publicly available at the UCI KDD archive 4. The main character-
istics of the datasets are summarized in Table 1. As can be seen,
the Chess and Mushroom datasets are relatively dense. The Web
dataset is the sparsest one and the Accidents dataset lies in between.

Performance Metrics:

• Summarization accuracy.

Definition 4. Restoration error. Given a collection of item-
set patterns Φ = {α1, α2, . . . , αl}, the quality of a pattern
summarization can be evaluated by the following average rel-
ative error (called restoration error),

E = �
αk∈Φ

|s(αk)−ŝ(αk)|
s(αk)

where s is the true support and ŝ is the estimated support.
Restoration error measures the average relative error between
the estimated support of a pattern and its true support. If this

2https://sourceforge.net/projects/openpnl/
3http://fimi.cs.helsinki.fi/
4http://kdd.ics.uci.edu/

measure is small enough, it means that the estimated support
of a pattern is very close to its true support.

• Summary size. In order to compare fairly between different
summarization schemes, we need to consider the summary
size. The comparison should be made between summariza-
tions which are of the same size. A larger summary is ex-
pected to be more accurate. Overall, we prefer the summa-
rizations with low sizes which however yield small restora-
tion errors. In our study we calculate the number of bytes
taken by a summarization and use it to quantify its size. Specif-
ically, an item in the summary takes 2 bytes (a short integer)
and a floating point number in the summary takes 4 bytes.
For example, the following itemset pattern takes 8 bytes,
{(item1, item2), 0.1} and the following pattern profile takes
22 bytes. {(item1, item2, item3), (1.0, 0.8, 0.6), (0.1)}

• Summarization time. We consider the time taken to summa-
rize the itemset patterns. Ideally, the summarization should
be fast. We have to point out that a fair timing performance
comparison between different summarization schemes is not
easy. For example, both our approach and pattern profile ap-
proach are iterative processes. The running times are highly
dependent of the convergence criteria, which could be rather
subjective. Here we report the timing performance results of
those summarizations from which we collect the summariza-
tion accuracy results.

4.2 Results on the Chess Dataset
In this section, we report the experimental results on the Chess

dataset. For this set of experiments, we set σ = 2000 to collect
the frequent itemset patterns. As a result there are 166581 frequent
itemsets, from which 1276 itemsets are non-derivable. We also
collect all the 68967 closed frequent itemsets at this support level
for the pattern profile summarization scheme.

Figure 4a presents the summarization quality as we vary the error
tolerance threshold used during the summarization. Specifically,
for our approach we report both results on summarizing all itemset
patterns and all non-derivable itemset patterns. For the pattern pro-
file approach, we only report the results on summarizing all itemset
patterns. For the reference purpose, the results based on naive in-
dependence model are also plotted in the figure.

From the figure, we see that the probabilistic model based sum-
marization scheme effectively summarizes the itemset patterns. The
restoration error for all frequent patterns is slightly worse than that
for non-derivable patterns. This is as expected considering our ap-
proach particularly focuses on summarizing non-derivable patterns.
It’s worth pointing out that the restoration error on all frequent
itemset patterns is also very small, thus supporting our claim that
non-derivable patterns play a key role in representing the whole
collection of frequent itemset patterns.

Furthermore, it can be clearly seen that the restoration error in-
creases as we raise the error tolerance threshold. This is due to the
fact that we will lose more distribution information with larger er-
ror tolerance thresholds. Particularly, the summarization with the
threshold above 0.25 becomes equivalent to the naive independence
model based summarization. The advantage of the new approach
over the pattern profile approach is clearly demonstrated in the fig-
ure. For the pattern profiles of the same size, the restoration error
is much higher than that of the new approach and is actually quite
close to that of the naive independence model.

Table 2 presents the distribution of the skewed itemsets at dif-
ferent levels with respect to different error tolerance thresholds. As
can be seen from the table, the numbers of skewed itemsets are very
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Figure 4: Results on the Chess dataset:(a)Restoration error (b)Summary size (c)Summarization time

Itemset Size No. of Total Itemsets No. of Skewed Itemsets (Varying δ)
0.05 0.10 0.15 0.20 0.25 0.30

1 31 31 31 31 31 31 31
2 335 6 0 0 0 0 0
3 653 14 19 2 1 0 0
4 257 2 0 0 0 0 0

Sum 1276 53 50 33 32 31 31

Table 2: Skewed itemset distribution on the Chess dataset when varying error threshold

small at all error tolerance thresholds. For example, at the error tol-
erance threshold 0.05, there are 6, 14, 2 skewed 2, 3, 4-itemset
patterns respectively. As we raise the threshold, overall the number
of skewed itemsets decreases.

Figure 4b presents the summary sizes with different error toler-
ance thresholds. Specifically, the sizes of the original collection of
patterns and the naive independence model are also plotted here for
the purpose of reference. As can be seen, our summaries use a very
small amount of space to summarize a much larger collection of
itemset patterns. For example, the summary takes 398 bytes at the
error threshold of 0.05 to summarize the itemset patterns of size
12480 bytes.

Figure 4c presents the timing performance of the new approach.
As can be seen, the new approach summarizes the itemset patterns
extremely fast on this dataset. In all cases, the summarization takes
less than 5 seconds. In contrast, the pattern profile approach does
not finish before it exhausts memory. We submit the summariza-
tion job to the supercomputer at the Ohio Supercomputer Center
(OSC)5. The pattern profile approach takes about 40 minutes to
finish there. Also, we see that the new approach takes more time
when using a lower error tolerance threshold, since the models with
lower error tolerance thresholds are more complex.

It’s worth noting that the Chess dataset satisfies the independence
assumption quite well. Thus the MRF model based summarization
scheme works extremely well. A relatively simple MRF model
is able to faithfully capture the conditional independence existing
in the data, which results in a very low restoration error and an
extremely fast summarization.

4.3 Results on the Accidents Dataset
In this section, we report the experimental results on the Acci-

dents dataset. In this set of experiments, we set σ = 150000 to
collect the frequent itemset patterns, which results in 18175 fre-
quent itemsets, out of which 18175 are closed patterns and 5486
are non-derivable patterns.

Figure 5a presents the summarization quality as we vary the error
tolerance thresholds used during the summarization process. From
the figure, we see that the probabilistic model based summarization

5http://www.osc.edu/

scheme works extremely well on this dataset as well. The restora-
tion errors for both all frequent patterns and non-derivable patterns
are very low. We note that the independence assumption is satis-
fied well on this dataset also (the naive independence model yields
the error of 5.27% and 6.77% for all patterns and non-derivable
patterns respectively). Furthermore, it can be clearly seen that the
restoration error increases as we increase the error tolerance thresh-
old.

Note that the pattern profile approach can not deal with this
dataset due to its large size. The algorithm run out of memory
after running for hours, even on the supercomputer at OSC. Re-
peatedly dataset scanning based summarization is very computa-
tion and memory intensive.

Table 3 presents the distribution of the skewed itemsets. As can
be seen from the table, the numbers of skewed itemsets are also
very small on this dataset, indicating that the MRF model captures
the distribution information and represents all the itemsets quite
well. For example, at the error tolerance threshold of 0.05, there
are only 13, 54, 1, 3 skewed 2, 3, 4, 5-itemset patterns respec-
tively. Compared with the numbers of the original non-derivable
itemsets, which are 253, 1071, 2135, 1788 respectively, the num-
bers of skewed itemsets are much smaller. Again, as we raise the
error tolerance threshold, overall the numbers of skewed itemsets
decrease.

Figure 5b presents the summary sizes with different error toler-
ance thresholds. Again, the summary sizes are much smaller than
the size of the original itemset patterns.

Figure 5c presents the timing performance of the new approach.
As can be seen, the probabilistic model based approach again sum-
marizes all the itemset patterns on this dataset very fast. Further-
more, the summarization with a smaller error tolerance threshold
takes much more time. For example, the summarization takes 80
seconds when the threshold is 0.05. In contrast, it takes less than 1
second when the threshold is above 0.2.

Note that both of the Accidents dataset and the Chess dataset
are relatively dense and satisfy the independence assumption well.
For this kind of datasets, the MRF model based summarization
scheme works extremely well. Interestingly, we note that on these
two datasets, the frequent non-derivable patterns is much less than
the frequent closed patterns. Take the Accidents dataset as an ex-
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Figure 5: Results on the Accidents dataset:(a)Restoration error (b)Summary size (c)Summarization time

Itemset Size No. of Total Itemsets No. of Skewed Itemsets (Varying δ)
0.05 0.10 0.15 0.20 0.25 0.30

1 28 28 28 28 28 28 28
2 253 13 4 2 0 0 0
3 1071 54 9 6 4 1 0
4 2135 1 5 0 2 3 3
5 1788 3 0 1 0 0 0
6 210 0 0 0 0 0 0
7 1 0 0 0 0 0 0

Sum 5486 99 46 37 34 32 31

Table 3: Skewed itemset distribution on the Accidents dataset when varying error threshold

ample, none of its 18175 frequent patterns is closed. In contrast,
only 5486 out of 18175 patterns are non-derivable. This is usually
a good sign that the probabilistic model based summarization will
be more efficient and effective than the pattern profile approach.
Next we will examine the performance of the new approach on the
skewed datasets that do not satisfy the independence assumption
well.

4.4 Results on the Mushroom Dataset
In this section, we report the experimental results on the Mush-

room dataset. The Mushroom dataset is also a relatively dense
dataset. In this set of experiments, we set σ = 2031 (a support
threshold of 25%) to collect the frequent itemset patterns, resulting
in 5545 frequent itemsets, from which 688 are closed and 534 are
non-derivable.

Figure 6a presents the summarization quality as we vary the error
tolerance thresholds used during the summarization. From the fig-
ure, we see that the independence assumption does not hold well on
this dataset. The restoration errors for all itemset patterns and non-
derivable itemset patterns are 20% and 39% respectively. From
the figure, we see that the probabilistic model based summariza-
tion scheme again works very well on this dataset. The restoration
errors for both all frequent patterns and non-derivable patterns are
reasonably low, and are much lower than that of the pattern profile
summaries of the same size. Note that both approaches work much
better than the naive independence model. Furthermore, we can
lower the restoration error by lowering the error tolerance thresh-
olds used during the summarization, which is at the cost of more
space usage.

Table 4 presents the distribution of the skewed itemsets. Com-
pared with the previous two datasets, the proportion of the skewed
itemsets is much higher on this dataset, which signifies that the
independence assumption does not hold on this dataset as well as
that on the other two datasets. But overall, the numbers of skewed
itemset patterns are still much less than the numbers of all the orig-
inal itemset patterns. Particularly on this dataset, there is a small
fluctuation when we raise the error tolerance threshold from 0.30 to
0.40, which leads to more skewed itemsets. This is because that the

larger threshold 0.40 results in much more skewed 3-itemsets (46
v.s. 25), though it indeed results in less skewed 2-itemsets (11 v.s.
25). The increase of the former outweighs the decrease of the lat-
ter, resulting in more skewed itemsets overall. However, the overall
trend is still that the numbers of skewed itemsets become less when
we use larger error tolerance thresholds.

Figure 6b presents the summary sizes with different error toler-
ance thresholds. We note that the summaries take relatively more
space, compared with that on the previous two datasets. Again,
with a lower error tolerance threshold, the summary size is larger.

Figure 6c presents the timing performance of the two approaches.
The new approach is much faster than the pattern profile approach.
We see that both approaches take more time when the error tol-
erance threshold decreases. However, for the pattern profile ap-
proach, the increase of the running time is not as significant.

4.5 Results on the Microsoft Web Dataset
In this section, we report the experimental results on the Mi-

crosoft Web dataset, which is the sparsest dataset. For the sparse
datasets, the independence assumption generally can not hold, since
all single item patterns have very low support in sparse data, and
any pattern containing more than one item is prone to have the sup-
port of 0 if the dataset follows independence assumption. In this
set of experiments, we set σ = 100 to collect the frequent item-
set patterns, resulting in 998 frequent itemsets. Specifically, all
itemset patterns are closed and non-derivable, which is a common
phenomena on sparse datasets. This also makes the summariza-
tion task more difficult since there does not exist much redundancy
among the itemset patterns.

Figure 7a presents the summarization quality as we vary the er-
ror tolerance thresholds. Note that since that all itemsets are non-
derivable, there is no separate results for non-derivable itemsets
here. From the figure, we see that the independence assumption
indeed does not hold on this dataset. The restoration error for all
itemset patterns is 57.5%.

From the figure, we see that the probabilistic model based sum-
marization scheme works reasonably well on this dataset. The
restoration error is reasonably low. When we use 283 patterns (less
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Figure 6: Results on the Mushroom dataset:(a)Restoration error (b)Summary size (c)Summarization time

Itemset Size No. of Total Itemsets No. of Skewed Itemsets (Varying δ)
0.10 0.20 0.30 0.40 0.50 0.60

1 35 35 35 35 35 35 35
2 207 78 42 25 11 2 1
3 269 31 19 25 46 40 8
4 23 0 0 0 0 0 1

Sum 534 144 96 85 92 77 45

Table 4: Skewed itemset distribution on the Mushroom dataset when varying error threshold
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Figure 7: Results on the Web dataset:(a)Restoration error (b)Summary size (c)Summarization time

Itemset Size No. of Total Itemsets No. of Skewed Itemsets (Varying δ)
0.10 0.20 0.30 0.40 0.50 0.60

1 104 104 104 104 104 104 104
2 329 287 249 202 160 123 102
3 346 192 108 72 66 47 29
4 168 39 8 7 13 9 11
5 49 1 1 2 0 0 0
6 2 0 0 0 0 0 0

Sum 998 623 470 387 343 283 246

Table 5: Skewed itemset distribution on the Web dataset when varying error threshold



than one third of all patterns, δ = 0.5), the restoration error is
9.62%. When we use 470 patterns (less than half of all patterns,
δ = 0.2), the restoration error is reduced to 3.72%. Furthermore,
the new approach consistently outperforms pattern profile approach
in terms of restoration error. Again, both approaches work much
better than the naive independence model.

Table 5 presents the distribution of the skewed itemsets. The
proportion of the skewed itemsets is relatively high on this dataset,
which is similar to that on the Mushroom dataset. Still we are able
to reduce the numbers of skewed itemset patterns by raising the
error tolerance threshold.

Figure 7b presents the summary sizes with different error tol-
erance thresholds. We see that the summarizations take relatively
much more space on this dataset than that on the Chess and Acci-
dents datasets.

Figure 7c presents the timing performance of the two approaches.
We see on this dataset, the new approach is overall much slower
than the pattern profile approach. This is due to the complexity of
the underlying MRF models. We know that for this dataset, the
proportion of skewed patterns is relatively high, resulting in more
complex models, especially when the error tolerance threshold is
small. Consequently, the summarization becomes much slower.
For example, when the error tolerance threshold of 0.1 is used, the
summarization takes more than 1 hour. In contrast, the pattern pro-
file approach takes less than 10 minutes.

4.6 Results on Approximate Inference Based
Summarization

In this section, we report the results on the approximate inference
based summarization. We focus on the comparison of the summa-
rization quality between the exact inference based summarization
and the approximate inference based summarization. To this end,
we use the approximate inference based approach to summarize the
same collections of frequent itemset patterns as the previous sets of
experiments. We report the results on the Mushroom dataset. The
other results are similar and are thus omitted. Specifically, we set
the sample size to be 4000 and the first 10% of the sample is used as
burn in data when we use the Gibbs sampling inference algorithm.

Figure 8a presents the numbers of itemset patterns in the result-
ing summarizations. As can be seen, the approximate inference
based summarization scheme usually yields more patterns at the
end for the same parametric setting. This is as expected since its
support estimating is not as accurate as that of the exact inference
based summarization scheme. Consequently there will be more
skewed itemsets identified and placed into the model during the
summarization. But we see that the difference is not significant.

Figure 8b presents the restoration errors of the approximate in-
ference based summarizations. As seen, the approximate inference
based scheme usually yields larger restoration errors, which is as
expected. But overall, the approximate inference based scheme
still yields reasonably good summarizations. It significantly out-
performs the pattern profile approach.

The approximate inference based summarization scheme takes
hours to finish. It’s worth pointing out that on these datasets, there
is no need to use the approximate inference based summarization
scheme. It yields worse summarization using much more time.
However, we just want to show that the approximate inference based
summarization scheme can yield comparable summarizations as
that of the exact inference based summarization scheme. When
the underlying MRF model becomes more complex (the treewidth
becomes larger), we have to use the approximate inference based
summarization scheme, and we are currently pursuing different
approximate inference algorithms besides the Gibbs sampling ap-

proach.

4.7 Result Summary and Discussion
The experimental results have shown that the probabilistic model

based summarization scheme is overall very efficient and effective
in summarizing itemset patterns. In most cases, it outperforms the
pattern profile summarization scheme.

We know that our approach is to summarize itemset patterns by
eliminating redundancy from them. When datasets are dense and
largely satisfy the conditional independence assumption, there usu-
ally exists a large amount of redundancy in the corresponding item-
set patterns in which case our approach will be extremely efficient
and effective. On the other hand, when datasets become sparser
and do not satisfy conditional independence assumption well, the
summarization task will become more difficult for our approach.
As a result, we have to spend more space and time on summarizing
the corresponding itemset patterns.
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Figure 8: Approximate inference based summarization on the
Mushroom dataset (a)No. of patterns after summarization
(b)Restoration error (all patterns)

5. RELATED WORK
There have been significant work on reducing the output size of

frequent itemset mining algorithms. Lossless methods can recover
the exact information of all of the original itemsets. Two repre-
sentative methods are frequent closed itemset patterns and frequent
non-derivable itemset patterns, proposed by Pasquier et al. [17]
and Calders et al. [5] respectively. Lossy methods were developed
in parallel. Gunopulos et al. [9] proposed mining maximum item-
set patterns. Yang et al. [23] and Pei et al. [19] proposed mining
error-tolerant patterns. Han et al. [11] proposed mining Top-k pat-
terns. These methods can further reduce the output size at the cost
of some information loss. Mielikainen and Mannila [14] proposed
an approximation solution to ordering patterns according to their
informativeness. Another related work is a pattern approximation
approach which relies on k frequent (or border) itemsets to cover
the original collection of frequent itemsets [1]. However, it can
only recover the itemset patterns, not their supports.

Recently, Yan et al. [22] proposed a pattern summarization ap-
proach for frequent itemsets. The key notion is pattern profile,
which essentially can be taken as a generalization of closed item-
sets. Specifically, a pattern profile is a triple < a, b, c > where a is
a set of items, b is a distribution vector on these items and c is the
support of the whole pattern profile. A frequent itemset is a spe-
cial pattern profile where the distribution vector entirely consists
of 1.0. Essentially, a pattern profile is a compressed representa-
tion of similar itemset patterns and can be used for summarizing
the itemset patterns. In their proposed summarization scheme, pat-
tern profiles are compared based on their Kullback-Leibler (KL)
divergence between their distribution vectors. The first principle
is that the pattern profiles having smaller KL divergence are more
correlated than that having larger KL divergence. Based on this



similarity measure, the traditional k-means clustering algorithm is
applied to cluster the itemsets into K groups. Then a representa-
tive profile pattern will be identified for each group and used as a
compressed representation for that group of itemsets.

Pavlov et al.’s work on query selectivity estimation on binary
transactional data [18] is also closely related to the work presented
in this paper. They also construct MRF models based on a set
of itemset patterns. However, there are significant distinctions be-
tween the two pieces of work. First, their goal is to estimate query
selectivity. When a queryQwith variables xQ is posed in real-time,
all itemset patterns whose variables are subsets of xQ are picked up
as the distribution constraints. Then an MRF model on xQ is built
in an online fashion. Once the model is ready, any conjunctive
query whose variables are subset of xQ can be answered, including
xQ itself as well. When a new query is posed, a new model has
to be constructed from scratch. This approach is inherently online
and local. In contrast, our goal is to summarize the itemset patterns.
Our MRF model is global in that it contains all the conditional inde-
pendence information known so far. This global character benefits
the accurate support estimations for the itemsets to be summarized.
However, the global character also makes the model learning and
inference much more difficult than that in [18]. For example, learn-
ing global models requires approximate inference engines when the
models become complex.

In parallel there have been significant work on probabilistic graph-
ical models and approximate inference. Besides the sampling tech-
niques used in this paper, variational methods [13, 20, 24, 3, 21, 16]
for approximate inference is a very active research topic. Specif-
ically, the variational methods yield approximations to marginal
probabilities via the solution to an optimization problem derived
from the corresponding inference problem that generally exploits
some of the graphical structure. Mean field methods [13, 20, 21]
and Pearl’s belief propagation (BP) algorithm [15, 24] (when ap-
plied to loopy graphs) are both belonging to this category.

6. CONCLUSIONS
In this paper, we have presented a novel approach for summariz-

ing itemset patterns using probabilistic graphical models – Markov
Random Fields. Our approach relies on probabilistic graphical
models, which exploit conditional independence relations between
the different items in the transactional data to allow a compact rep-
resentation of all itemset patterns. We have tested our algorithm
on several real-world datasets. The success of our approach on all
of these datasets indicates that the conditional independence struc-
ture exploited by our approach is very common, and this is particu-
larly true when dealing with relatively dense datasets, whose dense
structure leads to significant redundancy in mined itemset patterns.
As a result, our approach is a viable option for many real-world
cases.

Our approach has several important advantages. First, the re-
sulting itemset patterns are very easy to interpret and use, since all
of them are frequent itemset patterns as well. Second, the sum-
marization only relies on the information of the itemset patterns
themselves, these is no need to go back and rescan the original
dataset. Finally, interestingly we note that our summarization ap-
proach yields generalized non-derivable itemset patterns.

In the future, we will study the following issues: First, we would
like to summarize truly large-scale collections of itemset patterns
which will result in very complex MRF models. The Gibbs sam-
pling based inference is time consuming, and the detection of con-
vergence is not easy. We would like to borrow some of the ideas
from the probabilistic inference field for our itemset summariza-
tion purpose. For example, we would like to exploit mean field
algorithms and generalized belief propagation algorithms for our
purpose. Second, we would like to integrate both exact and approx-

imate inference engines in the summarization. During the begin-
ning iterations, the exact inference engine will be employed since
the MRF models are not very complex. Once the models reach to
some complexity (by estimating its treewidth), we will switch to
the approximate inference engine. Third, we would like to exploit
summarizing itemsets under the streaming environment, which re-
quires incrementally maintaining the model. Finally, we would like
to look for some real applications on the condensed representation
of itemset patterns.
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