
NemC: A Network Emulator for Cluster-of-Clusters

HYUN-WOOK JIN, SUNDEEP NARRAVULA, KARTHIKEYAN VAIDYANATHAN, AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-2/06-TR26



NemC: A Network Emulator for Cluster-of-Clusters∗

Hyun-Wook Jin† Sundeep Narravula‡ Karthikeyan Vaidyanathan‡ Dhabaleswar K. Panda‡

†Computer Engineering Department ‡Department of Computer Science and Engineering
Konkuk University The Ohio State University

Seoul, 143-701 Korea Columbus, OH 43210
jinh@konkuk.ac.kr {narravul, vaidyana, panda}@cse.ohio-state.edu

Abstract

A large number of clusters are being used in all dif-
ferent organizations such as universities, laboratories, etc.
These clusters are, however, usually independent from each
other even in the same organization or building. To pro-
vide a single image of such clusters to users and utilize
them in an integrated manner, cluster-of-clusters has been
suggested. However, since research groups usually do not
have the actual backbone networks for cluster-of-clusters,
which can be reconfigured with respect to delay, packet
loss, etc. as needed, it is not feasible to carry out practi-
cal research over realistic environments. Accordingly, the
demand for an efficient way to emulate the backbone net-
works for cluster-of-clusters is overreaching. In this pa-
per, we suggest a novel design for emulating the backbone
networks of cluster-of-clusters. The emulator named NemC
can support the fine-grained network delay resolution min-
imizing the additional overheads. The experimental results
show that NemC can emulate the low delay and high band-
width backbone networks more accurately than existing em-
ulators such as NISTNet and NetEm. We also present the
performance evaluation results of MPI applications over
cluster-of-clusters environment using NemC as a case study,
demonstrating the ability of NemC to accurately evaluate
the possible benefits for applications executing over cluster-
of-clusters environments with varying network characteris-
tics.

Keywords: Network Emulator, Cluster-of-Clusters,
High-Speed Backbone Networks, and MPI

1. Introduction

Cluster systems are becoming more popular for a wide
range of applications owing to their cost-effectiveness. A

∗ This research is supported in part by the Faculty Research Fund
of Konkuk University, Department of Energy’s Grant #DE-FC02-
01ER25506, National Science Foundation’s grants #CNS-0403342,
and #CNS-0509452; and equipment donations from Ammasso, Inc.

large number of such clusters are being used in all different
organizations such as universities, laboratories, etc. These
clusters are, however, usually independent from each other
even in the same organization. That is, applications (e.g.,
scientific parallel applications) can run only on a single
cluster and cannot utilize the idle resources of other clusters.
Thus it is highly desired that the clusters in the same orga-
nization provide a single image to users and are utilized in
an integrated manner. As an answer for this requirement, re-
searchers have suggested Cluster-of-Clusters [3, 22], which
aims to construct a cluster combining few or many clus-
ters with high-speed backbone networks. Though this term
can be also referred as Grid, in this paper, we consider it
as a cluster of clusters that geographically distributed in a
small area (i.e., the same organization or building), which is
more tightly coupled system than Grid. This computing en-
vironment will be beneficial to the organizations that want
to fully utilize their clusters providing a single image with-
out exposing the system to the out side.

The cluster-of-clusters environment poses several re-
search challenges including performance, compatibility, se-
curity, authentication, etc. However, before addressing such
research challenges, one of the foremost critical issues is
how to construct the experimental environment of cluster-
of-clusters. Since research groups usually do not have the
actual backbone networks for cluster-of-clusters, which can
be reconfigured with respect to delay, packet loss, etc. as
needed, it is hard to carry out practical research over re-
alistic environments. Accordingly, the demand for an ef-
ficient way to emulate the backbone networks for cluster-
of-clusters is overreaching. Approaches involving simula-
tions and modeling are widely accepted to achieve this
goal [9, 4, 6]; however, this approach has the limitations that
it cannot run actual software (i.e., applications, middleware,
and system software). On the other hand, if we can emu-
late only the backbone networks running actual clusters, it
will provide more realistic environment for the cluster-of-
clusters researches.

Though there are several existing network emulators [7,
12, 18, 19], they are focusing on large scale Wide Area Net-
works (WANs) such as Internet. However, there are many



prominently different characteristics between such WANs
and the backbone networks for cluster-of-clusters. For ex-
ample, the backbone networks usually have a much lower
delay than typical WAN environments though the backbone
networks have a higher delay than the intra-cluster LAN
environments. The emulators that can emulate a millisec-
ond network delay resolution may not be enough to emu-
late the high-seed backbone networks. In addition, the band-
width provided by the backbone networks for cluster-of-
clusters is higher than the WAN case. Hence the emula-
tor should be able to emulate higher bandwidth networks.
To reflect the low delay and high bandwidth characteris-
tics, the packet scheduling mechanism of the emulator has
to support fine-grained delay resolution with minimum ad-
ditional overhead. Most of the existing emulators’ packet
scheduling, however, highly depends on a system timer. If
this timer generates interrupts for every or few ticks to sup-
port fine-grained delay resolution, its handling would cause
a significant overheads. On the other hand, if this timer is
slow, it can only support coarse-grained delay resolution.
Therefore, we need to design the emulator very carefully to
emulate the high-speed backbone networks and this is not a
trivial research challenge.

In this paper, we suggest a novel design for emulating
the backbone networks of cluster-of-clusters. The emulator
named NemC (Network Emulator for Cluster-of-Clusters)
can support the fine-grained network delay resolution min-
imizing the additional overheads. We design a new packet
scheduling mechanism that performs on-demand schedul-
ing, which is independent on any system timers. Also we
minimize the additional overhead by designing it at the
kernel-level to emulate high bandwidth networks. In addi-
tion to the network delay emulation, current implementa-
tion of NemC can emulate packet losses and out-of-order
packets. To the best of our knowledge, no research has fo-
cused on the network emulation for cluster-of-cluster envi-
ronments and NemC is the first emulator to address this.

The experimental results show that NemC can emulate
the low delay and high bandwidth backbone networks more
accurately than existing emulators such as NISTNet [7] and
NetEm [12]. We also present the performance evaluation
results of MPI [10] applications such as NAS [2] and Gro-
macs [5] over cluster-of-clusters environment using NemC
as a case study. The experimental results reveal that NAS
EP can be improved significantly by employing cluster-of-
clusters while other applications such as Gromacs d.villin,
NAS IS, CG, and FT can perform badly over cluster-of-
clusters with high-delay backbone networks.

Rest of this paper is organized as follows: Section 2
briefly overviews the cluster-of-clusters environment and its
emulation as a background. Section 3 suggests a new net-
work emulator for cluster-of-clusters and details its design.
The experimental evaluation of the emulator and example of
its use are presented in Section 4. The related work is dis-
cussed in Section 5. Finally, this paper concludes in Section
6.

2. Emulation of Cluster-of-Clusters

To combine the clusters that geographically distributed
in a relatively small area and utilize them in an integrated
manner, cluster-of-clusters has been suggested. The clusters
in a cluster-of-clusters environment are connected through
high-speed backbone networks as shown in Figure 1.

The ways to connect different clusters can be categorized
into end-node and gateway-based connections. In the end-
node based connection, each node has a direct network con-
nection through switch or bridge to the out side of the clus-
ter. In the gateway-based connection, one or more nodes in
each cluster are designated as gateway nodes which are con-
nected to the out side of the cluster. The gateway can be
also a stand alone network equipment. In this configuration,
all inter-cluster communication needs to be first sent to the
gateway node which will send the data to the remote cluster.
Not only connecting the clusters but also efficient manag-
ing the cluster-of-clusters is a research challenge, which in-
cludes performance, compatibility, security, authentication,
and management policy.

As we have discussed in Section 1, having actual cluster-
of-clusters environment is critical but infeasible to most of
research groups. Thus the emulation of cluster-of-clusters
(especially its backbone networks) is a practical solution,
which can provide very close environments to the actual
systems but also can give flexibility to change the system
parameters, such as network delay, packet loss, etc. For the
emulation, a workstation can be configured as a router with
multiple Network Interface Cards (NICs), of which each is
connected to a cluster through either switch or gateway. By
running a network emulation software that generates arti-
ficial network delay, packet loss, etc. on the workstation-
based router we can emulate the backbone networks for
cluster-of-clusters while running actual applications, mid-
dleware, and system software over the clusters in a trans-
parent manner. Thus the emulation can open a way to study
on actual software running on real clusters while the simu-
lation and modeling cannot provide this.

High−Speed
Backbone
Network

Cluster A

Cluster B

Cluster C

Figure 1. Cluster-of-Clusters Environment



3. Design and Implementation of NemC

In this section, we detail the design and implementa-
tion of our network emulator for cluster-of-clusters named
NemC. NemC is implemented using the netfilter
hooks provided by Linux, which can be dynamically in-
serted to the chain of packet processing by a run-time load-
able kernel module, and runs on Linux-based routers. Its
design does not require any kernel modifications. The cur-
rent implementation can generate network delay with
fine-grained resolution, packet drops, and out-of-order
packets.

Figure 2 shows the overall design of NemC. As shown
in the figure, NemC consists of four components: (i) NemC
netfilter, (ii) NemC scheduling daemon, (iii) NemC kernel
module and (iv) user applications. The NemC netfilter in-
tercepts the packets arrived at the router node after the IP
routing decision. Based on the parameters have been set by
the user applications the NemC netfilter performs a packet
drop, generates out-of-order packet, or introduces network
delay. The user applications give the users run-time con-
trol over these parameters. The NemC scheduling daemon
is a user-level process, which requests the netfilter to search
the packets that has been delayed more than desired delay
and reinject them into the network. The kernel module takes
care of insertion of the netfilter in the initialization phase but
also provides access to the internal data structures and pa-
rameters of the NemC netfilter to the scheduling daemon
and the user applications.

The cluster-of-clusters usually have smaller network de-
lays as compared to typical WANs. Thus it is highly de-
sired that the emulator should emulate the delay with fine-
grained resolution. In addition, since the networks between
clusters usually support high bandwidth, the emulator needs
to be carefully designed to avoid becoming a bottleneck
and thereby efficiently emulating high bandwidth networks.
In the following subsections we suggest a novel design to
tackle these issues.

Linux−based Router

IP

Netfilter
Insersion

Network Devices

Routing
Decision

SwitchSwitch

Cluster BCluster A

Packet SchedulingNetwork Parameters

Device Driver

Out−Of−Order Packet
Network Delay

Packet Drop

NemC
User Applications

Netfilter

Scheduling Demon

Kernel Module

Timestamp

Figure 2. Overall Design of NemC

3.1. Packet Scheduling for Fine-Grained Delay
Resolution

The backbone networks for cluster-of-clusters have low
network delay compared to general WANs such as Internet.
To emulate such networks the emulator is required to sup-
port fine-grained delay resolution. The delay resolution of a
network emulator is mainly decided by the triggering mech-
anism of packet scheduling. The packets delayed more than
the given time, net delay, at the router node are reinjected
into the network by the packet scheduling routine. The most
widely used mechanism to trigger the packet scheduling is
to invoke the scheduling routine for every timer interrupt.
This mechanism is simple to design and implement; how-
ever, since it depends on the system timer resolution, it may
not be able to support fine-grained delay resolution. For ex-
ample, if the network emulator uses Linux timer then it can
support only 10ms (with kernel version 2.4) or 1ms (with
kernel version 2.6) delay resolution, which is too coarse-
grained to emulate the backbone networks for cluster-of-
clusters. On the other hand, if the network emulator directly
uses a hardware timer in the system, the interrupt can be
generated too much frequently and actual packet process-
ing can get delayed.

To overcome these limitations of the timer based mech-
anism, we suggest the on-demand packet scheduling mech-
anism. In this mechanism, the packet scheduling routine is
triggered by either new arrived packet or scheduling dae-
mon. That is, whenever there is a new packet arrived at the
router node, it triggers the packet scheduling routine, while
the user-level scheduling daemon keeps on trying to invoke
the packet scheduling routine if there is no packets wait-
ing to be processed in the protocol stacks and the system
is idle. It is to be noted that the user-level scheduling dae-
mon has lower priority than the kernel-level packet process-
ing context. Thus, if packets arrive at the router node in a
bursty manner the scheduling routine will be invoked very
frequently by those packets. On the other hand, if packets
arrive intermittently then the user-level daemon will con-
tinuously trigger the packet scheduling. In this manner, we
can trigger the scheduling routine as much as possible (i.e.,
in a fine-grained mode) without any affection to the actual
packet processing of the protocol stacks. In this mechanism,
since both newly arrived packets and the user-level daemon
invoke the scheduling routine, which accesses the same data
structures in the NemC netfilter, we guarantee that only one
can access the data structures at a time by locking.

We use the time stamp in the sk buff data structure of
the Linux kernel to calculate the total time duration spent
by the packet in the router node. Though this time stamp
can be set by either NIC’s interrupt handler or bottom half,
most of current NIC device driver implementations set this
field in the interrupt handler. We can also consider to uti-
lize the time stamp in the TCP option header, which is usu-
ally used to estimate the round trip time for the TCP con-
gestion control. Since this time stamp has been generated



in the sender side, if we calculate the time difference be-
tween sender and emulator node for the connection estab-
lishment phase, we can use this value to figure out how long
the packet has been stayed in the network. Unfortunately,
this time stamp usually has a millisecond resolution. There-
fore, this cannot support the desired fine-grained delay reso-
lution. Moreover, only TCP packets include the time stamp
value in their header. Thus this mechanism cannot work for
other protocol’s packets (e.g., UDP packets).

3.2. Low Overhead Emulation for High Band-
width Support

Another important characteristic of the backbone net-
works for cluster-of-clusters is high bandwidth. To emulate
the high bandwidth networks, we need to address several
critical issues, which can be summarized into three: i) de-
lay cascading, ii) emulation overhead, and iii) scheduling
priority.

If an emulator holds a packet for a given time to add a
delay without yielding the CPU resource, this delay will be
cascaded to the next packets that have been already arrived
at the router node. For example, if an emulator is imple-
mented as a high priority kernel-level process and polls the
timer occupying the CPU resource, the delay can be cas-
caded to the next packets. To avoid this delay cascading
problem, we queue the packets that need to be delayed into
a doubly linked list and immediately return the context to
the original routine. The packets queued are re-injected by
the packet scheduling mechanism described in Section 3.1.

If the overhead involved in the network emulation is sig-
nificant, the emulator reduces the bandwidth between the
clusters in the experimental systems, which is a undesired
side effect. Broadly, the emulator can be implemented at the
user-level or the kernel-level. The user-level emulation re-
quires two data copies between user and kernel buffers for
each packet. This copy operation is a well-known bottle-
neck of packet processing [13]. Hence, our network emula-
tor is designed at the kernel-level to prevent any additional
data copy.

Due to the high bandwidth link of the backbone net-
works, the packet arrival rate can be drastically high. Thus
it is important that the actual packet processing in the proto-
col stacks has to be retained without affection by the emula-
tor. Otherwise, the packet processing gets delayed, packets
are accumulated in the router node, and following packets
are dropped due to the lack of system resources (e.g., mem-
ory). It is to be noted that this drop is not intended by the
emulator for the purpose of network emulation. To prevent
this packet drop, we assign a lower priority to the schedul-
ing daemon than the actual packet processing routines. In
this case, though the scheduling daemon may not invoke
the packet scheduling in time, we still can trigger the packet
scheduling and satisfy the requirement for the fine-grained
delay resolution because newly arrived packets also invoke
the packet scheduling as described in Section 3.1.

3.3. Packet Drop

Since the backbone networks for cluster-of-clusters can
use store-and-forward networks also there can be packet
drops because of network congestion. To emulate such case,
we generate packet drops based on the packet drop rate
value, drop rate, given by a NemC user application. NemC
chooses a packet randomly for every drop rate packets and
simply drops this packet freeing all the resources occupied
by this packet.

3.4. Out-of-Order Packet Generation

Out-of-order packets can occur in cluster-of-clusters due
to multi-path and adaptive routing. To emulate such case,
we generate out-of-order packets using a given out-of-order
packet generation rate, ooo rate, and a delay for out-of-
order packets, ooo delay. These values are set by a NemC
user application. It is guaranteed that the value of ooo delay

is always larger than that of net delay. NemC chooses a
packet randomly for every ooo rate packets and delays this
packet as much as ooo delay. Since this packet has been
delayed more than other packets it becomes an out-of-order
packet if the packet interval between this packet and the next
is smaller than ooo delay.

4. Experimental Evaluation of NemC

Figure 4. Performance Comparison of Band-
width with Varying Network Delay

In this section, we describe our experimental methodol-
ogy. We provide the details of our testbed in Section 4.1.
Section 4.2 compares our network emulator NemC with
popular existing network emulators and evaluates the bene-
fits of NemC. In Section 4.3, we outline the overall usage of
NemC and we demonstrate the main uses of NemC. Since
it was difficult to connect our clusters through a real back-
bone network, in this paper we could not compare the em-
ulated results with real results. We intend to show the com-
parison in future work.



0.0
500.0

1000.0
1500.0
2000.0
2500.0
3000.0
3500.0
4000.0
4500.0

0 100 200 400 800 1600
Network Delay (us)

La
te

nc
y 

(u
s)

NemC NISTNet Netem

Figure 3. Latency: (a) Comparison with Varying Network Delay (b) Fine-Grained Network Delay

Figure 5. TCP Flow Analysis for (a) NemC and (b) NISTNet

4.1. Experimental Testbed

For all our experiments we used two clusters whose de-
scriptions are as follows:

Cluster A: A cluster system consisting of 4 nodes built
around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 KB L2 cache and a 400 MHz front side bus and 512 MB
of main memory. We used the RedHat 9.0 Linux distribu-
tion.

Cluster B: A cluster system consisting of 4 nodes
built around SuperMicro SUPER X5DL8-GG mother-
boards with ServerWorks GC LE chipsets which include
64-bit 133 MHz PCI-X interfaces. Each node has two In-
tel Xeon 3.0 GHz processors with a 512 KB L2 cache
and a 533 MHz front side bus and 512 MB of main mem-
ory. We used the RedHat 9.0 Linux distribution.

The nodes are connected with Ammasso Gigabit Ether-
net interface cards. The software (SDK) version used is 1.2-
ga2. These cluster nodes are internally connected with Net-
gear GS524T Gigabit Switches. As shown in Figure 2 these
switches are connected each other through the workstation-
based router that is similar in configuration to Cluster B
nodes’. This router node runs NemC to emulate the back-
bone networks.

Latency is and bandwidth is measured using the nttcp

Version-1.47. We have used the MPI [10] library MPICH
Version 1.2.7p1 [11] for our application level case study.
Gromacs Version 3.3 [5] and NAS Version 2.3 [2] are used
for MPI applications.

4.2. Microbenchmarks

In this section, we compare NemC with existing emula-
tors such as NISTNet [7] and NetEm [12]. We measure the
latency and the bandwidth with nttcp varying the emu-
lated network delay. Since the focus of the paper is the fine-
grained network delay emulation for cluster-of-clusters we
do not include the experimental results for packet drop and
out-of-order packet cases.

Figure 3(a) shows the 512B message latency between
two nodes in different clusters, Clusters A and B, while
emulating the network delay using NemC, NISTNet, and
NetEm. We vary the network delay from 0µs to 1600µs. As
we can see in the figure, NetEm shows almost constant la-
tency regardless of the expected network delay. Also this la-
tency is much higher than the given delay. It is because the
packet scheduling of NetEm uses the Linux system timer,
which has milliseconds timer resolution. Hence, it cannot
generate the fine-grained network delay. On the other hand,
NemC and NISTNet generate the network delay very close
to the given delay value.

To closely look at NemC and NISTNet, we measure the



512B message latency again with finer network delay val-
ues. Figure 3(b) presents the results. We can observe that
NISTNet shows interestingly the almost same latency for
100µs and 150µs delay values. We can observe the same
trend with 200µs, 250µs, and 300µs delay values. It is due
to the fact that NISTNet uses the MC146818 real-time clock
for the packet scheduling of which the tick resolution is ap-
proximately 122µs. Therefore, it cannot support finer net-
work delay resolution than 122µs. On the other hand, as we
can see in the figure, NemC is emulating the given delay
values accurately. The reason why we see around 200µs la-
tency with 100µs network delay is because of the default la-
tency between two nodes, which is roughly 100µs.

Figure 4 shows the 512B message bandwidth results be-
tween two nodes in different clusters while emulating the
network delay using NemC, NISTNet, and NetEm. Simi-
larly to the latency results, NetEm shows almost the same
bandwidth no matter what delay value has been given. Since
NetEm adds to much delay for small delay values the band-
width is also very low. More importantly, we can observe
that NemC can achieve higher bandwidth (up to 37%) than
NISTNet for small network delay values. The reason why
the bandwidth of NemC and NISTNet drops with larger net-
work delay is that the maximum TCP window size set to
512KB during the test cannot fill the network pipe of which
size increases as the network delay becomes larger. To com-
pare NemC and NISTNet in detail, we execute tcpdump
on the router node, in which the emulator is running, and ob-
serve the behavior of each emulator while performing the
bandwidth test. For this experiment, we have set the net-
work delay into 250µs. The message size is 512B. Figures
5(a) and (b) present a snapshot for 0 to 2ms of NemC and
NISTNet, respectively. The graphs show when each packet
has been arrived at the router node (indicated with empty
circles in the figures) and when it has left (plotted with
filled rectangles in the figures). With these figures we can
clearly see how long the packets have been delayed in the
router node by the emulator. As we can observe in the fig-
ure, NemC emulates 250µs network delay very accurately
while NISTNet adds more than 350µs, which is 40% er-
ror. This is why we see better bandwidth with NemC than
NISTNet in Figure 4.

4.3. Case Study: MPI Applications over Cluster-
of-Clusters

In this section, we evaluate and analyze the performance
of MPI applications over cluster-of-clusters using our net-
work emulator, NemC. Further, we study the trends shown
by various applications running over cluster-of-clusters
with different delay characteristics. We choose the the fol-
lowing applications as a representative set for evaluation:
(i) NAS (Class B)- EP, IS, MG, CG and FT and (ii) Gro-
macs - d.villin.

Each evaluation is divided into two parts: (i) Execution
on a single cluster (represented by 4x1 in the graphs) and

(ii) execution on a cluster-of-clusters with varying emulated
network delay (represented by the corresponding network
delay in the graphs). Each single cluster contains 4 nodes.
The cluster-of-cluster experiments utilize the nodes of both
the clusters. These are connected as described earlier in Sec-
tion 4.1.

Figure 6(a) shows the performance of EP. The single
cluster execution of EP takes 82.5s. Further, we notice that
the execution times of EP over a cluster-of-cluster do not de-
pend largely on the network delay. Based on this observa-
tion we conclude that the network communication required
by this application is very low and that the application is pri-
marily CPU bound. Performance and Execution time of ap-
plications like EP can hence be improved immensely by uti-
lizing the nodes of cluster-of-clusters. In addition, since the
network delay does not effect the execution time of EP exe-
cuted on cluster-of-clusters significantly, these applications
can benefit even from cluster-of-clusters formed by widely
separated clusters with high network delay.

In Figure 6(b), we observe that the network de-
lay shows a fair impact on the execution times of IS
and MG. The execution times of these applications exe-
cuted on single clusters (50.3s and 24.4s respectively) are
higher than the their execution times with well-connected
cluster-of-clusters (about 30.0s and 16.4s respectively
for network delay of 100µs). This shows that these ap-
plications can perform up to 67% and 48% faster us-
ing the cluster-of-cluster setup. Further, we notice that
the benefit of using cluster-of-clusters diminishes with in-
creasing network delay. Hence these applications can
benefit from running on multiple clusters for network de-
lays up to some extent. Figure 7(a) shows the applications
CG and FT that follow similar execution trends.

Performance of Gromacs - d.villin shown in Figure 7(b)
shows that the single cluster execution of this application
performs significantly better than its execution on cluster-
of-clusters (with all delays). It is to be noted that the y-
axis of this graph is Simulations/Day. Since this application
is highly communication intensive, the execution on more
number of nodes spread over the high delay networks in-
crease its communication overheads heavily. Hence appli-
cations like these can rarely benefit from cluster-of-cluster
systems.

In aggregate, we have demonstrated that our network
emulator NemC can accurately answer the following: (i)
Can a given application execute faster on a cluster-of-
cluster? (ii) What is the maximum network delay that can
sustain this benefit? and (iii) What is the measure of the ex-
tent of benefit possible? The capability of NemC to emulate
fine-grained delay enables us to evaluate and predict these
trends accurately.

5. Related Work

There have been several researches for network emu-
lation. NISTNet [7] and NetEm [12] are the widely em-



0

10

20

30

40

50

60

70

80

90

4x1 0 100 200 400 800 1600

Network Delay (us)

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

Figure 6. Performance of MPI Applications - Single Cluster Vs Cluster-of-Clusters (a) NAS - EP and
(b) NAS - IS, MG

Figure 7. Performance of MPI Applications -Single Cluster Vs Cluster-of-Clusters (a) NAS - CG, FT
and (b) Gromacs - d.villin

ployed network emulators running on Linux systems. How-
ever, these emulators are focusing on how to emulate gen-
eral WANs. Hence fine-grained network delay resolution
was not an important factor to these emulators as shown
in Section 4.2. On the other hand, NemC has been de-
signed carefully to deal with low delay and high bandwidth
network characteristics of cluster-of-clusters. For FreeBSD
based systems, Dummynet [18] and ModelNet [19] have
been suggested. Again, these emulators target large scale
WANs rather than cluster-of-clusters environment.

There are also well designed Grid emulators. For exam-
ple, MicroGrid [16] provides a virtual Grid environment for
Grid applications. Netbed [21] provides integrated access to
simulated, emulated, and wide-area network testbeds. These
emulators are very beneficial to develop and evaluate appli-
cations over large scale Grid environments.

In addition, there are several wireless network emulators.
ONE [1] is a satellite communication emulator running on
Solaris. MOST Emulator [8], Ntrace [17], and Mobile Em-
ulab [15] are also examples of mobile network emulators.
Since mobile networks have different characteristics with
the high-speed backbone networks for cluster-of-clusters,
such emulators are not suitable for the emulation of cluster-

of-clusters environment.
We also have introduced a simple delay generator for

network emulation in one of our previous works to evalu-
ate RDMA over IP [14]. This emulator, however, does not
consider all the design issues discussed in this paper and has
only limited features.

6. Conclusions and Future Work

In this paper, we suggest a novel design for emulating
the backbone networks of cluster-of-clusters. The emula-
tor named NemC can support the fine-grained network de-
lay resolution minimizing the additional overheads. To re-
flect the low delay and high bandwidth characteristics of
the backbone networks, we design a new packet scheduling
mechanism that performs on-demand scheduling, which is
independent on any system timers. Also we minimize the
additional overhead by designing it at the kernel-level to
emulate high bandwidth networks. In addition to the net-
work delay emulation, current NemC implementation can
emulate packet losses and out-of-order packets.

The experimental results clearly show that NemC can
emulate the low delay and high bandwidth backbone net-



works more accurately than existing emulators such as
NISTNet and NetEm. We also present the performance
evaluation results of MPI applications such as NAS and
Gromacs over cluster-of-clusters environment using NemC
as a case study. The experimental results reveal that applica-
tions like NAS EP can be improved significantly by utiliz-
ing cluster-of-clusters. Other applications such as NAS IS,
MG, CG, and FT can show worse performance over cluster-
of-clusters for high-delay backbone networks. Among these
applications, we also notice that NAS MG shows less sen-
sitivity on the network delay as compared to other appli-
cations (i.e., IS, CG, and FT). Performance of Gromacs -
d.villin shows that the single cluster execution of this ap-
plication performs significantly better than its execution on
cluster-of-clusters. On the whole, we demonstrate the abil-
ity of NemC to accurately evaluate the possible benefits
(or lack thereof) for applications executing over cluster-of-
clusters environments with varying network characteristics.

As future work, we plan to add more features such as
generating duplicated packets and statistical generation of
delay. In addition, we intend to evaluate NemC with 10 Gi-
gabit Ethernet [20]. We also plan to evaluate the applica-
tions over a larger system size and compare with real back-
bone network results.

References

[1] M. Allman, A. Caldwell, and S. Ostermann. ONE: The Ohio
Network Emulator. Technical Report TR-19972, Ohio Uni-
versity, August 1997.

[2] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
D. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weer-
atunga. The NAS Parallel Benchmarks. The International
Journal of Supercomputer Applications, 5(3):63–73, 1991.

[3] M. Barreto, R. Avila, and P. Navaux. The MultiCluster
Model to the Integrated Use of Multiple Workstation Clus-
ters. In Proceedings of the 3rd Workshop on Personal Com-
puterbased Networks of Workstations, pages 71–80, 2000.

[4] W. Bell, D. Cameron, L. Capozza, A. Millar, K. Stockinger,
and F. Zini. OptorSim - A Grid Simulator for Studying Dy-
namic Data Replication Strategies. International Journal of
High Performance Computing Applications, 17(4):403–416,
2003.

[5] H. Berendsen, D. van der Spoel, and R. van Drunen. GRO-
MACS: A message-passing parallel molecular dynamics im-
plementation. Computer Physics Communications, 91(1),
1995.

[6] J. Cao. ARMSim: a Modeling and Simulation Environment
for Agent-based Grid Computing. Simulation, 80(4), 2004.

[7] M. Carson and D. Santay. NIST Net: A Linux-based Net-
work Emulation Tool. Computer Communication Review,
33(3):111–126, June 2003.

[8] N. Davies, G. Blair, K. Cheverst, and A. Friday. A Network
Emulator to Support the Development of Adaptive Applica-
tions. In Proceedings of the 2nd USENIX Symposium on
Mobile and Location-Independent Computing, pages 47–56,
April 1995.

[9] K. Fall and K. Varadhan. The NS Manual (Formerly NS
Notes and Documentation), February 2006.

[10] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Version 1.1, June 1995.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-
performance, portable implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[12] S. Hemminger. Network Emulation with NetEm. In Pro-
ceedings of Australia’s National Linux Conference (LCA),
April 2005.

[13] H.-W. Jin, P. Balaji, C. Yoo, J.-Y. Choi, and D.K. Panda. Ex-
ploiting NIC Architectural Support for Enhancing IP based
Protocols on High Performance Networks. Journal of Paral-
lel and Distributed Computing, 65(11):1348–1365, Novem-
ber 2005.

[14] H.-W. Jin, S. Narravula, G. Brown, K. Vaidyanathan, P. Bal-
aji, and D. K. Panda. Performance Evaluation of RDMA
over IP: A Case Study with the Ammasso Gigabit Ethernet
NIC. In Proceedings of Workshop on High Performance In-
terconnects for Distributed Computing (HPI-DC), pages 41–
48, July 2005.

[15] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller,
R. Ricci, and J. Lepreau. Mobile Emulab: A Robotic Wire-
less and Sensor Network Testbed. In Proceedings of the
25th IEEE Conference on Computer Communications (IN-
FOCOM), April 2006.

[16] X. Liu, H. Xia, and A. Chien. Network Emulation Tools
for Modeling Grid Behavior. In Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), May 2003.

[17] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz.
Trace-Based Mobile Network Emulation. In Proceedings of
ACM SIGCOMM ’97, pages 51–61, September 1997.

[18] L. Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. Computer Communication Review,
27(1):31–41, January 1997.

[19] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-
tic, J. Chase, and D. Becker. Scalability and Accuracy in a
Large-Scale Network Emulator. In Proceedings of the Fifth
Symposium on Operating System Design and Implementa-
tion (OSDI), December 2002.

[20] C. Baron L. N. Bhuyan W. Feng, P. Balaji and D. K. Panda.
Performance Characterization of a 10-Gigabit Ethernet TOE.
In Proceedings of the IEEE International Symposium on
High-Performance Interconnects (HotI), August 2005.

[21] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Systems
and Networks. In Proceedings of the Fifth Symposium on
Operating System Design and Implementation (OSDI), pages
255–270, December 2002.

[22] M. Xu. Effective Metacomputing using LSF MultiCluster. In
Proceedings of the 1st International Symposium on Cluster
Computing and the Grid (CCGrid), pages 100–105, 2001.


