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Abstract

A commonly desired feature of large-scale, multi-hop, wireless sensor networks is the ability to recon-

figure them after deployment. This reconfiguration could be as simple as a single parameter change or as

complex as replacement of the entire program. Several protocols have been proposed to enable reconfigu-

ration in wireless sensor networks, many of which use version numbers to distinguish new configurations

from old ones. Due to physical constraints, these version numbers are bounded in size and use wraparound

arithmetic to handle rollover. While this simple scheme works well in the common case, problems may

occur if the nodes in the network have arbitrary version numbers. In this paper, we identify a serious

version management problem in existing reconfiguration protocols. We analyze potential causes of this

problem and its effects on the quality and lifetime of the network. Through extensive simulations and

experiments, we demonstrate the significant likelihood of this problem occurring in practice and measure

its impact. Finally, we provide a solution to this problem using a novel approach to stabilization which we

call Human-In-The-Loop stabilization. Our stabilizing reconfiguration protocol uses local detectors and

correctors that can detect version inconsistencies and prevent their propagation in a timely and efficient

manner, while ultimately allowing the human operator to restore the network to the correct configuration.

Keywords: wireless sensor networks, stabilization, fault-tolerance, reconfiguration protocol, version

management, detectors and correctors
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1 Introduction

The maturation of hardware and software technology in wireless sensor networks has led to deployments

of increasing size, scale, complexity and lifetime over the last few years. Over their extended lifetime,

these large networks are subject to different forms of changes. First, sensor networks are often deployed in

physical environments that change over time. For example, the temperature, moisture or wind conditions

in a region depend on the climate of that region and the current seasonal conditions. Further, wireless

sensor devices themselves undergo changes. For example, the battery levels of sensor nodes may decrease,

thereby leading to changes in sensor sensitivity, communication range, etc. Finally, the programs that

need to run on these sensor nodes may evolve as a result of changing application requirements, protocol

enhancements, bug fixes, etc. Ideally, designers of large scale wireless sensor networks would like to build

protocols, services and applications that can automatically adapt to these changes; however, this is an

especially hard problem. For this reason, most current sensor network deployments are designed using a

baseline application or protocol suite that can be reconfigured over time.

Reconfiguration of a given application can have several forms. In some cases, reconfiguration could

mean changing the values of certain application parameters. Changing the signal-to-noise threshold for

sensor detection, changing transmit power levels or duty cycles of nodes are some examples of parameter

reconfiguration. In other instances, the term reconfiguration could be used to describe replacement of

certain modules within the application. For instance, a signal-processing application for sensing could

replace a low-pass filter with a band-pass one depending on the environmental noise conditions. Existing

systems such as Mate [1], SOS [2], Contiki [3], etc. allow specific sub-components of a program to be

replaced dynamically. In the extreme case, reconfiguration could imply replacing the entire application

itself. Such reconfiguration is required in cases where the previous program is faulty or if the application

requirements change.

Regardless of the type of change involved, existing reconfiguration services and protocols allow a

network administrator to specify new configurations to be run on sensor nodes in the network. They also

ensure dissemination of updates to the desired nodes in the network in a reliable and timely manner.

Trickle [4], MOAP [5], Deluge [6] are some examples of reliable data dissemination protocols that are

used for reconfiguration. All of the above protocols use version numbers to distinguish new configurations

from old ones. Due to physical constraints, version numbers are bounded in size, hence reconfiguration

protocols use wraparound arithmetic to handle rollovers. For example, in a reconfiguration protocol with
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3 version numbers 0,1 and 2; a configuration would be updated from version 0 to 1, then to version 2

and then again to version 0. In the common case scenario where version numbers in the network are

consistent, these reconfiguration protocols can successfully identify and install a new configuration in the

network. However, under certain fault conditions, such as when nodes start executing the reconfiguration

protocol with arbitrary initial version numbers, this property may not hold - in fact the reconfiguration

protocol may not stabilize.

Given that most existing implementations use a large version space – Deluge uses 16-bit version

numbers, thus allowing for 65536 distinct versions – one might be misled into believing that rollovers

would never occur in practice. However, data or message corruption, operator errors and other such

faults could lead to the version numbers in the network being changed to arbitrarily high values, thereby

necessitating rollover.

Experiences From a Real Deployment. In December 2004, as a part of the ExScal [7] experiments,

we deployed over 1000 sensor nodes over a 1.3 km x 300m area in Florida, which remains one of the

largest sensor network deployments till date. During the manufacturing process for these sensor nodes,

the installation of the initial programs in the factory was performed in several small batches, with the

downloading software automatically incrementing version numbers between batches. Consequently, the

sensor nodes which were delivered to be deployed in ExScal had the same initial program but with

different version numbers. To make matters worse, this set of version numbers was such that there was

no single version which dominated all the others (this situation is analogous to having all 3 versions – 0,

1 and 2 – for the 3-version reconfiguration protocol). Unfortunately, since Deluge, the reprogramming

protocol used in ExScal, was non-stabilizing under this fault, network operators in ExScal could not

deploy these nodes and assume the risk of letting them download the same program onto each other

forever. As a result, a manual, cumbersome procedure had to be executed which involved batch-wise

reprogramming of all 1000 nodes with a dummy image having a predetermined version number. During

this procedure, the operators also had to continuously monitor all nodes to ensure that they were re-

initialized to a common version. Our calculations show that in the absence of such a stabilization

procedure, the deployed network would have consumed 2% of its battery life per hour without doing

any useful work due to persistent reprogramming operations involving flash read/writes and message

transmissions. However, this procedure imposed an additional overhead of almost 10% on the entire

human effort in ExScal, thereby motivating this work.
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Contributions. In this paper, we address the problem of version management in sensor network recon-

figuration. Specifically, we identify fault scenarios under which existing reconfiguration protocols fail to

stabilize and analyze the impact of non-stabilization on the quality and lifetime of the network. We also

present a stabilizing reconfiguration protocol to overcome this problem. Our solution introduces a novel

approach of combining autonomous stabilization using local detectors and correctors with stabilization

actions involving the Human-In-The-Loop or the network operator. Our solution has low overheads in

terms of processing, memory and radio and can be easily composed with existing reconfiguration proto-

cols to make them stabilizing. We validate the effectiveness of our proposed solution through extensive

simulations and experiments that highlight significant performance improvements over its non-stabilizing

counterparts.

Organization of the paper. The rest of the paper is organized as follows. We describe the system

model and the protocol used for reconfiguration in Section 2. The problem of non-stabilizing reconfigu-

ration is described in Section 3 along with prior work related to ours which addresses some of the same

issues. We describe our stabilizing reconfiguration protocol in Section 4 along with proofs of correctness.

We compare the performance of the original, non-stabilizing protocols to that of ours through simulation

and experimental results in Section 5 and conclude in Section 6.

2 System Model

Our system consists of two parts – a network of wireless sensor nodes and a framework for reconfiguring

these nodes. In this section, we describe the network and the reconfiguration framework setup that is

assumed in the rest of the paper.

2.1 Network model

We assume a multi-hop wireless sensor network of n nodes. Nodes can join or leave the network at

any time, as would be the case with mobile nodes or nodes that are duty-cycled for power management.

However, we assume that at any time the nodes that are up and running the reconfiguration protocol

form a connected network.

We assume that wireless links between neighboring nodes are reliable. Although this is a strong

assumption, experimental studies such as the one by Zhao and Govindan [8] have shown that there

exists an inner-band radius for sensor nodes in which the packet reception probability is uniformly high.
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It has also been shown that the per-hop reliability of wireless links can be substantially improved by

mechanisms such as explicit or implicit acknowledgements with retransmission, TDMA scheduling, [9–11]

etc. We define the diameter D of the network to be the maximum number of hops needed for a message

originating at any node to reach all other nodes in the network.

2.2 Reconfiguration Framework

Configuration. Associated with each node in the network are one or more configurations. As discussed

in Section 1, a configuration can be of several forms such as a parameter, a module or a program. For

simplicity, we assume that all nodes in the network share the same configuration, although our results

also apply to networks with multiple configurations per node or where groups of nodes have different

configurations.

We denote a configuration as C which represents a block of data that is stored on each node in the

network. Each configuration C is associated with a version number V and meta-data M , such as a

CRC or hash value which is different for different configurations. The configuration of a network can be

updated by downloading a new configuration on all nodes in the network – this is the reconfiguration

problem.

Reconfiguration. Reconfiguration consists of replacing an existing configuration C in the network with

a new configuration C ′. The reconfiguration service is specified by the following interface – reconfigure(C ′,

M ′, V ′) – where C ′ is the new configuration, M ′ is its associated meta-data and V ′ is the version number

for this configuration. Intuitively, a reconfiguration invocation will succeed in replacing the existing

configuration C having version V with the new C ′ if V ′ > V .

We assume a reconfiguration system with 3 versions – 0, 1 and 2 – in which newer versions are

distinguished from older ones according to the following update rules – (i) version 1 > version 0, (ii)

version 2 > version 1 and (iii) version 0 > version 2. It can be easily seen 3 versions are necessary to

identify new configurations correctly because a 2-version protocol would have update rules – (i) version

1 > version 0 and (ii) version 0 > version 1 – leading to non-determinism.

Remarks on Version Update Rules. A common generalization of the update rules assumed in this paper

to an N-version system, which is used in Trickle, Deluge and other reconfiguration protocols, is the use

of a sliding window of size N/2. Under this scheme, version v2 is newer than v1 if (v2 - v1) mod N < N/2.

Actual implementations of such schemes often use signed integers with normal arithmetic operations.
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We use positive integers with wraparound for simplicity of presentation.

Update Protocol. Any practical reconfiguration protocol must be reliable and execute in bounded

time. Reliability implies that starting from a correct initial state, the reconfiguration protocol updates

all nodes in the network and does not leave the network in an inconsistent state. Bounded time execution

implies that nodes propagate configuration updates in bounded time. Since the up nodes in the network

are connected, the total time in which an update is propagated in the entire network is also bounded,

although this bound is a function of the diameter of the network.

We consider two variants of a canonical periodic broadcast based reconfiguration protocol as shown

in Figure 1. In both variants, each node advertises its version data at a random instant in each interval

of time T (Action A1). Neighboring nodes that hear this advertisement can then update their state

if they have an older version (Action A2). The only difference in variant 2 is that if a node hears

that a neighbor has an older version, it broadcasts its own data to enable its neighbor to catch up

faster (Action A′2). Thus, from a steady state, if a new version is introduced in the network, variant 2

propagates it more aggressively. Also, once every node has acquired the update, the protocol falls back

to the slower broadcast rate. Since the second variant subsumes the actions of the first, we will restrict

subsequent protocol presentations to this variant, except when we evaluate and compare the performance

and stabilization properties of the two variants. Note that the {>,<} operators in the protocol follow

the version update rules described earlier.

Protocol PeriodicBroadcast
Const T : integer
Var vnum : integer

m : message
Actions

〈A1〉 :: Timer.fired
[kT..(k+1)T ]−→ broadcast m(vnum)

[]

〈A2〉 :: rcv m(v) −→ if (v > vnum) vnum := v fi
[]

〈A′2〉 :: rcv m(v) −→ if (v > vnum) vnum := v
elseif (v < vnum) broadcast m(vnum) fi

Figure 1. A canonical periodic broadcast based reconfiguration protocol

It can be easily seen that this protocol satisfies our assumptions of reliability and bounded latency.

Specifically, since each node continually broadcasts its version number and the network is connected,

a new version will eventually propagate in the entire network. Further, since a node is guaranteed to
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broadcast its version data at least once every interval, this propagation will complete in bounded time.

This protocol is similar to the update protocol used in Mate, Deluge and SOS, among others, with only

minor differences in the exact timing parameters of the various actions.

It should also be noted that the protocol actions presented above only deal with updating the version

information in the network during reconfiguration. Upon updating its state after learning of a newer

version in the network, a node initiates a download phase to get the actual configuration associated with

this version.

2.3 Rate of Updates

We assume a bounded rate of invocation for the reconfiguration protocol. Specifically, we require that

the time interval between successive updates must be at least 2D×T where T is the broadcast interval

in the update protocol and D is the diameter of the network. As we shall see later, this rate of updates

corresponds to the worst-case convergence time of the reconfiguration protocol.

3 The Problem of Non-stabilizing Reconfiguration

In this section, we describe a problem that may occur in the reconfiguration protocol presented above,

under certain fault conditions. This problem occurs due to the cycling or non-convergence of version

numbers in the network. One of the properties of the reconfiguration protocol presented in Figure 1 is

that starting from a good state, i.e. one in which all nodes have the same version number v, executing

the protocol with a new version update v′ such that v′ > v will result in all nodes eventually acquiring

the new version v′. However, an important question now arises: how does this protocol behave when

started from, or somehow driven into a bad state, i.e. one in which not all nodes have the same version

number. In particular, we focus on the problem of stabilizing from a global state in which all 3 version

numbers exist simultaneously in the network.

Figure 2 illustrates this problem in a 4-node network which has initial state as shown in (a). The ∗
symbol next to a node indicates that it will transmit next in the given interval and the edges connecting

the nodes indicate wireless connectivity. As shown in the figure, after nodes 0, 1, 2 and 3 transmit in

that order (Figure 2(b)-(e)), the network reaches a state in which all 3 version numbers still exist in the

network. In fact, if this same sequence of broadcasts takes place in each interval, the version numbers will

never converge. It can be argued that due to the random choice of the transmission instant in an interval
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Figure 2. Cycling of version numbers during reconfiguration

for each node in action A1 of the protocol presented earlier, it is very unlikely that such a worst-case

sequence can be obtained forever, and that the version numbers will eventually stabilize. However, the

same argument may not hold for a much larger network in which nodes have arbitrary numbers to begin

with, and in fact the version numbers may indeed keep cycling in the network forever. In general, such

a scenario may occur if there exist at least 3 distinct version numbers in the network such that no one

version is newer than all of the others. We call such sets of version numbers as inconsistent.

Definition. A set S of distinct version numbers is defined to be inconsistent if no element of S is newer

than all other elements of S. Formally,

S is inconsistent ≡ (@x : x ∈ S : (∀y : y ∈ S ∧ x 6= y : x > y))

Again, recall that the > operator follows the version update rules listed earlier.

3.1 Causes of Non-stabilization

In this subsection, we present some of the reasons due to which a reconfiguration protocol may enter a

globally inconsistent state in which version numbers cycle through the network and may never stabilize.

1. Operator errors. Reconfiguration protocols are often designed under the assumption that only

one operator or node initiates configuration updates. However, this is not always the case in

practice. Large scale networks are often administered by several operators who manage different

regions of the network at the same time. A common scenario in such networks is one where

conflicting updates are initiated by multiple network operators. Alternatively, the same human

operator may also mistakenly initiate multiple updates in an unsafe manner. As illustrated by the
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ExScal experience in Section 1, an operator could also initialize the network in an arbitrary manner,

leading to non-stabilization.

2. Transient corruption. One of the main challenges in wireless sensor networks is the severely

constrained nature of node and network resources. Sensor nodes have limited processing capability,

memory and battery power - all of which serve as potential sources of data corruption. Configu-

ration updates, which are communicated as messages over the wireless channel, may be subject to

corruption either due to undetected packet corruptions due to collisions or accidental buffer over-

writes within the send/receive messaging stack in a node. Often, nodes store critical information

such as version numbers and configuration updates in non-volatile memory such as flash to sur-

vive crashes and reboots. However, flash read/write operations may fail or return garbage values

when operated under insufficient battery power. These and other such factors could result in the

transient corruption of data within one or more nodes in the network, thereby producing globally

inconsistent configuration sets.

3. Network dynamics. Wireless sensor networks are often deployed in harsh physical environments

in which they may be subject to loss of radio connectivity and network partitioning effects. Often,

subsets of wireless nodes enter a low-power sleep state for power management. Thus, under changing

connectivity conditions, a sleeping node may not receive a wake-up message and may therefore miss

subsequent configuration updates. Another possible scenario may occur in solar-powered networks

wherein some nodes only intermittently join the network because they are deployed in sunlight-

denied areas. Mobility also introduces a new challenge where nodes from a different region of the

network or perhaps from another network join the network. Under all of the above conditions,

the network could be left in a state where different nodes or regions of nodes in the network have

different configurations, forming a globally inconsistent set.

3.2 Self-stabilization and Related Work

In his seminal paper [12], Dijkstra defined a self-stabilizing protocol as one which starting from an

arbitrary state, converges to a legitimate state in finite time. In [13], Katz and Perry describe a reset

scheme based on a global snapshot by a central leader to achieve self-stabilization. In [14], Arora and

Gouda describe a distributed reset protocol where nodes can locally initiate reset requests which are

processed along a self-stabilizing spanning tree structure. In [15], Awerbuch et al. present a generalized
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reset protocol for arbitrary graphs which uses local checking and correction to achieve self-stabilization.

In [16], Awerbuch et al. extend this idea to deal with problems that can be locally checked but require

global correction to achieve self-stabilization.

Our work, though closely related, differs from those described above in two key aspects. First, we

assume a wireless network model where we do not assume unique identifiers for nodes and neighbor

links in the connectivity graph. The second difference is that in our problem, we cannot achieve self-

stabilization without the involvement of an external user - the Human-In-The-Loop.

Proposition 1. There does not exist a self-stabilizing reconfiguration protocol with bounded version

numbers.

The ideal invariant (or legitimate state) for a reconfiguration protocol can be stated as:

Every node in the network has the most recent configuration.

To be self-stabilizing, a reconfiguration protocol should converge to this invariant state on its own.

However, in the presence of an inconsistent set, it is not possible for any node or group of nodes in the

network to decide which version number is most recent due to their bounded size and rollover properties.

Further, there may even be multiple configurations that share the same version number due to rollover.

We therefore contend that a reconfiguration system with bounded version numbers cannot self-stabilize

to the ideal invariant stated above.

We therefore break down the stabilization process into two phases. In the first phase, we require the

reconfiguration protocol to guarantee convergence to the following weaker invariant:

Every node in the network has the same configuration.

We leave the choice of deciding which configuration is the most recent one to the Human-In-The-Loop

and present an external reset mechanism to achieve convergence to the ideal invariant.

Despite not being fully self-stabilizing, a reconfiguration protocol that guarantees the weaker invariant

presented above is quite useful in practice. Recall from Section 2.2 that reconfiguration involves not

only identifying which configuration is the latest but also actually obtaining that configuration from

neighboring nodes. An epidemic reprogramming protocol such as Deluge, for instance, keeps trying

to download the entire program from neighbors that advertise a newer version. Thus, as long as the

advertised version numbers do not stabilize, nodes will continue to expend valuable resources such as

processing, radio and battery thereby resulting in degraded performance and reduced lifetime of the

network. Even if this cycling problem is detected by a network operator, there is no version number
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that the operator can download to break the cycle. However, if we guarantee stabilization to the weaker

invariant, then once the protocol stabilizes to a single version, the operator can inject a higher version

to update all the nodes.

4 A Stabilizing Reconfiguration Protocol

In this section, we present a stabilizing solution to the reconfiguration problem discussed above. Our

solution uses local detectors and correctors to guarantee convergence to the weaker invariant without

imposing any additional communication or coordination overhead. We also present an external reset

mechanism initiated by the Human-In-The-Loop to achieve strong convergence.

4.1 Local Detection and Correction

We first prove that the existence of a stable inconsistent set in the network can be detected locally in a

bounded time. By stable, we mean an inconsistent set that does not converge before it can be detected.

For sets that converge before they can be detected using our algorithm, stabilization is trivially achieved.

We also prove consistency of our detectors by showing that local detection at a node implies the existence

of an inconsistent set within a bounded computational history. Our detector thus does not generate any

false assertions.

Recall that for our canonical 3-version reconfiguration protocol, the only inconsistent set possible is

{0,1,2}, each node broadcasts its version data at least once every T seconds and that n is the number of

nodes and D is the diameter of the network.

Theorem 1 (Completeness of local detection). For every computation starting from a state where an

inconsistent version set exists in the network, and in which this inconsistency persists during the entire

computation, there exists at least one node with an inconsistent set of versions in its local computation

history within an interval D×T.

Proof. We first show that at least one node detects the inconsistency locally. Assume for contradiction

that this does not hold. This implies that each node in our 3-version system can assume at most 2

distinct versions in the given computation implying that its version number can change at most once.

To achieve the contradiction we show that the total number of version changes in the network is a

monotonically increasing function. Since an inconsistent set exists in the network, there must exist at
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least one neighbor pair with different version numbers. It therefore follows from the protocol actions that

in the next interval, at least one of these nodes must change their version number. Since the inconsistent

set persists, the number of version changes exceeds n at some point implying that at least one node

undergoes two version changes, thereby contradicting our assumption.

We now prove that the version history of at least one node contains an inconsistent set within an

interval D×T. Since inconsistency persists in the network, there must be at least two nodes with different

version transitions enabled in the initial state. This is because if all nodes have no transitions or the

same transitions enabled, it implies that the network has converged or will converge in the next interval.

Without loss of generality, consider two nodes n1 and n2 that undergo transitions 0 → 1 and 1 → 2

respectively. Consider the shortest path between n1 and n2 and consider the immediate neighbors of n1

and n2 along this path (n′1 and n′2 respectively). In the next interval, n1 and n2 will either be dominated

by their neighbors, dominate them or discover them to be the same. If either of n1 or n2 is dominated

in the next interval, we immediately have the witness that locally detects the inconsistency. If n1 or n2

dominate their neighbors then we now have the same transitions occurring at nodes n′1 and/or n′2 and we

can carry out the same proof for these new node pairs which are at least one hop closer to each other than

the original pair. Finally, we have the case where n1 and n2 are the same as their neighbors. However,

since n1 and n2 had different versions to begin with, this symmetry will be broken at some point along

the path. Also, since the path between n1 and n2 can have length at most D, this symmetry-breaking

will take place in D×T time which means that at least one node along this path will undergo more than

one transition in a window of time D×T, leading to an inconsistent set in its local history.

Theorem 2 (Consistency of local detection). In any computation with correct protocol invocation, if

the local history for the last D×T time at any node contains an inconsistent set, there must exist a global

state with an inconsistent set within a finite history of 2D×T in this computation.

Proof. Consider that a node whose local history at time t contains an inconsistent version set in the last

D×T time. This implies that this node assumed all 3 versions at some point in the interval [t-D×T .. t].

Without loss of generality, assume that the version observed by the node at time t is version 2. This

scenario is depicted in Figure 3.

From the rate assumption in Section 2.3, we know that there can be at most one reconfiguration

invocation in the interval [t-D×T .. t]. If there was no invocation in this interval, no new versions could
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Figure 3. Consistency of local detection

be added to the network after time t-D×T. Thus, if this node assumed versions 0,1 and 2 in this interval,

they must all have been present in the network at time T-D×T, thereby proving the theorem. Now

consider that there was one invocation in this interval. Again, without loss of generality, assume that

this invocation was for version 2 as shown in the figure. This now implies that at time t-D×T, versions

0 and 1 must have been present in the network to be assumed by the node later. Now consider the time

interval [t-2D×T .. t-D×T]. According to our rate assumption, there could not have been any invocations

after time t’-2D×T as shown in the figure, hence there was no invocation and now new versions added

during this interval. This now implies that versions 0 and 1 must have been present at time t-2D×T.

However, if these were the only 2 versions present in the network at time t-2D×T, we know that they

must have converged before time t-D×T. This is a contradiction.

Having proven the completeness and consistency of local detection, we now present the following

algorithm that performs local detection and correction. We augment the original set of version numbers

with a special version number, φ, which indicates a special reset state and the update rules with the

condition ∀i : i ∈ {0, 1, 2} : φ > i. Also, we update A′2 from the original protocol with a set of special

actions for local detection and correction. This modified action DCA′2 of the original protocol shown in

Figure 4 guarantees stabilization to the weaker invariant described in Section 3.

Again, it should be noted that the {>,<} operators follow the version update rules described earlier.

As seen from the stabilizing protocol action, each node maintains a log of observed version numbers and

the local time at which each version was observed. We require only a local clock value that is easily

accessible in all hardware platforms and do not assume any global clock synchronization. During each

version change, a node checks its logs for versions assumed in the last D×T time. If an inconsistent set

is detected, the node executes a local correction action of resetting its version to φ. Additionally, the

node also resets its logs and its configuration C. From the original protocol action A1, we know that
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Const NumV er : integer
D : integer

Var log[] : integer × real
hist[] : integer
curr time : real

Actions

〈DCA′2〉 :: rcv m(v) −→ if (v > vnum)
curr time := get Local T ime();
hist[] := get V ersion History(log , curr time−D×T , curr time);
if is inconsistent(hist[])

vnum := φ;
clear log();

else
vnum := v;
log := log ∪ (v , curr time); fi

elseif (v < vnum) broadcast m(vnum) fi

Figure 4. Stabilizing reconfiguration using local detection/correction

this node will now periodically broadcast version φ and since φ dominates all other versions, every node

in the network will switch to a null configuration with version φ within time D×T. Since we know, from

Theorem 1, that an inconsistent set either converges or is detected by at least one node within D×T

time, we can prove the following theorem for this stabilizing action.

Theorem 3 (Local Stabilization). Starting from an arbitrary state, every execution of the locally sta-

bilizing reconfiguration protocol stabilizes to a state where all nodes have the same value within time

2D×T.

4.2 Correction using Human-In-The-Loop

The protocol actions described in the previous subsection guarantee local stabilization to the weak

invariant that all nodes eventually have the same version number. Since the version φ dominates all

other versions, this condition is stable. An alternate approach to local stabilization could be one in

which versions present in the network are monitored by collecting a global snapshot using network

querying protocols such as SNMS [17]. However, experimental studies [18] have shown that global state

collection in large scale networks may only be about 50% reliable. It is therefore quite likely that a single

global snapshot collected by an operator may miss the inconsistency in the network. The operator would

thus have to continuously query and monitor the network - an energy expensive solution. However, since

our local detectors/correctors reset the version number to φ which is then propagated in the rest of the

network using the reliable update protocol itself, the operator can easily learn about the inconsistency
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by querying only its local neighborhood. Our approach thus does not require any additional messages to

be sent and also eliminates the need for global querying making it energy efficient.

Upon learning of the inconsistent state in the network, the Human-In-The-Loop or the operator can

take steps to restore the network to the ideal invariant by re-downloading the latest configuration update

in the network. Before doing this, the operator may also choose to wake up nodes that may be in low

power sleep states to avoid inconsistencies that may arise in the future.

Stabilizing Reset. In the state where all nodes have version φ, the operator cannot successfully

download a new configuration with any version since all nodes will reject the update due to the dominance

of φ over other versions. To enable the operator to restore the network to the ideal state, we modify

the original interface exposed to the operator to include a special reset operation. The purpose of the

reset operation is to restore the network to a consistent state from which new configurations can be

downloaded. To guarantee stabilization even in the presence of multiple initiating operators, nodes use

the policy of updating their version to the predetermined value 0 upon receiving a reset. Also, a reset

is a one-time operation as opposed to an epidemic one and it terminates when every node forwards the

reset message once. Note that a one-time forwarding of the reset message is sufficient because of our

assumption of a connected network with reliable links. A simple way of relaxing this assumption is to

forward each reset message k times. When the reset operation terminates, all nodes have version 0 and

the operator can now restore the network by downloading the correct (most recent) configuration with

version 1.

During the propagation of a reset operation, a node which has received a reset message and updated

its version to 0 may roll back to a different version if it hears an advertisement from a neighbor that

has not yet received the reset. To guarantee stabilization, we require that after receiving the first reset

message, a node ignores all advertisements for a bounded time δ. This δ time bound is a function of the

time taken for the reset to propagate in the network. We can thus prove the following theorem about

the reset operation.

Theorem 4 (Stabilizing Reset). Starting from an arbitrary state, executing the reset operation results

in a stable state where all nodes have version 0 in bounded time.

The complete stabilizing reconfiguration protocol is presented in Figure 5. The local detection and

correction action is denoted as DCA′2 while the reset operation is represented in action RA3.
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Protocol StabilizingPeriodicBroadcast
Const T : integer

NumV er : integer
D : integer
δ: real

Var vnum : integer
m : message
log[] : integer × real
hist[] : integer
curr time : real
reset start time : real
sent reset : boolean

Actions

〈A1〉 :: Timer.fired
[kT..(k+1)T ]−→ broadcast m(vnum)

[]

〈DCA′2〉 :: rcv m(v) −→ curr time := get Local T ime();
if (curr time − reset start time < δ)

skip;
elseif (v > vnum)

hist[] := get V ersion History(log , curr time−D×T , curr time);
if is inconsistent(hist[])

vnum := φ;
clear log();
sent reset := FALSE;

else
vnum := v;
log := log ∪ (v , curr time); fi

elseif (v < vnum) broadcast m(vnum) fi
[]

〈RA3〉 :: rcv m(reset) −→ reset start time := get Local T ime();
vnum := 0;
if (sent reset = FALSE)

sent reset := TRUE;
broadcast m(reset);

fi

Figure 5. The stabilizing reconfiguration protocol

5 Performance

In this section, we present results from both simulations and experiments that measure the likelihood

of non-stabilization of the canonical reconfiguration protocols in reasonable time, its impact on network

performance and also the effectiveness of our local detectors and correctors in achieving stabilization.

5.1 Setup

We used the TOSSIM [19] simulator to simulate the two canonical protocols described in Section 2.2.

By appropriately choosing link reception probabilities, we created a regular grid topology for our simu-

lations in which each node could communicate only with its four grid-neighbors (left, right, above and
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Figure 6. Performance evaluation.

below). Our experimental setup consisted of 105 XSM [20] sensor nodes deployed in a 15x7 grid in the

indoor Kansei [21] testbed with 3 ft grid spacing. We used a very low power level setting of 2 to limit

the transmission range and create a multi-hop network for our experiments.

During the initialization phase of each simulation or experiment run, each node in the network chose

its initial version number randomly from {0,1,2}. We chose the time T which is the periodicity of version

advertisements in the given protocols as 15 seconds. To factor out this specific choice of the time interval,

the experimental measurements and results for convergence time in this section are presented in terms

of number of intervals.

5.2 Results

In this subsection, we first show that the non-stabilizing version problem occurs in practice in the

canonical protocols presented earlier. To say that a run is non-stabilizing, we would ideally have to let

the simulation or experiment run forever. For the results presented in this section, we call a run as

non-stabilizing if it did not stabilize within 50D intervals of execution time where D is the diameter of

the network. We argue that this is a reasonable choice especially since we know from Theorem 1 that

our local detectors and correctors will detect an inconsistency in no worse than D intervals. Hence, even

if the run were to stabilize after 50D intervals, there would be a significant performance overhead.

Figure 6 shows the performance of the canonical protocols and of the local stabilization strategy. The

first row in the table indicates the likelihood of a run being non-stabilizing. As the data indicates, even

for relatively small networks like 10×10 and 15×7, a significant number of runs in fact do not stabilize.

Also, variant 2 of the broadcast protocol, in which nodes aggressively try to update their neighbors has

slightly better convergence properties than variant 1, although this difference is less pronounced for the

larger networks.

The performance impact of non-stabilization can be seen from row 2 which shows the average number
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of messages transmitted by a node in the network per broadcast interval. As expected, variant 1 transmits

at the fixed rate of one message per interval. However, the aggressive nature of variant 2 implies that for

non-stabilizing runs, it consumes significantly more resources, thereby depleting the network at a much

faster rate.

The third row in the table lists the average number of intervals required for convergence in runs that

stabilize on their own (for non-stabilizing runs, this number is infinite), while the fourth row lists the

worst case time for local stabilization using our detection and correction actions. As seen from the data,

local stabilization results in faster convergence even for those runs that stabilize on their own. Recall

that a reconfiguration operation also involves a data download phase operating concurrently with version

update. Hence, the faster the network converges, the lesser is the amount of bandwidth and energy

consumed while trying to download data.

Our simulation and experimental results thus demonstrate that non-stabilization is indeed a problem

that occurs in practice in existing reconfiguration protocols. Our results also validate the efficiency of

the local detection and correction algorithm presented in this paper.

6 Conclusions and Future Work

In this paper, we demonstrated, both theoretically and through simulations and experimental studies,

that due to different types of faults such as operator errors, data corruption, etc., there is a non-trivial

probability that existing protocols for reconfiguration of wireless sensor networks may not stabilize. We

presented, both qualitatively and quantitatively, the adverse impact of this non-stabilization on the

quality and lifetime of the network. Our findings were validated in practice during the large scale ExScal

experiments when we had to expend significant manual resources to overcome this problem.

We also presented a stabilizing reconfiguration protocol that solves this problem. Our solution uses a

novel mix of both autonomous and Human-In-The-Loop stabilization by locally detecting and correcting

version inconsistencies, thereby allowing the human operator to easily restore the network back to the

desired configuration. Our solution can be easily incorporated into existing reconfiguration protocols to

make them stabilizing or can also be composed with them in the form of wrappers or interceptors to

achieve stabilization.

Achieving the right balance between those stabilization tasks locally performed at a node and those

left to the Human-In-The-Loop is of particular interest to us. Specifically, we intend to look at problems
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in the areas of fault monitoring and diagnostics where parts of the system run autonomously and part

are managed explicitly by a human operator. We hope that this will bring us one step closer to closing

the loop and creating a fully autonomous management system for wireless sensor networks.
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