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Abstract

We present a novel LDA-based method for dimension-
ality reduction and recognition by emphasizing key fea-
tures. The approach is based on a statistical framework
called Bootstrap Bumping LDA (BB-LDA), which specif-
ically deals with the Small Sample Size (SSS) problem in
LDA by sampling examples from the training set to hypoth-
esize different representations and selecting the one yield-
ing the best discrimination. In our new approach, a feature
weight is calculated for each input dimension to indicate its
importance for discrimination. Multiple weight maps are
generated from the feature weights to control the scaling
and are applied to each representation in BB-LDA to cre-
ate multiple hypothesis with different emphasis of input di-
mensions. By selecting both key examples and key features,
our new approach shows clear performance improvements
over BB-LDA and a significant performance gain over tra-
ditional LDA methods.

1. Introduction

In the image-based approach of Computer Vision, a large
input space (e.g., rasterized images) is often represented
by a relatively small number of examples. To avoid the
curse of dimensionality [16] and to speed up the classifi-
cation process, feature extraction is usually employed at
the first step to reduce the dimensionality. As a statisti-
cal method, Linear Discriminant Analysis (LDA) has been
widely employed for feature extraction and classification
(e.g., in face and gait recognition [2, 18, 5, 15]). It assumes
multiple Gaussians with equal covariance and is optimal un-
der Bayesian decision theory.

However, LDA does not directly address the curse of
dimensionality. Like any statistical method, it requires a
large amount of examples (N � D) relative to the input
dimension D to accurately estimate the probability distrib-
ution (e.g., model parameters such as the class means µi and

common covariance Σ in LDA) with Maximum Likelihood
(ML) estimates. This results in unstable or even singular so-
lutions (the common covariance estimate Σ̂ is singular when
N < D) of LDA in Computer Vision applications, which is
the so-called Small Sample Size (SSS) problem.

The traditional LDA methods [17, 2, 18, 29, 12] focus
only on the singularity problem of Σ̂ (when N < D), but
ignore the issue of accurately estimating of the true model
parameters. Various assumptions have been made to invert
the singular Σ̂. However, even if N > D, as long as N is
not much larger than D, the estimation problem persists due
to the curse of dimensionality.

In our recent approach [13], we introduced a variant of
the general statistical framework of bootstrap bumping [26]
to specifically deal with the SSS problem in LDA without
imposing explicit assumptions. We refer to it as Bootstrap
Bumping LDA (BB-LDA). A linear representation is hy-
pothesized from each bootstrap sample (subset of exam-
ples) and the final model (representation) is selected having
the best recognition performance. This extension not only
preserves the asymptotical property in the original bumping
procedure, but now improves the estimation accuracy and
implicitly handles the singularity problem of Σ̂ in the SSS
problem. Experiments on both synthetic and real datasets
showed advantages over traditional LDA methods.

Since BB-LDA uses key examples to directly hypoth-
esize a linear representation, each input dimension (e.g.,
pixel) is treated equally in the projection. However, cer-
tain dimensions may be more discriminative than others. If
the representation can be biased more towards those impor-
tant dimensions, the discriminative information can be bet-
ter kept within the hypothesized subspace. Therefore, it is
possible to further improve the performance of BB-LDA.

Motivated by this idea, in this paper we introduce the
concept of key features in BB-LDA. Each input dimension
(e.g., pixel) is associated with a feature weight, which lo-
cally measures the discrimination power. Multiple weight
maps are formed by controlling the scale of the feature
weights and are employed in BB-LDA to create multi-
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ple representation hypotheses from each bootstrap sample,
which have different a emphasis on input dimensions. The
final representation is selected that yields the best recogni-
tion performance. Therefore, the new procedure seeks both
key examples and key features to create the best representa-
tion for recognition. We demonstrate this new approach us-
ing the same datasets as in [13], and show clear performance
improvements over the original BB-LDA method and a sig-
nificant performance gain over traditional LDA methods.

In the remainder of this paper, we first discuss the back-
ground and related work of LDA and BB-LDA in Sect. 2.
Then we describe the key feature extension to BB-LDA in
Sect. 3. Experimental results are presented in Sect. 4, fol-
lowed by conclusion in Sect. 5.

2. Background and Related Work

There are two different perspectives of LDA. Fisher’s
LDA is defined by maximizing the ratio of the between-
class and within-class scatter matrices (Sb and Sw) in a lin-
ear subspace [9, 21]. In Bayesian decision theory, LDA is
defined for multiple Gaussians with equal covariance. The
two approaches were shown to be equivalent in [4] with Sw

being the ML estimate Σ̂ and Sb being derived from the ML
estimates of the class means. The mathematical description
of both approaches can be found in detail in [7].

2.1. LDA and the SSS Problem

Although well-grounded in theory, LDA faces the chal-
lenge of the SSS problem in real applications. The tradi-
tional methods only aim to solve the singularity problem
of Σ̂. The simple approach PINV-LDA [17] substitutes the
inverse operation with the pseudoinverse. The two-stage
method PCA+LDA [2] projects the data in the nearly com-
plete PCA subspace to make the Σ̂ projection just full rank.
However, with a small amount of examples, Σ̂ is unstable
especially in components with small eigenvalues which are
emphasized in the inverse operation. Both PINV-LDA and
PCA+LDA are sensitive to noise and small perturbations.

As one improvement, Enhanced Fisher’s Linear Dis-
criminant (EFLD) [18] varies the number of PCA compo-
nents to regulate the projection of Σ̂ by assuming the small
components being non-informative for classification (po-
tentially limiting the performance). Direct LDA (D-LDA)
[29] assumes the null space of Sb contains no useful in-
formation for classification. However, as shown in [14], D-
LDA is equivalent to directly taking the linear space of class
means as the LDA solution. It has severe limitations by ig-
noring the common covariance estimate Σ̂ (or Sw). Lastly,
Σ̂ can be directly modified to avoid the singularity prob-
lem, such as Σ̂ + σI in Regularized LDA (R-LDA). With
σ usually being a small scalar, R-LDA heavily relies on the
small components and even null components for recogni-

tion, which is neither stable nor supported by the existing
examples. Furthermore, due to the high computational cost
to invert a full-rank D×D matrix Σ̂+σI (for a large input
dimension D), R-LDA may not be computationally feasible
in real applications (see Sect. 4).

Additionally, there are efforts to address the model lim-
itations of LDA by extracting non-linear features (e.g.,
Quadratic Discriminant Analysis (QDA) [7], kernel-based
Generalized LDA [1]), finding linear features for multiple
Gaussians with non-equal covariance [27], and allowing
classifiers other than thresholding (assumed by LDA) [19].
However since more complex models usually require more
examples to constrain the solution, these extensions are of-
ten more sensitive to the SSS problem.

2.2. Bootstrap Bumping LDA (BB-LDA)

As the traditional LDA methods only focus on the sin-
gularity problem of Σ̂, they lack the systematic attempts
to improve the accuracy of the model parameter estimation
(class means and common covariance). In our recent ap-
proach (BB-LDA), we introduced a variate of the general
statistical framework of bootstrap bumping to specifically
deal with the SSS problem in LDA.

2.2.1 Bootstrap Bumping

As a method for model search and inference, the original
bumping procedure was proposed in [26] based on bootstrap
resampling theory [8]. The bumping procedure follows the
paradigm of hypothesize and test. Each bootstrap sample
z∗b ∈ [z∗1, z∗2, · · · , z∗B ] is is a “subset of examples” ran-
domly drawn with replacement (at a sampling ratio α) from
the original set of training examples z = (z1, z2, · · · , zN ).
A candidate model θ̂∗b is hypothesized from each bootstrap
sample z∗b by minimizing a working criteria R0. The best
model θ̂BB is selected according to a target criteria R.

θ̂∗b = argminθ R0(z∗b, θ), (1)

θ̂BB = θ̂∗b̂, where b̂ = argminb R(z, θ̂∗b). (2)

The criteria R and R0 may be the same, or with R0 being a
more convenient, but compatible criteria [26] to R for min-
imization, which ensures the asymptotic convergence of the
procedure to the true model parameters.

Bumping is closely related to other bootstrap-based tech-
niques, such as bagging and boosting. Bagging [3] pro-
duces a new estimator, which often has a smaller variance,
by averaging the model estimates from multiple bootstrap
samples. Boosting [24, 10] improves classification by com-
bining multiple weak classifiers, individually trained from
a subset of examples (bootstrap sample). As an enhanced
version of boosting, AdaBoosting [11, 28] employs adap-
tive sampling and weighted voting. However, when a LDA-
based classifier is desired, the bagged (averaged) linear



classifier from subsets may not perform well on the entire
dataset, and the boosted classifier results in complex de-
cision boundaries, which is non-linear. Both bagged and
boosted LDA [25, 20] are no longer true “LDA”. Bumping
avoids this issue by selecting the hypothesis that gives the
best classification rate. The procedure is capable of reduc-
ing the variance of the estimates, while preserving the LDA
model structure and interpretation.

2.2.2 Bootstrap Bumping LDA

The original bumping procedure [26] is not directly applica-
ble to the SSS problem. Since each bootstrap sample z∗b

only contains a subset of training examples, directly esti-
mating the model parameters θ̂∗b from z∗b is more severely
influenced by the SSS problem (e.g., boosting only obtains
weak classifiers from bootstrap samples). Furthermore, the
singularity problem of Σ̂ in LDA is not yet addressed.

Instead, BB-LDA [13] addresses the SSS problem by
first hypothesizing a representation space L∗b from z∗b as

L∗b = argminL Rrep(z∗b, L). (3)

The new working criteria Rrep measures the capacity of a
given representation L (e.g., linear, quadratic, etc.), which
is to be minimized and compatible with the model assump-
tion (representation criteria). With regards to LDA, a linear
subspace defined by z∗b is minimum in terms of capacity
among all compatible representations. Therefore we have

L∗b = LinearSpace(z∗b). (4)

For the other models, the representation should be chosen
accordingly (e.g., quadratic representation for QDA).

The discrimination performance of each hypothesized
representation L∗b is evaluated over the entire dataset z,
with the best selected as the one with the minimum mis-
classification rate

LBB−LDA = L∗b̂, where b̂ = argminb Rdis(z, L∗b). (5)

The new target criteria Rdis measures the misclassification
rate of z with regards to the representation space L∗b (dis-
crimination criteria), which can be evaluated by first pro-
jecting z into L∗b (e.g., correlating with a linear basis), esti-
mating the model parameters (e.g., using an ML estimator),
and lastly calculating the misclassification rate.

Since the performance of LDA is invariant to the basis
selection of L∗b (the information loss occurs only at the
subspace level), we simply choose Ab containing all the ex-
amples in z∗b as the linear basis of L∗b for simplicity.

Ab = [z∗b1 , z∗b2 , · · · , z∗bk ] (6)

The solution of BB-LDA is obtained by reconstructing
the model parameters learned in the representation subspace

LBB−LDA (e.g., multiplying the LDA discrimination vec-
tor(s) with the basis). In essence, the approach seeks out
the key prototype examples that best represent the space of
z for the purpose of discrimination. Any new example znew

is classified by projecting it onto the reconstructed LDA dis-
crimination vector(s) and thresholding as in classic LDA.

Since duplicate examples do not affect the linear repre-
sentation, bootstrap samples are drawn at a fixed rate αN
from z without replacement in BB-LDA. The number of
bootstrap samples B can be determined for a particular per-
centage p of training examples z covered by all bootstrap
samples (e.g., p = 99.9%) with

B = log(1− p)/log(1− α). (7)

For a fixed coverage p, it has been shown in [13] that the
worse case time complexity of BB-LDA is in the same order
as traditional subspace LDA [17, 2, 18]. But BB-LDA has
the asymptotic property of convergence to the true model
parameters (with Rrep and Rdis being compatible) [13].

The approach of BB-LDA is significant in that it directly
addresses the SSS problem in a general statistical frame-
work without imposing specific assumptions (as in the tradi-
tional LDA methods). At a particular sampling ratio α, only
a portion of examples are used to hypothesize a representa-
tion, which can ensure Σ̂ being full rank in the projection
space L∗b (under the basis Ab) for the entire dataset z. By
appropriately selecting the sampling ratio α (e.g., in cross-
validation) to balance the representation and discrimination,
BB-LDA improves the accuracy of the model parameter es-
timation for LDA under the SSS problem. Moreover, the
bumping procedure ensures BB-LDA maintains the origi-
nal LDA interpretation by avoiding averaging (bagging) or
voting (boosting).

3. Bootstrap Bumping LDA with Key Features

The approach of BB-LDA emphasizes key examples to
hypothesize linear representations for recognition. Since
there exists information loss when projecting the entire
dataset into the representation subspace, each input dimen-
sion should not be equally treated in the projection. Em-
phasizing key features/dimensions which are more impor-
tant for discrimination should better preserve the informa-
tion for recognition and hence improve the performance. In
this work, we propose to extend the BB-LDA framework
with key features. A feature weight is employed on each
input dimension (e.g., pixel) to indicate its importance for
discrimination. Multiple weight maps (variants of a weight
vector by controlling the scaling) are applied to each hy-
pothesized representation in BB-LDA to emphasize key fea-
tures for recognition. The new procedure selects both key
examples and key features to achieve the best recognition.



3.1. Embedding Feature Weights

Let w be a D × 1 vector containing all of the feature
weights. We apply w to the entire dataset z by directly
scaling each input dimension with the corresponding fea-
ture weight

z̃ = diag(w) · z, (8)

where diag(w) denotes a diagonal matrix with w along its
diagonal. Then the bootstrap samples z̃∗b are drawn from
the scaled dataset z̃ to hypothesize each linear subspace
L̃∗b. The projection of z̃ into L̃∗b (using Ab) is

ỹb = [diag(w) ·Ab]T · z̃ (9)

= AT
b · diag(w2) · z, (10)

where w2 is a D × 1 vector containing the squared feature
weights. This indicates that only the magnitude of the fea-
ture weights influence the projection. Each element of w
can be required to be 0 ≤ wi ≤ 1.

In relation to the previous BB-LDA approach, the new
framework is capable of altering the linear subspace by em-
bedding feature weights to emphasize certain input dimen-
sions. Let Âb = diag(w2)Ab. Eqn. 10 is equivalent to

ỹb = [diag(w2)Ab]T · z = Âbz (11)

with Âb being a basis of a new linear subspace. Except
when w is a vector containing all one elements, Âb repre-
sents a different linear subspace than Ab in capturing in-
formation of the entire dataset z in the reduced subspace.
Thus it is possible to improve the recognition performance
by properly emphasizing certain features.

Moreover, this key feature approach seamlessly inte-
grates into the BB-LDA framework. Without the subspace
representation (e.g., Ab) in BB-LDA, the D × D dimen-
sional weighting matrix diag(w) is at most a full rank trans-
formation (non-zero weights) for z. Thus w alone has no
performance benefits for LDA directly trained in the origi-
nal input space since LDA is invariant to any full rank trans-
formation (or basis selection).

3.2. Calculating Feature Maps

To obtain the weight vector w, we measure the discrim-
inating power of each input dimension (e.g., pixel) with
a Bayesian classifier (multiple Gaussians with equal vari-
ance) over the entire training set z. We calculate each fea-
ture weight wi as the Bayesian classification rate after sub-
tracting the chance level performance ( 1

c for c classes). The
vector is then divided by its maximal element to be normal-
ized to between 0 and 1.

However, the calculated weight vector w may not be
the best weighting scheme if directly applied in the frame-
work. The internal scaling within w has not yet been con-
sidered. Perhaps a weight of 0.5 is as important as 1.0 for

one dataset, but not for another. Motivated by the occur-
rence of w2 in Eqn. 10, we regulate the weight vector w
into multiple weight maps mq with

mq = wq (12)

where q ∈ [0, .125, .25, .5, 1, 2, 4, 8]. We treat each weight
map mq as a hypothesis for the weight vector to be em-
ployed in the BB-LDA framework to bias the representa-
tion. Note that m0 corresponds to uniform weights (as im-
plicitly employed in BB-LDA). A value of q < 1 increases
the importance of the smaller weights and for q > 1 the
larger weights receive more strength. The weight map m1

is equivalent to the original weight vector w. Illustrations
of the range of weight maps are shown in Sect. 4 (Fig. 3).

3.3. Algorithm

In the modified BB-LDA algorithm with key features,
multiple weight maps are tested with each bootstrap to cre-
ate multiple hypotheses, which are distinct representations
as oppose to the single representation with uniform weights
(m0) as in the original BB-LDA. The bumping procedure
selects the representation/model (key examples and key fea-
tures) having the best recognition performance. The new
algorithm is summarized in Alg. 1.

Algorithm 1 BB-LDA Algorithm with Key Features
1: Calculate weight vector w and multiple weight maps

mq with q = [0, .125, .25, .5, 1, 2, 4, 8].
2: Randomly draw B bootstrap samples (at sampling ratio

α,) z∗1, z∗2, · · · , z∗B from entire training set z
3: for b = 1 to B do
4: Let Ab = [z∗b1 , z∗b2 , · · · , z∗bk ].
5: for each mq do
6: Let Âb = diag(m2

q)Ab.
7: Project z in Âb as ybq = ÂT

b z. Run LDA (ML es-
timates) on ybq to obtain model parameters (LDA
discrimination vector(s) vbq and threshold(s) tbq).

8: Calculate the misclassification rate on ybq based
on the estimated model parameters.

9: end for
10: end for
11: Choose Ab and mq which has the minimum misclas-

sification rate. Obtain the solution by reconstructing
the LDA discrimination vector(s) diag(m2

q)Abvbq and
keeping the same threshold tbq .

4. Experiments
To demonstrate the advantages of emphasizing key fea-

tures for recognition in BB-LDA, we present experimental
results on the same face and gait databases (Yale face data-
base [2], ORL face dataset [23], and the CMU gait database
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Figure 1. Sample images of 3 datasets. (a) Yale face database (15 subjects, glasses vs. no glasses). (b) ORL face dataset (40 subjects). (c)
CMU Gait database (25 subjects, fast vs. slow walk) in Type-1 MHI representation. (d) Corresponding Type-2 MHI Gait representation.

[22]) as used in [13] (see sample images in Fig. 1). We
first compare our results to the original BB-LDA approach
to demonstrate the advantages of emphasizing key features
in BB-LDA. Then we compare the recognition results with
the traditional LDA algorithms.

4.1. Datasets

The Yale face database includes 15 subjects and 11 im-
ages of each person across various conditions (e.g., lighting,
expressions, etc.). In addition to face recognition, we ex-
amined the task of distinguishing people with glasses from
people without glasses (36 with and 129 without). This
is a much larger set than the case of 36 images studied in
[2]. We next examined face recognition using the ORL face
dataset with 40 subjects and 10 images per person. Lastly,
we tested at the CMU gait database of 25 subjects with 16
cycles extracted for each person (8 slow and 8 fast). Both
identity and walking speed (slow, fast) recognition were
performed over two types of MHIs [6] for two phases in
each walking cycle.

For each dataset, images were aligned to control position
and scaling. Then they were down-sampled and cropped to
the region of interest (except for the glasses vs. no-glasses
case). The average intensity of each image (foreground re-
gion only) was also removed. The classification tasks were
made slightly more difficult than [13] with 20% of the ex-
amples used for testing in cross-validation.

4.2. Improvements to BB-LDA with Key Features

In the BB-LDA extension with key features, we first cal-
culate the weight vector w (from Bayesian classifier) as
shown in Fig. 2 for one cross-validation set. As we can see,
the weight vector w may not have large internal variations
for certain recognition tasks, such as Yale-ID and ORL-ID.
This suggest that these tasks may naturally favor uniform
emphasis in representations (holistic). However for the oth-
ers (e.g., Yale-Glasses, CMU-Speed), w has clear emphasis
over certain areas (e.g., glasses frame area in Yale-Glasses,
stride and arm swing in CMU-Speed), which are intuitively
important for recognition. Thus by properly emphasizing
those areas with appropriate weight maps in the hypothe-
sized representation, it is possible to improve the recogni-
tion performance of BB-LDA.

We selected the case of Yale-Glasses to further demon-
strate the key feature approach. The range of weight maps
are illustrated in Fig. 3. As q increases, there is more em-
phasis in the glasses frame area. The best weight map is
chosen in the bumping procedure along with the key exam-
ples to yield the best recognition performance.

Next we compare the extracted LDA discrimination vec-
tor(s) between BB-LDA and the new key feature extension.
At the sampling ratio α = 0.3 (see Table 1), although
the original BB-LDA extracts a LDA discrimination vec-
tor (Fig. 4a) covering the regions of the glasses frame, a
large amount of pixels in unrelated areas are also included
(e.g., chin and nose). But with the key feature extension
using weight map m1 (Fig. 3e), our new approach success-
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Figure 2. Weight vector w of each task. (a) Yale-ID, (b) Yale-Glasses, (c) ORL-ID, (d) CMU-ID-Type-1, (e) CMU-ID-Type-2, (f) CMU-
Speed-Type-1, (g) CMU-Speed-Type-2.

(a) q = 0 (b) q = .125 (c) q = .25 (d) q = .5 (e) q = 1 (f) q = 2 (g) q = 4 (h) q = 8

Figure 3. Regulated weight maps mq for Yale-Glasses.

(a) (b)

Figure 4. Extracted LDA discrimination vector and its correspond-
ing energy image (square of the vector) for Yale-Glasses. (a) BB-
LDA, (b) BB-LDA with key features.

fully latches down to the glasses frame region (Fig. 4b) as
desired. This results in improved recognition performance
over BB-LDA (see Table 1), which clearly shows the bene-
fits of emphasizing key features in the BB-LDA framework.

4.3. Recognition Performance

We quantitatively evaluated the recognition performance
of BB-LDA and its key feature extension with the tra-
ditional LDA methods, which include PINV-LDA [17],
PCA+LDA [2], EFLD [18], and D-LDA [29]. The method
of R-LDA [12] was not examined due to its inherit high time
complexity (e.g., D = 1600 in Yale face database). The
optimal model parameters of BB-LDA (the sampling ratio
α ∈ [0.1 : 0.1 : 0.9] and the best representation/classifier
with key examples and key features) and EFLD (the num-
ber of PCA components) were adjusted in cross-validation.
The same bootstrap coverage was kept at p = 99.9%.

The recognition results across the different datasets are
summarized in Table 1. Again our previous approach of
BB-LDA outperformed the traditional LDA methods by
sampling key representative examples for recognition, as
demonstrated in [13]. PINV-LDA and PCA+LDA are sen-

sitive to noise due to their overemphasis over small compo-
nents. D-LDA is a limited case of taking the linear space of
class means or Sb as the LDA solution. EFLD gives the best
performance among these traditional methods by adjusting
the number of PCA components. With our current key fea-
ture extension to BB-LDA, the recognition performance has
been further improved in all cases due to the proper em-
phasis of key features in the hypothesized representation.
This gives the new BB-LDA framework a significant per-
formance advantages over the traditional LDA methods in
dealing with the SSS problem.

5. Conclusion
We presented a novel method for dimensionality reduc-

tion and recognition based on Bootstrap Bumping LDA
(BB-LDA). Our extension further improves the perfor-
mance by emphasizing key features in the representation.
The method seamlessly integrates into the BB-LDA frame-
work to seek both key examples and key features to hy-
pothesize a representation for the best discrimination. Ex-
periments show clear advantages of the new approach over
the original BB-LDA method and significant performance
gain over the traditional LDA approaches in dealing with
the SSS problem. In future work, we plan to investigate
non-linear representation (e.g., quadratic) in the bootstrap
bumping framework to extend the approach to non-linear
cases (e.g., QDA).
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Yale-ID
(11 sets)

Yale-Glasses
(18 sets)

ORL-ID
(10 sets)

CMU-ID (24 sets) CMU-Speed (30 sets)
Type-1 Type-2 Type-1 Type-2

PINV-LDA 83.8 79.4 89.1 93.0 91.7 83.6 83.6
PCA+LDA 38.0 83.5 34.3 37.6 36.8 83.4 85.5

EFLD 88.1
(32 PCs)

90.5
(56 PCs)

91.9
(37 PCs)

97.0
(264 PCs)

96.1
(300 PCs)

90.9
(245 PCs)

91.0
(255 PCs)

D-LDA 70.7 70.8 79.4 72.5 65.7 76.9 79.0

BB-LDA 91.1
(α = 0.3)

94.2
(α = 0.3)

93.6
(α = 0.3)

97.5
(α = 0.5)

97.1
(α = 0.6)

91.3
(α = 0.5)

91.3
(α = 0.6)

BB-LDA
(Key Features)

93.3
(α = 0.4)

97.6
(α = 0.3)

94.6
(α = 0.3)

98.2
(α = 0.5)

98.1
(α = 0.6)

92.6
(α = 0.5)

92.8
(α = 0.6)

Table 1. Classification results on multiple datasets. The new BB-LDA approach with key features showed clear performance improvements
over the original BB-LDA, while it significantly outperformed the traditional methods.

References
[1] G. Baudat and F. Anouar. Generalized discriminant analysis

using a kernel approach. Neural Computation, 12(10):2385–
2404, 2000. 2

[2] P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projec-
tion. IEEE Trans. Patt. Analy. and Mach. Intell., 19(7):711–
720, 1997. 1, 2, 3, 4, 5, 6

[3] L. Breiman. Bagging predictors. Machine Learning Journal,
24(2):123–140, 1996. 2

[4] N. Campbell. Canonical variate analysis - a general model
formulation. Australian J. Statistics, 26:86–96, 1984. 2

[5] Y. Cui, D. Swets, and J. Weng. Learning-based hand sign
recognition using SHOSLIF-M. In Proc. Int. Conf. Comp.
Vis., pages 631–636. IEEE, 1995. 1

[6] J. Davis and A. Bobick. The representation and recognition
of action using temporal templates. In Proc. Comp. Vis. and
Pattern Rec., pages 928–934. IEEE, 1997. 5

[7] R. Duda, P. Hart, and D. Stork. Pattern Classification. John
Wiley & Sons, New York, 2001. 2

[8] B. Efron. Bootstrap methods: another look at the jackknife.
Annals of Statistics, 7:1–26, 1979. 2

[9] R. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7 Part II:179–188, 1936. 2

[10] Y. Freund. Boosting a weak learning algorithm by majority.
Information and Computation, 121(2):256–285, 1995. 2

[11] Y. Freund and R. Schapire. Experiments with a new boosting
algorithm. In Machine Learning: Proc. of the 13th Int. Conf.,
pages 148–156, 1996. 2

[12] J. Friedman. Regularized discriminant analysis. J. Am. Sta-
tistical Assoc., 84(405):165–175, 1989. 1, 6

[13] H. Gao and J. Davis. Sampling representative examples for
dimensionality reduction and recognition - Bootstrap Bump-
ing LDA. In European Conference on Computer Vision,
Graz, Austria, May 7-13 2006. 1, 2, 3, 5, 6

[14] H. Gao and J. Davis. Why Direct LDA is not equivalent to
LDA. to appear in Pattern Recognition, 2006. 2

[15] P. Huang, C. Harris, and M. Nixon. Human gait recognition
in canonical space using temporal templates. In Proc. Vis.
Image Signal Process., pages 93–100. IEE, 1999. 1

[16] A. Jain, R. Duin, and J. Mao. Statistical pattern recogni-
tion: a review. IEEE Trans. Patt. Analy. and Mach. Intell.,
22(1):4–37, 2000. 1

[17] W. Krzanowski, P. Jonathan, W. McCarthy, and M. Thomas.
Discriminant analysis with singular covariance matri-
ces:methods and applications to spectroscopic data. Applied
Statistics, 44:101–115, 1995. 1, 2, 3, 6

[18] C. Liu and H. Wechsler. Enhanced Fisher linear discriminant
models for face recognition. In Proc. Int. Conf. Pat. Rec.,
pages 1368–1372. IEEE, 1998. 1, 2, 3, 6

[19] X. Liu, A. Srivastava, and K. Gallivan. Optimal linear rep-
resentations of images for object recognition. IEEE Trans.
Patt. Analy. and Mach. Intell., 26(5):662–666, 2004. 2

[20] X. Lu and A. K. Jain. Resampling for face recognition. In
Int. Conf. on Audio and Video Based Biometric Person Auth.,
pages 869–877, 2003. 3

[21] C. Rao. The utilization of multiple measurements in prob-
lems of biological classification. J. Royal Statistical Soc., B,
10:159–203, 1948. 2

[22] R.Gross and J. Shi. The CMU motion of body (MoBo) data-
base. Technical Report cmu-ri-tr-01-18, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, 2001. 5

[23] F. Samaria and A. Harter. Parameterisation of a stochastic
model for human face identification. In 2nd IEEE Workshop
on Applications of Computer Vision, Dec. 1994. 4

[24] R. Schapire. The strength of weak learnability. Machine
Learning, 5(2):197–227, 1990. 2

[25] M. Skurichina and R. Duin. Bagging, boosting and the ran-
dom subspace method for linear classifiers. Pattern Analysis
& Applications, 5:121–135, 2002. 3

[26] R. Tibshirani and K. Knight. Model search by bootstrap
“bumping”. J. of Computational and Graphical Statistics,
8(4):671–686, 1999. 1, 2, 3

[27] F. Torre and T. Kanade. Oriented discriminant analysis
(ODA). In Brit. Mach. Vis. Conf., pages 132–141, 2004. 2

[28] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using
patterns of motion and appearance. In Proc. Int. Conf. Comp.
Vis., pages 734–741, 2003. 2

[29] H. Yu and J. Yang. A direct LDA algorithm for high-
dimensional data - with application to face recognition. Pat-
tern Recognition, 34:2067–2070, 2001. 1, 2, 6


