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Abstract—Large computationally complex applications task- or pure data-parallel approach may not be the
can often be viewed as a collection of coarse-grained data- gptimal execution paradigm. Most applications exhibit
parallel tasks with precedence constraints. Researchers limited task parallelism due to precedence constraints.

have shown that combining task and data parallelism - .
(mixed parallelism) can be an effective approach for The sub-linear speedups achieved leads to poor perfor-

executing these applications, as compared to pure task or mance of pure data-parallel SChedU|eS-_ In _faCt: several
data parallelism. In this paper, we present an approach to researchers have shown that a combination of both,

determine the appropriate mix of task and data parallelism,  called mixed parallelism, yields better speedups [1], [2],
i&, the set of tasks that should be run concurrently and 31 |y mixed-parallel execution, several data-parallel

the number of processors to be allocated to each task.t K ted tlv in a task llel
An iterative algorithm is proposed that couples processor asks are executed concurrently in a task-paraliel manner.

allocation and scheduling of mixed-parallel applications on ~ This paper proposes a single-step approach for pro-
compute clusters so as to minimize the parallel completion cessor allocation and scheduling of mixed-parallel execu-

time. Our algorithm iteratively reduces the makespan by tions of applications consisting of coarse-grained parallel
increasing the degree of data parallelism of tasks on the tasks with dependences. The goal is to minimize the

critical path that have good scalability and a low degree of . . L
potential task parallelism. Our approach employs a look parallel completion time or makespan of an application

ahead technique to escape local minima and uses a priority task graph, given the runtime estimates and speedup
based backfill scheduling scheme to efficiently schedule the functions of the constituent tasks. Starting from an

parallel tasks onto processors. Evaluation using benchmark  initial processor allocation and schedule, the proposed
task graphs derived from real applications as well as 4 4qrithm jteratively reduces the makespan by increasing
synthetic graphs shows that our approach consistently .
performs better than CPR and CPA, two previously pro- the d?gfee of data parallelism of selgcteq tasks on
posed scheduling schemes, as well as pure task and datdhe critical path. A look-ahead mechanism is used to
parallelism. escape local minima. Priority based backfill scheduling
is used to improve effective processor utilization and
. INTRODUCTION minimize idle time slots. We compare the proposed algo-
Parallel scientific applications can often be decorithm with two previously proposed scheduling schemes:
posed into a set of coarse-grained data-parallel tagRstical Path Reduction (CPR) [4] and Critical Path
with precedence constraints that signify data and coand Allocation (CPA) [5], that have been shown to
trol dependences. These applications can benefit fragive good improvement over other existing approaches
two forms of parallelism: task and data parallelismike TSAS [3] and TwoL [6], as well as pure task-
Task parallelism refers to the concurrent execution @arallel and pure data-parallel schemes. The approach
independent tasks of the application on the same igrevaluated using synthetic task graphs and task graphs
different data elements. Data parallelism, on the othbased on real applications, from the Standard Task Graph
hand, refers to the parallel execution of a single taskepository [7] as well as task graphs from the domains
on data distributed over multiple processors. In a pud Tensor Contraction Engine [8], [9] and Strassen
task-parallel approach, each task is assigned to a siniylatrix Multiplication [10]. We find that our algorithm
processor and multiple tasks are executed concurrentignsistently performs better than the other scheduling
such that precedence constraints are not violated ampproaches.
there are sufficient number of processors in the system.This paper is organized as follows. The next section
In a pure data-parallel approach, the tasks are run irirdroduces the task graph model and some definitions.
sequence on all available processors. However, a p@ection 3 describes the allocation and scheduling al-



gorithm and Section 4 describes the benchmarks usesl, theearliest start timeof ¢ is defined asest(t) =
for evaluations and the experimental results. Sectionmbax, )cx ft(t'). Due to resource limitations the start
gives an overview of the related work and in sectiotime of a task:t can be greater than its earliest start
6, we summarize the conclusions and outline possiltiene, i.e.,st(t) > est(t). Note that with non-preemptive

directions for future research. execution of tasksft(t) = st(t) + et(t,np(t)). Here,
np(t) is the number of processors allocated to task
Il. TASK GRAPH MODEL and et(t,p) is the execution time of on p processors.

A mixed-parallel program can be represented asTdie parallel completion time or makespan @Gfis the
macro data-flow graph [3] which is a weighted directefinish time of the sink vertex.
acyclic graph (DAG),G = (V,E), whereV, the set
of vertices, represents data parallel computationsfnd
the set of edges, represents precedence constraints. Each ) o ] )
data-parallel computation can be executed on any num-" this section, we describe iCASLB (an iterative
ber of processors. There are two distinguished vertic&@uPled processor Allocation and Scheduling algorithm
in the graph: thesource verteprecedes all other verticesWith Lookahead and Backfill), a new algorithm for
and thesink vertexsucceeds all other vertices. processor allocation and scheduling of mixed-parallel ap-

The weight of each vertex corresponds to its executighiications. U_nlike schemes that (_Jlissociatg the allocation
time on different numbers of processors. This functiof"d Scheduling phases [3], [5], ICASLB is a one-phase
can be provided by the application developer, or O@Igont_hm that simultaneously determines both. iCASLB
tained by profiling the execution of the task on differerif designed to reduce the makespan of a DAG by:
numbers of processors. Downey’s model is commonly « implementing a one phase approach for allocating
used to model the speedup of parallel programs [11]. resources and scheduling tasks which can exploit
Downey’s speedup model is a non-linear function of two ~ detailed knowledge of both the application structure

IIl. PROCESSORALLOCATION AND SCHEDULING
ALGORITHM

parametersA, the average parallelism of a task, and and the resource availability. _ _
a measure of the variations of parallelism. According to * utilizing priority based backfilling to increase uti-
this model, the speeduf of a task as a function of the |'Z?t'0” _ .

. oA « reducing the makespan by 'ir'1creasing f[he width
Afom—1)/2 (o= A(A<m<a24_1) of task on the schedule’s critical path (including
S(n) = 2“;1/2)1*"“’”/2) <A >24-1) induced resource dependencies)
;W%BLA E: i 1; 2 Eiilii:f:; o) « only increase the width of tasks which have a low
N N degree of potential task parallelism
It is assumed that the communication costs within , increase the width of tasks which have good scala-
a data-parallel task dominate communication costs be- bility
tween data-parallel tasks. This assumption holds Wh@a ¢onfirmed by the experimental results, these features
each vertex of the DAG is a coarse-grained parallel prgy o, icASLB to produce better schedules than previous

gram. Each task is assumed to run non-preemptively 8dthemes. The rest of this section presents the salient
can start only after the completion of all its predecessots.,«,res ICASLB in detail.

The terms, vertices and tasks are used interchangeably
in the rest of the paper. A. Initial Allocation and Schedule-DAG Generation
The length of a path in a DAG- is the sum of the  The initial allocation of processors to tasks is com-
weights of the vertices along that path. Tdrétical path puted as follows. For each task we over-estimate the
of G, CP(G), is defined as the longest path@ The number of “possibly concurrent tasks” and compute the
top level of a vertexv in G, denoted bytopL(v), is available number of processors assuming we allocate the
defined as the length of the longest path from the sourbest number of processors to each of those concurrent
vertex tov, excluding the vertex weight af. Thebottom tasks. The best number of processors for a task is
level of a vertexv in G, denoted bybottomL(v), is defined as the number of processors on which the task’s
defined as the length of the longest path frono the minimum execution time is achieved. If the number of
sink, including the vertex weight af. Any vertexv with  available processors is more than 1, we allocate the
maximum value of the sum abpL(v) andbottomL(v) minimum of the task’s best number of processors and
belongs to a critical path idr. the number of available processors. Otherwise we simply
Let st(t) defines thestart time of a taskt, and start with allocating 1 processor to that task.
ft(t) define its finish time A task ¢ is eligible to iCASLB iteratively refines this initial allocation by
start execution after all its predecessors are finishdédentifying the best candidatetask and increasing its
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Modified Task Graph(=". Fig. 3. (a) Task Grapi@, (b) Execution time profile.
A \\ Number of Processors considering two aspects: 1) scalability of the tasks and
=) Tasks| 1 2 3 4 2) global structure of the DAG. The goal of choosing
/ : T1 120 90 7.0 56 a best candidate task is to choose a task which will
‘@ °) I2 350 200 130 11.0 reduce the makespan the most. First, the improvement
\/ T3 100.0 65.0 48.0 35.0 . . . . .
pu in execution time of each candidate tagskis computed
() as et(ct,np(ct)) — et(ct,np(ct) + 1). However, just
Fig. 2. (a) Task Graplts, (b) Execution time profile. picking the candidate task with the maximum decrease in

. . . . execution time is a greedy choice that does not consider
processor allocationCandidatetasks lie on the critical he global structure of the DAG and may result in a poor
path of tf;)e sched/ule. ;he Cr,'t'cﬁl patrf: gf ltheDiéhe_duL%hedule. An increase in processor allocation to a task
is given by CP(G), where G, the schedule- » 1S Jimits the number of tasks that can be run concurrently.

the original DAG G with edges added because iof Consider that the task : .
o graph in 3(a) is to be scheduled
duced dependencekie to resource limitations/P(G") o, 3 processors. Each task is initially allocated one

represents the Iongest path in t'he current schedy ffocessor each. Taskgl and T2 lie on the critical
hence reducing this path length will tend to reduce t 5th andT'1 has the maximum decrease in execution

makespan.“ ; h h Itime. However if we were to increase the processor
The addition of pseudo-edges to form the schedu %ﬂocation of T'1, it will serialize the execution ofl'3

DAG s illustrated below. Consider the scheduling of. resulting finally in a makespan df7. A better
the task graph displayed in Figure 1(a) on 4 ProC€&hoice here, is to choosE2 as the best candidate, and

sors. The processor allocation information is given iBehedule it on 3 processors, leading to a makespan of
Fig 1(b). Due to resource limitations task® and 73

are serialized in the schedule. Hence, the modified DAGll-o avoid this. iICASLB chooses a candidate task that
G’ (Fig 1(c)) which represents the schedule, includes @ o1y has good execution time improvement, but also
additional pseudo-edge betw/egn verticgsandT’3. The 1,55 5 lowconcurrency ratio The concurrency ratio of
critical path length of30 of G’ is the makespan of thetaskt, cr(t) is a measure of the minimum amount of

application. work that can be done concurrent tp relative to its

B. Best Candidate Task Selection own work, that is,

(0] [ L ” Zt'E(zg(t) et(t', 1)

nce candidate tasks are selected, a “best” task must cr(t) =

be chosen for expansion in a given iteration. A poor et(t,1)

choice of the best candidate will affect the quality of thélere,c(t) represents the maximal set of tasks that can

resulting schedule as shown in the following exampleun concurrent ta. A task ¢’ is said to be concurrent

Let the task graph in 2(a) be scheduled on 4 processtosa taskt in G, if there is no path between and

and each task be initially allocated one processor. Tasksin G. This means that there is no direct or indirect

T1 and T'3 lie on the critical path and either of themdependence betweet and ¢, hencet’ can potentially

could be chosen to decrease the critical path length.rlfn concurrently witht.Depth First Search (DFS) is used

T1 were chosen and were allocated 4 processors, teeidentify dependent tasks. First, a DFS from tasin

would obtain a data parallel schedule, with a makespéh is used to compute a list of tasks that depends on

of 51.6. On the other hand, i'3 were chosen, we could t. Next, a DFS on the transpose 6f GT, (obtained

get a shorter makespan 4% by allocating 4 processors by reversing the direction of the edges Gf computes

to 73, 1 processor td'1 and 3 processors tH2. the task whicht is dependent on. The remaining tasks
In order to reduce the probability of the previousonstitutes the maximal set of concurrent tasksGin

example, iCASLB selects the best candidate task lay:(¢), for taskt.




Algorithm 1 Coupled Allocation and Scheduling

Number of Processors
Tasks [T > 3 Z 1: forall t € V do )
(=) (=) TL [ 400 200 133 109 2 P P> uc  Prest(t) > number of
T2 800 400 26.7 20d available processors if we allocate best number of
(sm) processors to each of the concurrent tasks
Fig. 4. (a) Task Grapld, (b) Execution time profile assuming linear 3 if p>1 then .
speedup. 4: np(t) < min(Prest(t), p)
5: else
To select the best candidate task, the tasks in the critié: np(t) — 1

cal path of¢’ are sorted in non-increasing order based on’* best-Alloc < {np(t)|t € V} > Best allocation is the
initial allocation

the amount of decrease in execution time.From the toR. ;. o — PrBS(G, best_Alloc)
X% of the list, the task with the minimum concurrency go: repeat ’

ratio is chosen as the best candidate. Choosing an X of: {np(t)[t € V'} « best_Alloc > Start with best
10 has vyields good results for all of our experiments. allocation
Therefore, iICASLB widens tasks such that the chosep}: — 0ld-st — bestsl > and best schedule
. . . : LookAheadDepth «— 2 x mazxiev (P — np(t))
candidate task scales well and is competing for resources iter ent — 0
with relatively few other tasks. 14: while iter_cnt < LookAheadDepth do
. 15: CP « Critical Path inG’

C. Intelligent Look-ahead 16: tvest — BestCandidate in _CP with np(t) <

Once the best candidate is selected, its processor min(P, Pres:(t)) and ¢ is not marked if
allocation is incremented by one, a new schedule is  dter-cnt =0

ted using PrBS (described in the next sub-sectio ]); if iter-cnt =0 then —— -

compu 9 ’ . tentry < toest D tentry Signifies the point of
and the makespan of the new schedule is computed. If start of this look-ahead search
only schedules which decrease the makespan from the: np(tpest) < np(toest) + 1
previous schedule were allowed, it would be easy t8: A" —{np()jt eV}
be trapped in local minima. Consider the simple DAGY cur-sl — PrB3(G, A')

hown in Figure 4 and the execution profile assumingZ it cur-st < bestsl then
S 9 X o P % best_Alloc — {np(t)|t € V}
linear speedup. Ag'2 is more critical, 72 would be 24: best_sl — PrBS(G, best_Alloc)
chosen to be widened to 3 processors. In the negs: _iter-ent « dter_cnt + 1
iteration, T'1 is more critical. However, increasing the26:  if best_sl > old_sl then

processor allocation @f1 to 2 causes an increase in the?”- Mark tenery as a bad starting point for future

. searches
makespan. If the algorithm does not allow temporary. else
increases in makespan, the schedule is stuck in a loca Commit this allocation and unmark all marked
minima: allocating 3 processors 82 and 1 processor tasks

to 71. However, the data parallel schedule, i.e., running0: until for all taskst € C'P, ¢ is either marked onp(t) =
T1 and T2 on all 4 processors, leads to the smallest min(P, Prest(t))
makespan.

To alleviate this problem, iCASLB uses an intelligent
look-ahead mechanism. The look-ahead mechanism Biioritized and at each scheduling step the ready task
lows allocations that cause an increase in makespan foéh the highest priority is scheduled. List scheduling
bounded number of iterations. After these iterations, th&eps track the latest free time for each processor, and
allocation with the minimum makespan is chosen arf@rces all tasks to be executed in priority order.
committed. The bound for the number of iterations is The strict priority order of list scheduling tends to
taken to be x max,cy (P—np(t)). This is motivated by needlessly waste compute cycles. Parallel job schedulers
the observation that an increase in makespan is caused5¢ backfilling [13] to allow lower priority jobs to use
two previously concurrent tasks being serialized due tused processor cycles without delaying higher priority
resource limitations. Therefore, choosing the number B0s, thereby increasing processor utilization. Parallel job
iterations in this way allows any two tasks to transfornicheduling can be viewed as 2D chart with time along
from a task parallel to data parallel execution (using tHene axis and the number of processors along the other

maximum number of processors). axis, where the purpose is to efficiently pack the 2D
o ] ) chart (schedule) with jobs. Each job can be modeled
D. Priority Based Backfill Scheduling (PrBS) as a rectangle whose height is the estimated run time

Priority based list scheduling is a popular and effe@and the width is the number of processors allocated.
tive approach for scheduling task graphs composed Béckfilling works by identifying "holes” in the 2D chart
sequential tasks with dependences [12]. The tasks amd moving forward smaller jobs that fit those holes.



Algorithm 2 PrBS - Priority-Based Backfill Schedulingcpr is a single-step approach while CPA is a two-

1: function PRBS(G, {np(t)|t € V}) phase scheme and both have been shown in [4], [5]

2: GI;;— Gt Il tasks scheduled to perform better than other allocation and scheduling

Z: e e taa et I‘Llligeheostvalue afttomL(y) aPProaches like TSAS [3]. Pure task-parallel schedule

5 st(t) — earliest time at whichnp(t) processors (TASK) allocates one processor to each task, whereas

are available for durationt(t, np(t)) pure data parallel schedule (DATA) executes each task

6: if st(t) > est(t) then on all processors one after the other.

7 Select a set of tasks’ € V, such that e have evaluated the various scheduling approaches
JH(t) = st(t) and 3 np(t') > np(t)  sing task graphs from the Standard Task Graph Set [7]

8: Add apsuedo edgeetween each task in this . L ’
set andt and task graphs derived from two applications.

9:  return <Schedule lengthi’ > A. Task Graphs from the Standard Task Graph Set

The Standard Task Graph Set [7] is a benchmark suite
. . - for evaluation of multiprocessor scheduling algorithms.
ICASLB uses conservative backfilling strategy to backfily ~qntains both randomly generated task graphs and
tasks of lower priority that fit in the "holes” as long asy,55e modeled from actual applications. In this set, the

they do not delay a previously scheduled higher prioritghapes (precedence constraints) of the random graphs

task. ! ) ) . . are determined based on four different reported meth-
Algorithm 1 outlines iCASLB. The initial allocation of ods [14], [15], [16]. In our experiments, we have used

processors to tasks is described in (steps 1-6). In the Mg\, random DAGs as well as two application DAGs -
repeat-untilloop (steps 9-30), starting from the currenk,pot Controwhich is the task graph for Newton-Euler
best solution, the algorithm do_es a look-ahead (steps ]tﬁ/'namic control calculation [17], an@parse Matrix
25) and keeps the best solution found so far (step 2&yyer which is a task graph for a random sparse matrix
24). If the look-ahead process does not yield a betigp|yer of an electronic circuit simulation. The robot
solution, the task that was the first best candidate in tha§nirol DAG contains 88 tasks, while the sparse matrix
look-ahead process is marked as a bad starting point {Q§jyer DAG has 96 tasks. Due to limited space, we have
future search. However, if a better makespan was foungh; included these DAGs in the paper. We derived the
all marked tasks are unmarked, the current allocation ﬁ%rallel speedups for the tasks in these DAGs using
committed and we continue the se_arch from this _stgtﬂere Downey model [11] by generating, the variance
The look-ahead, marking, unmarking, and committing, average parallelism as a uniform random variable in
steps are repeated until either all tasks in the criticgle interval [0-2.0] to represent the common scalability
path are marked or all of them are allocated the best;racteristics of most parallel jobs [18].
possible number of processors. The psuedo code for the-jg re 5 shows the relative performance of the differ-
scheduling algorithmPrBS'is given in algorithm 2. gt schemes for these two applications as we increase

The complexity of thePrBS algorithm can be an- the number of processors in the system. The relative
alyzed as follows: ())(|V| + |E]) for computing the performance of an algorithm is computed as the ratio
bottom levels of the tasks, (i8)(|V'[log|V|) to sort the penyeen the makespan produced by iCASLB and the
vertices in the decreasing order of their bottom 'evelﬁnakespan of the given algorithm when both are applied
(©) Q(|V|2) to schedule the tasks on the processors agfl the same number of processors. Therefore, a ratio less
adding pseudo-edges. Thus, the overall complexity f{an 1 implies lower performance than iCASLB. For the
PrBSis O(|E| + VI?). . robot control application, iCASLB achieves upto 30%

iICASLB requires O(|V| + |E’|) time to compute jnprovement over CPR and upto 47% over CPA. We also
the critical path ¢'P) in G" and choosing the bestschieve upto 81% and 68% improvement over TASK
candidate takes constant time. Therefore, the while logpy DATA. For the sparse matrix solver application,
in steps 14-25 iO(P(|E'| + |V[*)). The repeat-until jcASLB, CPR and CPA perform similar to TASK upto
loop in steps 9-30, has at mast| P iterations, as there 16 processors as the DAG is very wide. Beyond 16
are at mostV/| tasks inC'P and each can be allocatedyrgcessors, iICASLB shows an improvement upto 40%
at most P processors. Hence, the overall worst-casger CPR, 25% over CPA and 67% and 86% over
complexity of iCASLB isO(|V|*P* + |V|P?|E'|). TASK and DATA respectively, for 128 processors. DATA
performs poorly as the tasks have sub-linear speedup and
the sparse matrix DAG is wide.

We have compared the quality of the schedules gen-Figure 6 shows the average relative performance of
erated by our approach with those generated by CPtRe different schemes for 20 random graphs in STG
CPA and by pure task-parallel and data-parallel scheméswing 50 and 100 tasks respectively. Again, we see

IV. PERFORMANCEANALYSIS
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Fig. 6. Performance of the scheduling schemes for Synthetic DAGs having (a) 50 tasks (b) 100 tasks

similar trends as for the application DAGs. iCASLBof the vertices have a single incident edge. Some of
performs the best and shows an improvement upto 52%e results are accumulated to form a partial product.
47%, 80%, 61% over CPR, CPA, TASK and DATAContractions that take a partial product and another

respectively. tensor as input have multiple incident edges.
o The second application is the Strassen Matrix Mul-
B. Task Graphs from Applications tiplication [10]. The task graph for this application

The first task graph in this group comes from an applis shown in Figure 7(b), where the vertices represent
cation called Tensor Contraction Engine (TCE). The Tematrix operations and the edges represent inter-task
sor Contraction Engine [8], [9] is a domain-specific comdependences. We have used matrix sizes of 1024X1024
piler for expressing ab initio quantum chemistry modelsn our experiments.

The TCE takes as input, a high-level specification of The speedup curves of the tasks in these applications
a computation expressed as a set of tensor contractivare obtained by profiling them on a cluster of Itanium-2
expressions and transforms it into efficient parallel codmachines with 4GB memory per node and connected by
The tensor contractions which are generalized matr&2Gbps Myrinet interconnect. The relative performance
multiplications in a computation, form a directed acycliof the schemes for the CCSD T1 equation is shown in
graph, and are processed over multiple iterations, unfilgure 8(a). Currently, the TCE task graphs are executed
convergence. We have evaluated the scheduling scherassuming a pure data-parallel schedule. As the CCSD T1
on equations from the coupled-cluster theory with singlBAG is characterized by a few large tasks and many
and double excitations (CCSD). This computation is asmall tasks which are not scalable, DATA performs
iterative method involving the computation of T1 angoorly. iICASLB shows upto 48% improvement over
T2 amplitudes, which are two and four dimensiondDATA. CPR also performs well and is only upto 8%
arrays respectively. Figure 7(a) displays the DAG for theorse than iCASLB while CPA is upto 25% worse than
CCSD-T1 computation, where each vertex representsGASLB. With respect to scheduling times, CPA is a low
tensor contraction which is a binary operation betweaost algorithm and is quick in computing the processor
two input tensors to generate a result. The edges in thkocation and schedule. iCASLB scales better than CPR
figure denote inter-task dependences and hence masythe number of processors is increased. In all cases, the



Fig. 7. The CCSD task graph T1 computation (left) Strassen Matrix Multiplication (right).
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scheduling time was orders of magnitude smaller thamnd scheduling malleable tasks with arbitrary precedence
the makespan of these applications. constraints is strongly NP-hard for 2 processors. Hence,
The performance for the strassen multiplication iseveral researchers have proposed heuristic solutions
shown in Figure 9(b). We find that iCASLB shows 32%and approximation algorithms [21], [22], [23], [24].
and 23% improvement over CPR and 48% and 34% oveéurek et al. [21] propose an approximation algorithm for
CPA for 8 and 16 processors. iCASLB also achievescheduling independent parallel tasks with performance
upto 48% and 42% improvement over TASK and DATAwithin a factor of 2 compared to the optimal, and Jansen
respectively for 16 processors. and Porkolab [22] propose a polynomial approximation
scheme based on integer linear programming. Jansen
et al. [23] and Lepere et al. [24] describe approximation
Optimal scheduling of malleable tasks with precealgorithms for scheduling malleable tasks with prece-
dence constraints have been shown to be a hard problgshce constraints.
to solve [19], [20]. Papadimitriou and Yannakakis [19]
have proved that the problem of scheduling sequentialln [3], Ramaswamy et al. introduce the Macro
tasks with precedence constraints is NP-complete. Mataflow Graph (MDG) which is a directed acyclic
and Leung [20] have shown that scheduling independegraph, to represent the structure of mixed-parallel pro-
malleable tasks is strongly NP-hard for 5 processorgtams. The MDG is a directed acyclic graph with

V. RELATED WORK



vertices representing sequential or data-parallel computesing both synthetic task graphs and those derived from
tions and edges representing the precedence constrairdal applications show that iCASLB achieves significant
and two special nodes, one preceeding and one succegaeiformance improvement over other schemes like CPR,
ing all other nodes. Ramaswamy et al. [3] propose @PA, TASK and DATA.

two-step allocation and scheduling scheme, TSAS, toOur future work in this area will be focused on two
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