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Abstract— Large computationally complex applications
can often be viewed as a collection of coarse-grained data-
parallel tasks with precedence constraints. Researchers
have shown that combining task and data parallelism
(mixed parallelism) can be an effective approach for
executing these applications, as compared to pure task or
data parallelism. In this paper, we present an approach to
determine the appropriate mix of task and data parallelism,
iė̇, the set of tasks that should be run concurrently and
the number of processors to be allocated to each task.
An iterative algorithm is proposed that couples processor
allocation and scheduling of mixed-parallel applications on
compute clusters so as to minimize the parallel completion
time. Our algorithm iteratively reduces the makespan by
increasing the degree of data parallelism of tasks on the
critical path that have good scalability and a low degree of
potential task parallelism. Our approach employs a look
ahead technique to escape local minima and uses a priority
based backfill scheduling scheme to efficiently schedule the
parallel tasks onto processors. Evaluation using benchmark
task graphs derived from real applications as well as
synthetic graphs shows that our approach consistently
performs better than CPR and CPA, two previously pro-
posed scheduling schemes, as well as pure task and data
parallelism.

I. I NTRODUCTION

Parallel scientific applications can often be decom-
posed into a set of coarse-grained data-parallel tasks
with precedence constraints that signify data and con-
trol dependences. These applications can benefit from
two forms of parallelism: task and data parallelism.
Task parallelism refers to the concurrent execution of
independent tasks of the application on the same or
different data elements. Data parallelism, on the other
hand, refers to the parallel execution of a single task
on data distributed over multiple processors. In a pure
task-parallel approach, each task is assigned to a single
processor and multiple tasks are executed concurrently
such that precedence constraints are not violated and
there are sufficient number of processors in the system.
In a pure data-parallel approach, the tasks are run in a
sequence on all available processors. However, a pure

task- or pure data-parallel approach may not be the
optimal execution paradigm. Most applications exhibit
limited task parallelism due to precedence constraints.
The sub-linear speedups achieved leads to poor perfor-
mance of pure data-parallel schedules. In fact, several
researchers have shown that a combination of both,
called mixed parallelism, yields better speedups [1], [2],
[3]. In mixed-parallel execution, several data-parallel
tasks are executed concurrently in a task-parallel manner.

This paper proposes a single-step approach for pro-
cessor allocation and scheduling of mixed-parallel execu-
tions of applications consisting of coarse-grained parallel
tasks with dependences. The goal is to minimize the
parallel completion time or makespan of an application
task graph, given the runtime estimates and speedup
functions of the constituent tasks. Starting from an
initial processor allocation and schedule, the proposed
algorithm iteratively reduces the makespan by increasing
the degree of data parallelism of selected tasks on
the critical path. A look-ahead mechanism is used to
escape local minima. Priority based backfill scheduling
is used to improve effective processor utilization and
minimize idle time slots. We compare the proposed algo-
rithm with two previously proposed scheduling schemes:
Critical Path Reduction (CPR) [4] and Critical Path
and Allocation (CPA) [5], that have been shown to
give good improvement over other existing approaches
like TSAS [3] and TwoL [6], as well as pure task-
parallel and pure data-parallel schemes. The approach
is evaluated using synthetic task graphs and task graphs
based on real applications, from the Standard Task Graph
Repository [7] as well as task graphs from the domains
of Tensor Contraction Engine [8], [9] and Strassen
Matrix Multiplication [10]. We find that our algorithm
consistently performs better than the other scheduling
approaches.

This paper is organized as follows. The next section
introduces the task graph model and some definitions.
Section 3 describes the allocation and scheduling al-



gorithm and Section 4 describes the benchmarks used
for evaluations and the experimental results. Section 5
gives an overview of the related work and in section
6, we summarize the conclusions and outline possible
directions for future research.

II. TASK GRAPH MODEL

A mixed-parallel program can be represented as a
macro data-flow graph [3] which is a weighted directed
acyclic graph (DAG),G = (V,E), where V , the set
of vertices, represents data parallel computations andE,
the set of edges, represents precedence constraints. Each
data-parallel computation can be executed on any num-
ber of processors. There are two distinguished vertices
in the graph: thesource vertexprecedes all other vertices
and thesink vertexsucceeds all other vertices.

The weight of each vertex corresponds to its execution
time on different numbers of processors. This function
can be provided by the application developer, or ob-
tained by profiling the execution of the task on different
numbers of processors. Downey’s model is commonly
used to model the speedup of parallel programs [11].
Downey’s speedup model is a non-linear function of two
parameters:A, the average parallelism of a task, andσ,
a measure of the variations of parallelism. According to
this model, the speedupS of a task as a function of the
number of processorsn, is given by:

S(n) =


An

A+σ(n−1)/2
(σ ≤ 1) ∧ (1 ≤ n ≤ A)

An
σ(A−1/2)+n(1−σ/2)

(σ ≤ 1) ∧ (A ≤ n ≤ 2A − 1)

A (σ ≤ 1) ∧ (n ≥ 2A − 1)
nA(σ+1)

σ(n+A−1)+A
(σ ≥ 1) ∧ (1 ≤ n ≤ A + Aσ − σ)

A (σ ≥ 1) ∧ (n ≥ A + Aσ − σ)

It is assumed that the communication costs within
a data-parallel task dominate communication costs be-
tween data-parallel tasks. This assumption holds when
each vertex of the DAG is a coarse-grained parallel pro-
gram. Each task is assumed to run non-preemptively and
can start only after the completion of all its predecessors.
The terms, vertices and tasks are used interchangeably
in the rest of the paper.

The length of a path in a DAGG is the sum of the
weights of the vertices along that path. Thecritical path
of G, CP (G), is defined as the longest path inG. The
top level of a vertexv in G, denoted bytopL(v), is
defined as the length of the longest path from the source
vertex tov, excluding the vertex weight ofv. Thebottom
level of a vertex v in G, denoted bybottomL(v), is
defined as the length of the longest path fromv to the
sink, including the vertex weight ofv. Any vertexv with
maximum value of the sum oftopL(v) andbottomL(v)
belongs to a critical path inG.

Let st(t) defines thestart time of a task t, and
ft(t) define its finish time. A task t is eligible to
start execution after all its predecessors are finished,

i.e., theearliest start timeof t is defined asest(t) =
max(t′,t)∈E ft(t′). Due to resource limitations the start
time of a taskt can be greater than its earliest start
time, i.e.,st(t) ≥ est(t). Note that with non-preemptive
execution of tasks,ft(t) = st(t) + et(t, np(t)). Here,
np(t) is the number of processors allocated to taskt,
and et(t, p) is the execution time oft on p processors.
The parallel completion time or makespan ofG is the
finish time of the sink vertex.

III. PROCESSORALLOCATION AND SCHEDULING

ALGORITHM

In this section, we describe iCASLB (an iterative
Coupled processor Allocation and Scheduling algorithm
with Lookahead and Backfill), a new algorithm for
processor allocation and scheduling of mixed-parallel ap-
plications. Unlike schemes that dissociate the allocation
and scheduling phases [3], [5], iCASLB is a one-phase
algorithm that simultaneously determines both. iCASLB
is designed to reduce the makespan of a DAG by:

• implementing a one phase approach for allocating
resources and scheduling tasks which can exploit
detailed knowledge of both the application structure
and the resource availability.

• utilizing priority based backfilling to increase uti-
lization

• using look-ahead to avoid local optima
• reducing the makespan by increasing the width

of task on the schedule’s critical path (including
induced resource dependencies)

• only increase the width of tasks which have a low
degree of potential task parallelism

• increase the width of tasks which have good scala-
bility

As confirmed by the experimental results, these features
allow iCASLB to produce better schedules than previous
schemes. The rest of this section presents the salient
features iCASLB in detail.

A. Initial Allocation and Schedule-DAG Generation

The initial allocation of processors to tasks is com-
puted as follows. For each task we over-estimate the
number of “possibly concurrent tasks” and compute the
available number of processors assuming we allocate the
best number of processors to each of those concurrent
tasks. The best number of processors for a task is
defined as the number of processors on which the task’s
minimum execution time is achieved. If the number of
available processors is more than 1, we allocate the
minimum of the task’s best number of processors and
the number of available processors. Otherwise we simply
start with allocating 1 processor to that task.

iCASLB iteratively refines this initial allocation by
identifying the best candidatetask and increasing its



Task t np(t) et(t, np(t))
T1 4 10
T2 3 7
T3 2 5
T4 4 8

Fig. 1. (a) Task GraphG, (b) Sample allocation of processors, (c)
Modified Task Graph,G′.

Number of Processors
Tasks 1 2 3 4

T1 12.0 9.0 7.0 5.6
T2 35.0 20.0 13.0 11.0
T3 100.0 65.0 48.0 35.0

Fig. 2. (a) Task GraphG, (b) Execution time profile.

processor allocation.Candidatetasks lie on the critical
path of the schedule. The critical path of the schedule
is given by CP (G′), whereG′, the schedule-DAG, is
the original DAG G with edges added because ofin-
duced dependencesdue to resource limitations.CP (G′)
represents the longest path in the current schedule,
hence reducing this path length will tend to reduce the
makespan.

The addition of pseudo-edges to form the schedule-
DAG is illustrated below. Consider the scheduling of
the task graph displayed in Figure 1(a) on 4 proces-
sors. The processor allocation information is given in
Fig 1(b). Due to resource limitations tasksT2 and T3
are serialized in the schedule. Hence, the modified DAG
G′ (Fig 1(c)) which represents the schedule, includes an
additional pseudo-edge between verticesT2 andT3. The
critical path length of30 of G′ is the makespan of the
application.

B. Best Candidate Task Selection

Once candidate tasks are selected, a “best” task must
be chosen for expansion in a given iteration. A poor
choice of the best candidate will affect the quality of the
resulting schedule as shown in the following example.
Let the task graph in 2(a) be scheduled on 4 processors
and each task be initially allocated one processor. Tasks
T1 and T3 lie on the critical path and either of them
could be chosen to decrease the critical path length. If
T1 were chosen and were allocated 4 processors, we
would obtain a data parallel schedule, with a makespan
of 51.6. On the other hand, ifT3 were chosen, we could
get a shorter makespan of48 by allocating 4 processors
to T3, 1 processor toT1 and 3 processors toT2.

In order to reduce the probability of the previous
example, iCASLB selects the best candidate task by

Number of Processors
Tasks 1 2 3

T1 10.0 7.0 5.0
T2 8.0 6.0 5.0
T3 9.0 7.0 5.0
T4 7.0 5.0 4.0

Fig. 3. (a) Task GraphG, (b) Execution time profile.

considering two aspects: 1) scalability of the tasks and
2) global structure of the DAG. The goal of choosing
a best candidate task is to choose a task which will
reduce the makespan the most. First, the improvement
in execution time of each candidate taskct is computed
as et(ct, np(ct)) − et(ct, np(ct) + 1). However, just
picking the candidate task with the maximum decrease in
execution time is a greedy choice that does not consider
the global structure of the DAG and may result in a poor
schedule. An increase in processor allocation to a task
limits the number of tasks that can be run concurrently.
Consider that the task graph in 3(a) is to be scheduled
on 3 processors. Each task is initially allocated one
processor each. TasksT1 and T2 lie on the critical
path andT1 has the maximum decrease in execution
time. However if we were to increase the processor
allocation of T1, it will serialize the execution ofT3
or T4, resulting finally in a makespan of17. A better
choice here, is to chooseT2 as the best candidate, and
schedule it on 3 processors, leading to a makespan of
15.

To avoid this, iCASLB chooses a candidate task that
not only has good execution time improvement, but also
has a lowconcurrency ratio. The concurrency ratio of
task t, cr(t) is a measure of the minimum amount of
work that can be done concurrent tot, relative to its
own work, that is,

cr(t) =

∑
t′∈cG(t) et(t′, 1)

et(t, 1)

Here,cG(t) represents the maximal set of tasks that can
run concurrent tot. A task t′ is said to be concurrent
to a task t in G, if there is no path betweent and
t′ in G. This means that there is no direct or indirect
dependence betweent′ and t, hencet′ can potentially
run concurrently witht.Depth First Search (DFS) is used
to identify dependent tasks. First, a DFS from taskt on
G is used to compute a list of tasks that depends on
t. Next, a DFS on the transpose ofG, GT , (obtained
by reversing the direction of the edges onG) computes
the task whicht is dependent on. The remaining tasks
constitutes the maximal set of concurrent tasks inG,
cG(t), for taskt.



Number of Processors
Tasks 1 2 3 4

T1 40.0 20.0 13.3 10.0
T2 80.0 40.0 26.7 20.0

Fig. 4. (a) Task GraphG, (b) Execution time profile assuming linear
speedup.

To select the best candidate task, the tasks in the criti-
cal path ofG′ are sorted in non-increasing order based on
the amount of decrease in execution time.From the top
X% of the list, the task with the minimum concurrency
ratio is chosen as the best candidate. Choosing an X of
10 has yields good results for all of our experiments.
Therefore, iCASLB widens tasks such that the chosen
candidate task scales well and is competing for resources
with relatively few other tasks.

C. Intelligent Look-ahead

Once the best candidate is selected, its processor
allocation is incremented by one, a new schedule is
computed using PrBS (described in the next sub-section),
and the makespan of the new schedule is computed. If
only schedules which decrease the makespan from the
previous schedule were allowed, it would be easy to
be trapped in local minima. Consider the simple DAG
shown in Figure 4 and the execution profile assuming
linear speedup. AsT2 is more critical,T2 would be
chosen to be widened to 3 processors. In the next
iteration, T1 is more critical. However, increasing the
processor allocation ofT1 to 2 causes an increase in the
makespan. If the algorithm does not allow temporary
increases in makespan, the schedule is stuck in a local
minima: allocating 3 processors toT2 and 1 processor
to T1. However, the data parallel schedule, i.e., running
T1 and T2 on all 4 processors, leads to the smallest
makespan.

To alleviate this problem, iCASLB uses an intelligent
look-ahead mechanism. The look-ahead mechanism al-
lows allocations that cause an increase in makespan for a
bounded number of iterations. After these iterations, the
allocation with the minimum makespan is chosen and
committed. The bound for the number of iterations is
taken to be2×maxt∈V (P−np(t)). This is motivated by
the observation that an increase in makespan is caused by
two previously concurrent tasks being serialized due to
resource limitations. Therefore, choosing the number of
iterations in this way allows any two tasks to transform
from a task parallel to data parallel execution (using the
maximum number of processors).

D. Priority Based Backfill Scheduling (PrBS)

Priority based list scheduling is a popular and effec-
tive approach for scheduling task graphs composed of
sequential tasks with dependences [12]. The tasks are

Algorithm 1 Coupled Allocation and Scheduling
1: for all t ∈ V do
2: p← P −

∑
t′∈cG(t)

Pbest(t
′) . number of

available processors if we allocate best number of
processors to each of the concurrent tasks

3: if p > 1 then
4: np(t)← min(Pbest(t), p)
5: else
6: np(t)← 1
7: best Alloc← {np(t)|t ∈ V } . Best allocation is the

initial allocation
8: best sl← PrBS(G, best Alloc)
9: repeat

10: {np(t)|t ∈ V } ← best Alloc . Start with best
allocation

11: old sl← best sl . and best schedule
12: LookAheadDepth← 2×maxt∈V (P − np(t))
13: iter cnt← 0
14: while iter cnt ≤ LookAheadDepth do
15: CP ← Critical Path inG′

16: tbest ← BestCandidate in CP with np(t) <
min(P, Pbest(t)) and t is not marked if
iter cnt = 0

17: if iter cnt = 0 then
18: tentry ← tbest . tentry signifies the point of

start of this look-ahead search
19: np(tbest)← np(tbest) + 1
20: A′ ← {np(t)|t ∈ V }
21: cur sl← PrBS(G, A′)
22: if cur sl < best sl then
23: best Alloc← {np(t)|t ∈ V }
24: best sl← PrBS(G, best Alloc)
25: iter cnt← iter cnt + 1
26: if best sl ≥ old sl then
27: Mark tentry as a bad starting point for future

searches
28: else
29: Commit this allocation and unmark all marked

tasks
30: until for all taskst ∈ CP , t is either marked ornp(t) =

min(P, Pbest(t))

prioritized and at each scheduling step the ready task
with the highest priority is scheduled. List scheduling
keeps track the latest free time for each processor, and
forces all tasks to be executed in priority order.

The strict priority order of list scheduling tends to
needlessly waste compute cycles. Parallel job schedulers
usebackfilling [13] to allow lower priority jobs to use
unused processor cycles without delaying higher priority
jobs, thereby increasing processor utilization. Parallel job
scheduling can be viewed as 2D chart with time along
one axis and the number of processors along the other
axis, where the purpose is to efficiently pack the 2D
chart (schedule) with jobs. Each job can be modeled
as a rectangle whose height is the estimated run time
and the width is the number of processors allocated.
Backfilling works by identifying ”holes” in the 2D chart
and moving forward smaller jobs that fit those holes.



Algorithm 2 PrBS - Priority-Based Backfill Scheduling
1: function PRBS(G, {np(t)|t ∈ V })
2: G′ ← G
3: while not all tasks scheduleddo
4: Let t be the task with highest value ofbottomL(t)
5: st(t)← earliest time at whichnp(t) processors

are available for durationet(t, np(t))
6: if st(t) > est(t) then
7: Select a set of taskst′ ∈ V , such that

ft(t′) = st(t) and
∑

np(t′) ≥ np(t)
8: Add a psuedo edgebetween each task in this

set andt
9: return <Schedule length,G′ >

iCASLB uses conservative backfilling strategy to backfill
tasks of lower priority that fit in the ”holes” as long as
they do not delay a previously scheduled higher priority
task.

Algorithm 1 outlines iCASLB. The initial allocation of
processors to tasks is described in (steps 1-6). In the main
repeat-until loop (steps 9-30), starting from the current
best solution, the algorithm does a look-ahead (steps 14-
25) and keeps the best solution found so far (step 22-
24). If the look-ahead process does not yield a better
solution, the task that was the first best candidate in that
look-ahead process is marked as a bad starting point for
future search. However, if a better makespan was found,
all marked tasks are unmarked, the current allocation is
committed and we continue the search from this state.
The look-ahead, marking, unmarking, and committing
steps are repeated until either all tasks in the critical
path are marked or all of them are allocated the best
possible number of processors. The psuedo code for the
scheduling algorithmPrBS is given in algorithm 2.

The complexity of thePrBS algorithm can be an-
alyzed as follows: (a)O(|V | + |E|) for computing the
bottom levels of the tasks, (b)O(|V |log|V |) to sort the
vertices in the decreasing order of their bottom levels,
(c) O(|V |2) to schedule the tasks on the processors and
adding pseudo-edges. Thus, the overall complexity of
PrBS is O(|E|+ |V |2).

iCASLB requires O(|V | + |E′|) time to compute
the critical path (CP ) in G′ and choosing the best
candidate takes constant time. Therefore, the while loop
in steps 14-25 isO(P (|E′| + |V |2)). The repeat-until
loop in steps 9-30, has at most|V |P iterations, as there
are at most|V | tasks inCP and each can be allocated
at most P processors. Hence, the overall worst-case
complexity of iCASLB isO(|V |3P 2 + |V |P 2|E′|).

IV. PERFORMANCEANALYSIS

We have compared the quality of the schedules gen-
erated by our approach with those generated by CPR,
CPA and by pure task-parallel and data-parallel schemes.

CPR is a single-step approach while CPA is a two-
phase scheme and both have been shown in [4], [5]
to perform better than other allocation and scheduling
approaches like TSAS [3]. Pure task-parallel schedule
(TASK) allocates one processor to each task, whereas
pure data parallel schedule (DATA) executes each task
on all processors one after the other.

We have evaluated the various scheduling approaches
using task graphs from the Standard Task Graph Set [7],
and task graphs derived from two applications.

A. Task Graphs from the Standard Task Graph Set

The Standard Task Graph Set [7] is a benchmark suite
for evaluation of multiprocessor scheduling algorithms.
It contains both randomly generated task graphs and
those modeled from actual applications. In this set, the
shapes (precedence constraints) of the random graphs
are determined based on four different reported meth-
ods [14], [15], [16]. In our experiments, we have used
both random DAGs as well as two application DAGs -
Robot Controlwhich is the task graph for Newton-Euler
dynamic control calculation [17], andSparse Matrix
Solver, which is a task graph for a random sparse matrix
solver of an electronic circuit simulation. The robot
control DAG contains 88 tasks, while the sparse matrix
solver DAG has 96 tasks. Due to limited space, we have
not included these DAGs in the paper. We derived the
parallel speedups for the tasks in these DAGs using
the Downey model [11] by generatingσ, the variance
in average parallelism as a uniform random variable in
the interval [0-2.0] to represent the common scalability
characteristics of most parallel jobs [18].

Figure 5 shows the relative performance of the differ-
ent schemes for these two applications as we increase
the number of processors in the system. The relative
performance of an algorithm is computed as the ratio
between the makespan produced by iCASLB and the
makespan of the given algorithm when both are applied
on the same number of processors. Therefore, a ratio less
than 1 implies lower performance than iCASLB. For the
robot control application, iCASLB achieves upto 30%
improvement over CPR and upto 47% over CPA. We also
achieve upto 81% and 68% improvement over TASK
and DATA. For the sparse matrix solver application,
iCASLB, CPR and CPA perform similar to TASK upto
16 processors as the DAG is very wide. Beyond 16
processors, iCASLB shows an improvement upto 40%
over CPR, 25% over CPA and 67% and 86% over
TASK and DATA respectively, for 128 processors. DATA
performs poorly as the tasks have sub-linear speedup and
the sparse matrix DAG is wide.

Figure 6 shows the average relative performance of
the different schemes for 20 random graphs in STG
having 50 and 100 tasks respectively. Again, we see



(a) (b)
Fig. 5. Performance of the scheduling schemes for (a) Robot Control DAG (b) Sparse Matrix Solver DAG

(a) (b)
Fig. 6. Performance of the scheduling schemes for Synthetic DAGs having (a) 50 tasks (b) 100 tasks

similar trends as for the application DAGs. iCASLB
performs the best and shows an improvement upto 52%,
47%, 80%, 61% over CPR, CPA, TASK and DATA
respectively.

B. Task Graphs from Applications

The first task graph in this group comes from an appli-
cation called Tensor Contraction Engine (TCE). The Ten-
sor Contraction Engine [8], [9] is a domain-specific com-
piler for expressing ab initio quantum chemistry models.
The TCE takes as input, a high-level specification of
a computation expressed as a set of tensor contraction
expressions and transforms it into efficient parallel code.
The tensor contractions which are generalized matrix
multiplications in a computation, form a directed acyclic
graph, and are processed over multiple iterations, until
convergence. We have evaluated the scheduling schemes
on equations from the coupled-cluster theory with single
and double excitations (CCSD). This computation is an
iterative method involving the computation of T1 and
T2 amplitudes, which are two and four dimensional
arrays respectively. Figure 7(a) displays the DAG for the
CCSD-T1 computation, where each vertex represents a
tensor contraction which is a binary operation between
two input tensors to generate a result. The edges in the
figure denote inter-task dependences and hence many

of the vertices have a single incident edge. Some of
the results are accumulated to form a partial product.
Contractions that take a partial product and another
tensor as input have multiple incident edges.

The second application is the Strassen Matrix Mul-
tiplication [10]. The task graph for this application
is shown in Figure 7(b), where the vertices represent
matrix operations and the edges represent inter-task
dependences. We have used matrix sizes of 1024X1024
in our experiments.

The speedup curves of the tasks in these applications
were obtained by profiling them on a cluster of Itanium-2
machines with 4GB memory per node and connected by
a 2Gbps Myrinet interconnect. The relative performance
of the schemes for the CCSD T1 equation is shown in
Figure 8(a). Currently, the TCE task graphs are executed
assuming a pure data-parallel schedule. As the CCSD T1
DAG is characterized by a few large tasks and many
small tasks which are not scalable, DATA performs
poorly. iCASLB shows upto 48% improvement over
DATA. CPR also performs well and is only upto 8%
worse than iCASLB while CPA is upto 25% worse than
iCASLB. With respect to scheduling times, CPA is a low
cost algorithm and is quick in computing the processor
allocation and schedule. iCASLB scales better than CPR
as the number of processors is increased. In all cases, the



Fig. 7. The CCSD task graph T1 computation (left) Strassen Matrix Multiplication (right).

(a) (b)
Fig. 8. Performance of the scheduling schemes for CCSD T1 computation (a) Relative performance (b) Scheduling time

(a) (b)
Fig. 9. Performance of the scheduling schemes for Strassen Matrix Multiplication (a) Relative performance (b) Scheduling time

scheduling time was orders of magnitude smaller than
the makespan of these applications.

The performance for the strassen multiplication is
shown in Figure 9(b). We find that iCASLB shows 32%
and 23% improvement over CPR and 48% and 34% over
CPA for 8 and 16 processors. iCASLB also achieves
upto 48% and 42% improvement over TASK and DATA
respectively for 16 processors.

V. RELATED WORK

Optimal scheduling of malleable tasks with prece-
dence constraints have been shown to be a hard problem
to solve [19], [20]. Papadimitriou and Yannakakis [19]
have proved that the problem of scheduling sequential
tasks with precedence constraints is NP-complete. Du
and Leung [20] have shown that scheduling independent
malleable tasks is strongly NP-hard for 5 processors,

and scheduling malleable tasks with arbitrary precedence
constraints is strongly NP-hard for 2 processors. Hence,
several researchers have proposed heuristic solutions
and approximation algorithms [21], [22], [23], [24].
Turek et al. [21] propose an approximation algorithm for
scheduling independent parallel tasks with performance
within a factor of 2 compared to the optimal, and Jansen
and Porkolab [22] propose a polynomial approximation
scheme based on integer linear programming. Jansen
et al. [23] and Lepere et al. [24] describe approximation
algorithms for scheduling malleable tasks with prece-
dence constraints.

In [3], Ramaswamy et al. introduce the Macro
Dataflow Graph (MDG) which is a directed acyclic
graph, to represent the structure of mixed-parallel pro-
grams. The MDG is a directed acyclic graph with



vertices representing sequential or data-parallel computa-
tions and edges representing the precedence constraints,
and two special nodes, one preceeding and one succeed-
ing all other nodes. Ramaswamy et al. [3] propose a
two-step allocation and scheduling scheme, TSAS, to
schedule mixed parallel applications on a P processor
system. In the first step, a convex programming formu-
lation is used to decide the processor allocation. In the
second step, the tasks are scheduled using a prioritized
list scheduling algorithm. A low cost two-step approach
has also been proposed by Radulescu et al. [5], where
a greedy heuristic is employed to iteratively compute
the processor allocation, followed by scheduling of the
tasks. Both these approaches attempt to minimize the
maximum of average processor area and critical path
length. However, they are limited in the quality of
schedules they can produce due to the decoupling of
the processor allocation and scheduling phases. Another
work by Radulescu et al. [4] proposes a single-step
heuristic, CPR (Critical Path Reduction) for scheduling
data parallel task graphs. Starting from a one-processor
allocation for each task, CPR iteratively increases the
processor allocation until there is no improvement in
makespan. Though iCASLB is also a one-step iterative
approach, it employs effective heuristics for choosing
the correct critical task that will decrease the makespan
if the degree of data parallelism is increased, utilizes an
intelligent look-ahead mechanism to avoid local minima,
and uses priority-based backfilling to increase processor
utilization. Boudet et al. [25] propose another single
step approach for scheduling task graphs which assumes
the execution platform to be a set of pre-determined
processor grids. Each parallel task can only execute on
any of these processor grids. In this paper, we assume a
more generic system, where a parallel task can execute
on any number of processors.

Some researchers have proposed approaches for opti-
mal scheduling for specific task graph topologies. These
include Subhlok and Vandron’s approach for schedul-
ing pipelined linear chains of parallel tasks [26], and
Prasanna’s scheme [27] for optimal scheduling of tree
DAGS and series parallel graphs for specific speedup
functions.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents iCASLB, an iterative coupled
processor allocation and scheduling strategy for mixed
parallel applications. iCASLB makes intelligent alloca-
tion and scheduling decisions based on the scalability
curves of the tasks and the global structure of the ap-
plication task graph. The look-ahead mechanism avoids
local minima and priority based backfill scheduling en-
ables effective processor utilization. Experimental results

using both synthetic task graphs and those derived from
real applications show that iCASLB achieves significant
performance improvement over other schemes like CPR,
CPA, TASK and DATA.

Our future work in this area will be focused on two
key aspects: 1) development of a run-time framework
for the on-line scheduling of mixed parallel applications
which can adapt to the run-time dynamics of both the
system and the application and 2) scheduling out-of-core
mixed parallel applications, where each data parallel task
is characterized by both computation and I/O.
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