
A Sorting Service for Next Generation Data Analysis Centers ∗

G. Buehrer1, S. Parthasarathy12, A. Ghoting1, Xi Zhang1, S. Tatikonda1, T. Kurc2, and J. Saltz12

The Ohio State University, Columbus, OH, USA

Advances in data collection and storage technologies
have given rise to large dynamic data stores. In order
to effectively manage and mine such stores on modern
and emerging architectures, one must consider both de-
signing effective middleware support and re-architecting
algorithms, to derive performance that commensurates
with technological advances. In this report, we present
a sorting algorithm for preplacing transactions on disk,
designed to support middlewares for data mining.

1 Introduction

For many large data sets, efficient placement on disk
is a critical step towards an effective solution. We build
into our framework a sorting service designed to partition
large data sets across the cluster. This service is designed
to accommodate dynamic updates to the data stores, and
data input is assumed to be streaming. Each node can
accept new data. Data sets are partitioned into datalets,
which are data blocks bounded by the main memory of
the host node. This bound accommodates efficient in-
memory sorting when needed. When an incoming data
object is processed, the receiving node checks its mani-
fest for the mapping between the node and the object.
The object is then transferred to the appropriate host.
In some cases, the datalet may reach its maximum size.
At that time, the block is redistributed across the clus-
ter, and a global communication proceeds to update all
manifests.

The particular comparison function for sorting is
datalet driven. For transactional data, we implement
two datalet manifests. The first method sorts transac-
tions based on its items. The second method requires the
datalet at the incoming node to maintain a frequency for
each unique item in the data set, and sorts the transac-
tion based on frequencies, where the most frequent item
is sorted first. This second method requires additional
information to be propagated by nodes which receive the
original transaction, but it allows for highly efficient min-
ing. Both methods begin with a log distribution, and use

∗This work is primarily supported by NSF grant #NGS-CNS-

0406386. The authors would also like to acknowledge NSF grants

#CAREER-IIS-0347662 and #RI-CNS-0403342. 1Department of

Computer Science and Engineering, 2 Department of Biomedical

Informatics. Contact email: srini@cse.ohio-state.edu

Input: Transaction T, int totalFiles
Output: int Xt

CalculateFileNo(Transaction T,int totalFiles)
(1) min = 0
(2) max = totalFiles
(3) check = 0
(4) index = 0
(5) While (min < max and index < |T |)
(6) If (T[index] == check)
(7) max = (min+max)/2
(8) index++
(9) Else
(10) min = (min+max+1)/2
(11) check++
(12)End While
(13)Return min

Figure 1. Geometric Partitioning Algorithm.

frequency data to reform blocks to linear distributions
based on parity.

2 Sorting Service Overview

When executions force meta structures to spill onto
disk, many algorithms exhibit severe performance degra-
dation. This is understandable; typical main memory ac-
cess times are about 15 nanoseconds, while typical disk
access times are 5 milliseconds, constituting a 333,000-
fold gap in performance. This gap is likely to widen in
the future because memory access times are improving
faster than disk access times. Our strategy to achieve
an out-of-core solution is to minimize the performance
degradation due to this gap through data and computa-
tion restructuring, to improve locality. In this Section, we
present a sorting technique for improving the I/O perfor-
mance of frequent itemset mining algorithms. We choose
to present this technique via FPGrowth because it has
been shown to be the most efficient frequent pattern min-
ing algorithm to date [1].

1

Input: int N, partition X
Output: int Xt

CalculateFileNo(Transaction T,int totalFiles, int
index, int check)
(1) If (|X| > 2N)
(2) If (T[index] < check+N
(3) Xt = T[index] - check
(4) Else
(5) div = (totalFreqItems - check)/(|X| − N)
(6) Xt = (T[index] - check)/div
(7) Else
(8) div = (totalFreqItems - check)/(|X| − N)
(9) Xt=(T[index] - check)/div
(10)Return Xt

Figure 2. Arithmetic Partitioning Algorithm.

2.1 Approximate Hash Sorting

As discussed earlier, the initial step in FPGrowth is
to construct a global prefix tree. This first tree can be
quite large; at low supports it can approach or even ex-
ceed the size of the data set. For in-core data sets, this
construction time is typically a small percentage (< 5
%) of the total mining time. For out-of-core data sets,
however, construction of the first tree results in severe
performance degradation. During an empirical study we
found that our cache-conscious algorithm was a signifi-
cant performance improvement over FPGrowth for out-
of-core data sets. However, it spent over 90% of the ex-
ecution time building the first tree, due to an excessive
number of page faults. The reason is that transactions
within the data set appear randomly, which results in
random writes to the tree nodes in virtual memory dur-
ing tree construction. Even if the initial data set had its
transactions ordered, the problem would persist since the
transactions are relabeled prior to tree construction (for
improved overlap).

Our solution to this problem is to redistribute and ap-
proximately sort the transactions after the first scan of
the database. Naturally, sorting on disk is quite slow.
Traditional methods for external sorting (such as B-tree
insertion and disk-based merge sort) do not provide an
overall performance improvement. Exact sorting requires
too much time. Instead, we leverage domain knowledge
and the frequency information collected in the first scan
to approximately sort the frequent transactions into a
partition of blocks. Each block is implemented as a
separate file on disk. The algorithm guarantees that
each transaction in blocki sorts before all transactions
in blocki+1, and the maximum size of a block is no larger
than a preset threshold. By blocking the frequent data
set, we can build the tree on disk in fixed memory chunks.
A block as well as the portion of the tree being updated

t[0]=0 (0−3)

t[2]=2 (0)

t[2]!=2 (1)

t[1]=2 (2)

t[1]!=2 (3)

t[1]=2 (4)

t[1]!=2 (5)

t[0]!=2 (7)

t[0]=2 (6)

t[1]=1 (0−1)

t[1]!=1 (2−3)

t[0]=1 (4−5)

t[0]!=1 (6−7)

t[0]!=0 (4−7)

KEY : DECISION (POSSIBLE FILE ASSIGNMENT)

Starting with >2
Transactions
All

Starting with 2
Transactions
All

Starting with 1
Transactions
All

Starting with 0
Transactions
All

NULL(0−7)

File 0

File 1

File 2

File 3

File 4

File 5

File 6

File 7

Figure 3. Geometric Partitioning Decision Dia-
gram, for 8 Files.

by the block will fit in main memory during tree con-
struction, reducing page faults considerably.

We use frequency distributions to choose one of the
two partitioning algorithms listed in Figures 1 and 2 by
building a simple model of the distribution. We build
this model using the top 10% most frequent items. Es-
sentially, if the item frequencies follow a geometric series
(in descending order), we partition based on the algo-
rithm in Figure 1, otherwise we partition based on the
algorithm in Figure 2.

We first describe the algorithm in Figure 1. Let
X= |partition|, or the total number of files. Let S rep-
resent the maximum file size. We define a function such
that transactions with the most frequent item receive the
top X/2 of the blocks, transactions with the second most
frequent item receive the next X/4 of the blocks, and so
on. Of these top X/2 partitions, the top X/4 are dedi-
cated to the subset which also contain the second most
frequent item. The bottom X/4 blocks of this subset are
split into two equal sections. The top X/8 is dedicated
to transactions containing the third most frequent item
exists, and the lower X/8 for those which do not. This
pattern recurses until the exact block number is known.
Therefore, in one scan, each transaction is inserted into
one of X blocks (typically 256), based on its contents. In
the case that a partition has a size above our threshold,
we evaluate its local distribution and process it recur-
sively.

Let us illustrate this algorithm with a simple exam-
ple. Suppose transaction T = {33, 11208, 11, 678, 14,
91, 278}. After scanning the data set, calculating fre-
quencies (removing infrequent items) and relabeling, the
transaction becomes T’ = {0, 1, 4, 6, 10}. Let the num-
ber of files |X| = 8, as in Figure 3. Our task is to de-

2

Starting with 7−11

Starting with 12−16

Starting with 17−21

Starting with 22−26

Transactions

Transactions

Transactions

Transactions

Transactions

Transactions

TransactionsFile 6

File 4

File 3

File 1

t[0] < 0 + N

Starting with 2−6

N = 2, total Items = 32

t[0] >= 0 + N

26 < t[0] < 32

21 < t[0] < 27

16 < t[0] < 22

1 < t[0] < 7

6 < t[0] < 12

11 < t[0] < 17

File 2

File 5

t[0]=1

t[0]=0

All
Transactions
Starting with 27−31

Starting with 0

Starting with 1

File 0

All

All

All

All

All

File 7

All

All

Figure 4. Arithmetic Partitioning Decision Dia-
gram, for 8 Files.

termine Xt, the file assigned to T’. We examine the first
element in the transaction, and if it is the smallest (most
frequent) element possible, we assign it to the upper half
of the possible files. In our example, 0 = 0 (first item in
transactionis the most frequent item), so we reduce the
potential file assignment to 0-3. The second element is
also its minimum (1=1,second item is the second most
frequent item), and therefore the file list is reduced to
0-1. The third element is not its minimum (4 6= 2, or
the third item in the transaction is not the third most
frequent item), so the block is assigned to file X1.

If the item frequency model more closely resembles a
linear distribution, we partition using the algorithm in
Figure 2. Effectively, we assign the first N blocks to the
most frequent items, and assign the remaining items to
the remaining files equally. Lines 2−6 assign the trans-
action to either a dedicated file if the item in the index is
highly frequent, or a shared file if the item is not highly
frequent. High frequency is relative; we allow for a pa-
rameter N to distinguish the threshold for the top items
which receive dedicated files. In practice we set N to
5% of the total number of frequent items. A decision
diagram for this algorithm is presented in Figure 4. As
an optimization, if two consecutive items are both highly
frequent, then we skip their indices when sorting, since
the count information does not help to partition the data.

As stated earlier, it may be the case that a result-
ing file in the partition exceeds our threshold S. If so,
we simply recurse on the file with the same procedure.
However, we must calculate the new start index (in the
transaction) to continue the partitioning. The index can
be determined solely based on the file number, using the
algorithm provided in Figure 5. Note that this results
in n ∗ |partition| − (n − 1) files in total, where n is the
number of file splitting calls. For sub-splitting files which

Input: int N, partition X
Output: int index

CalculateFileNo(int fileNo)
(1) index=0
(2) x = log2|X|
(3) check = x
(4) For (i = 1; i < x; i + +)
(5) If (fileNo mod 2i < 2i−1)
(6) index++
(7) Else
(8) Break
(7) Return index

Figure 5. Recursive Index Calculation.

surpass the maximum file size, we may neglect to build
a model of the distribution for that subfile. Note that
odd file numbers contain transactions whose last element
was not the minimum (most frequent) value possible, and
even valued file numbers contain transactions whose last
element was a minimum. In practice we have found file
parity provides sufficient information to evaluate which
algorithm to use when sub-splitting; even numbered files
are partitioned geometrically and odd numbered files are
partitioned arithmetically.

With the knowledge that consecutive files are in rel-
ative order, tree building can proceed by processing the
files in order with a minimum number of page faults. This
partitioning technique dramatically reduces the cost of
building the main tree on disk, and provides a significant
improvement to the total execution time.

References

[1] B. Goethals and M. Zaki. Advances in frequent itemset mining im-
plementations. In Proceedings of the ICDM workshop on frequent

itemset mining implementations, 2003.

3

