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Abstract

Scalar functions defined on a topological space � are
at the core of many applications such as shape match-
ing, visualization and physical simulations. Topological
persistence is an approach to characterizing these func-
tions. It measures how long topological structures in the
level sets �������
	������������� persist as � changes.
Recently it was shown that the critical values defining a
topological structure with relatively large persistence re-
main almost unaffected by small perturbations. This re-
sult suggests that topological persistence is a good mea-
sure for matching and comparing scalar functions. We
extend these results to critical points in the domain by
redefining persistence and critical points and replacing
sub-level sets ��������	����������� � with interval sets
�!�"�#�$	&%��'������)(+*�� . With these modifications we
establish a stability result for domain points that can be
used for matching two scalar functions.

1 Introduction

A scalar field is a scalar function �'	,�.-0/ defined
on some topological space � . Examples of scalar fields
are fluid pressure in computational fluid dynamics sim-
ulations, temperature in oceanographic or atmospheric
studies, and density in medical CT or NMR scans. A
level set of a scalar field is a set of points with the
same scalar value, i.e., �!���1�2	3������#�4��� . One
way of deriving quantitative information about scalar
fields is by studying the topological structures of its
level sets or the regions bounded by level sets, such as
�!�5�#�6	7������8�'� � . The mathematical field of Morse
Theory is the study of these topological structures.

Among the most basic problems on scalar fields is
simplifying a scalar field for compact representation,
identifying important features in a scalar field, and char-
acterizing the essential structure of a scalar field. Ex-
tracting and representing the topological structure of the
level sets is one way of approaching all these problems.
However, this topological structure may contain “small”
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topological features which are insignificant or caused by
noise. Small topological features should be removed
in simplification and ignored in characterizing essential
structure or identifying important features. How does
one determine which topological features are small?

Edelsbrunner, Letscher and Zomorodian in [5] intro-
duced the notion of topological persistence. As �;�</
increases, topological features appear and disappear in
the set ���1�=�>	?������@�A� � . If a topological fea-
ture appears at “time” % and disappears at “time” * , then
its persistence is the difference, *8B'% , between these
two times. Edelsbrunner et al. in [5] use homology
groups over CEDGF�C to define topological features. Carls-
son and Zomorodian [9] showed how topological persis-
tence could be computed for homology groups over any
fields.

At the core of various application areas such as shape
matching and visualization is the problem of character-
izing and comparing scalar fields. Topological persis-
tence gives one approach to comparing such fields. Two
fields are similar if they have matching topological fea-
tures with approximately the same persistence. This
approach to comparing fields makes sense only if per-
sistence remains stable under relatively small perturba-
tions of the scalar fields. Cohen-Steiner, Edelsbrunner
and Harer [3] proved that “large” persistence values re-
main almost unaffected. More precisely, let scalar fieldH
�"	I�J-K/ be a small perturbation of field �"	&�'-
/ ,
(i.e., L

H
�M����NBO������!LP�RQ for all ����� .) If � has a topolog-

ical structure with relatively large persistence which ap-
pears at % and disappears at * , then

H
� has a corresponding

topological structure which appears around % and disap-
pears around * .

Critical values are the range scalar values where the
topological structure of the level sets changes. Cohen-
Steiner et. al. showed that the critical values for struc-
tures with large persistence remain stable under small
perturbations of the scalar field. Scalar fields also have
critical points, points in the domain which change the
topological structure of the level sets. It is natural to ask
if critical points for structures with large persistence re-
main stable under perturbations of the field. If two scalar
fields are close, then are their significant critical points
“close”?

In this paper we revisit topological persistence and es-
tablish a stability result in terms of the critical points in
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the domain. There are two obstacles that we must over-
come. First, if we look only at the topological structure
of �!�R�@� 	 ������?� � � , then there is no such stability
result.

Consider Figure 1. Let � be a function defined on the
surface in / � shown in the figure where ������ is the � -
coordinate of the point � . The set ����� � 	������� �
����G� � is homeomorphic to a cylinder with circles ��� and
��� bounding each end. The first homology group (

	 � ) is
generated by the circle �
� . (It is also generated by circle
��� .) Assume that the two maxima � and � have � -co-
ordinates that are almost equal except that ����� ( ����G� .
Since ����� ( ����G� , the first homology group becomes
trivial in the set ����� �J	 �������� ����� � . Loosely speak-
ing, the cycle generated by � � at � gets destroyed at � .
According to the framework of [5], we get a persistent
value pair � ����G��� ������� .

Now consider a slightly perturbed � denoted as
H
� . SetH

� equal to � everywhere except in the vicinity of � and
� where

H
� is perturbed so that

H
����G� (

H
�M��� . Let ��� and

��� be new maxima close to � and � respectively for
H
� .

The cycle generated by �
� at � gets destroyed at ��� in
�!� � �'	

H
������ �

H
� ���� � � . We get a persistent value pair

� ����G���
H
������ ��� for

H
� . Since ����� is close to

H
������ � , the two

persistent value pairs, � ����G��� �������� and �
H
����G���

H
� ���� ��� , are

close, confirming the Cohen-Steiner et al. result. How-
ever, the points � and ��� are not close in any sense in the
domain.

p q

r

q’

1 2

4c3c

cc

Figure 1: Set �!� 	������� �.����G� � is homeomorphic to
a cylinder with ends at circles ��� and ��� . Circle ��� gen-
erates the first homology group of �!�R	 ������ �������� � .
Since ������ (�����G� , this homology group is destroyed
at � in �!�5	 ������ ������� � . If

H
� is a slight perturbation

of � where
H
�M���� � (

H
����� , then this homology group is

destroyed at � � in �!�R	
H
�M����?�

H
���� � � � . Points � and � �

are far apart in the domain.

Instead of considering only sets �!�"�"��	I������)� � �
which are bounded from above by a single level set,
we will consider interval sets that are bounded from
above and below by level sets. The sets we use are
�!�'� ��	 %R� ������ (.*�� . This is one crucial devia-
tion we make from the set up in earlier works [3, 5, 9].

It also leads to slightly different definitions for critical
points and persistence.

Returning to Figure 1, the first homology group of the
set �!��	 ����G� � ������ ( ����� � (open at the top) has two
distinct generators, one given by circle � � and one by cir-
cle � � . Point � destroys the homology group generated
by � � while point � destroys the one generated by � � .
In the perturbed field

H
� where

H
������ �8(

H
�M���� � , a similar

thing happens. Thus � and ��� (also � and ��� ) are critical
points for � and

H
� respectively and destroy homology

groups with approximately the same persistence.
The second problem in stability of critical points is

that corresponding critical points can be arbitrarily far
apart. Consider functions � and

H
� in Figure 2 where

L ������ B
H
������ L (�Q for all � � � . The maxima, � and

� , of � and
H
� , respectively, can be made arbitrarily far

apart even as Q is made arbitrarily small.
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Figure 2: The maximum � for a real valued function �
has moved by large distance even for an arbitrarily close
approximant

H
� .

Instead of using a metric in the domain, we use the
range to determine neighborhoods of points. A neigh-
borhood of point � is the connected component of ��� �
� 	 �������B �!� �@� � �����#"$�%�G� containing � . A point
which is in this neighborhood for small values of ��� and
� � is “close” to � . Note that points � and ��� in Figure 2
are “close” in this sense, but points � and �&� in Figure 1
remain far apart. We show that if � destroys a persis-
tent homology group in � , then the neighborhood of � ,
�!�����J	 ����� B'� � �@���R�������"(� � � , contains a point
� which destroys a persistent homology group in

H
� . The

values of �!� and �)� depend upon the persistence of the
homology group and the difference Q between � and

H
� .

Theorem 1, one of our main results, states that ev-
ery destroying critical point of � contains in its “neigh-
borhood” a similar destroying critical point of

H
� . How-

ever, to construct a matching of critical points, we need
each destroying critical point of

H
� to be in only one such

neighborhood. We establish this stronger result for criti-
cal points which are local maxima of functions on man-
ifolds. More specifically, we show that the neighbor-
hoods of local maxima with large persistence are pair-
wise disjoint.
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2 Definitions and assumptions

2.1 Homology groups

For a topological space � , the � th homology group	�� �� � is an algebraic encoding of the connectivity of
� in the � th dimension. For a good exposition on ho-
mology groups we refer to Hatcher [6]. We will use the
singular homology. Although homology groups are de-
fined for coefficients drawn from any ring, we will con-
sider only fields such as / ��� � C��3�RCED �7C for a prime �
as in the previous works [5, 9]. As discussed in Carlsson
and Zomorodian [9], computing the persistent homology
groups over non-fields is an unsolved and perhaps in-
tractable problem. Over fields the homology groups are
vector spaces and the rank of

	 � �� � , denoted 	 � �� � ,
is called the � th Betti number of � .

A continuous map �O	
� - � between two topo-
logical spaces � and � induces a homomorphism, say

� � , between their homology groups,
	 � �� ����- 	 � �� � .

This property is carried over the composition of maps,
that is,  �����&� � ��� � ��� � . In our case, the maps be-
tween spaces will be inclusions maps. This means, if

����� , we will consider the map
	 � �� ���- 	 � ��?�

where � is induced by the inclusion map �G	
� -�� .
From now on, we take the liberty of dropping the sub-
script � from

	 � �� � when it is clear from the context.
For ����� the relative homology group of � with re-
spect to � is given by

	 �� ��� �"� 	 ��3� D��  	 �� � �
where

	 �� ���- 	 �� � is the homomorphism induced
by inclusion �G	 ��-!� .

A sequence of groups "$# connected by homomor-
phisms form an exact sequence if any two consecutive
homomorphisms in the sequence

%&%'% -!"(# �*)-+"(#-, � � )/.10-�"(#/, �O- %&%&%
satisfy the property that

Im � # = Ker � #-, � %
We will use a specific type of sequence called Mayer-

Vietoris sequence which is known to be exact.
Let 2 �43657� so that � is the union of the interiors

of 2 and 3 and 8 �92;:<3 . The sequence

	�� �8 �>=- 	?� �2O�A@ 	�� B3 �DC- 	�� �� �FE- 	���G �GB8 �
is exact and is called the Mayer-Vietoris sequence [6, p.
149]. The map H is the connecting homomorphism given
by boundary maps [6, p. 116].

2.2 Notation

We use the following notation to define the region
bounded by �

G � �%P� and �
G �  * � . For %�� *�� / and func-

tions � and � , let

I$JK � �!����� 	 % ( ������ (@*��MLONQP
" JK � �!����� 	 % (R�������(R*�� %

In our results and proofs we need the space
I JK and

" JK closed at the bottom. So, we define

I JK � �!����� 	 % � ������ (@*��MLONQP
" JK � �!����� 	 % �R�������(R*�� %

Notice that % could be BS and * could be S .

2.3 Destruction

Let � be a topological space. For ����� and �6��� ,
set � destroys non-zero T$� 	 �� � if the image of T
under the mapping

	 �� ��- 	 ��VUW� � is zero. In
particular, if � is a point in � , point � destroys non-
zero T � 	 �� � if the image of T under the mapping	 �� � - 	 ��XU��
� ��� is zero.

If �Y�[Z\� � and �]�
� , then we say that �
destroys the image of T_^ � 	 �� � in

	 `ZO� , if T_aR�	 bZ�� is the image of T_^ under the mapping
	 �� �)-	 bZ�� and � destroys T_a . We encounter this situation

repeatedly where � is some level set �
G � �%P� and � is

a point. For brevity, we say that point � destroys T+�
�
G � �%P� if point � destroys the image of T in

	  I � c/d�eK � .
A function �<	���-4/ is point destructible if when-

ever TR� 	  I JK � is destroyed by �
G �  *N� , then T is de-

stroyed by some point � � �
G �  *N� .

2.4 Maps and spaces

We will be dealing with continuous functions on a com-
pact, connected topological space, � . We need some
conditions that these functions will be well-behaved, i.e.
have properties similar to Morse functions. However, we
do not want to restrict ourselves to differentiable func-
tions or to Morse functions.

For a function � 	+� - / and % � / , letfhg  � G � �%P� � �+����� �J	 % Bji ( ������ (<% "Wi � denote
the open i -neighborhood of �

G � �%P� . The first property
we require is that the topology of �

G � �%P� is similar (iso-
topic) to the topology of a i -neighborhood of �

G �  %P� for
suitably small i . The second property is that � is point
destructible. These properties are similar to the Morse
condition that critical points are isolated. We define the
first property more formally below.

Represent the unit interval � k �'l�� by m . Subspace�Y�V� is a strong deformation retract of � if there
is a continous n 	A�poqm -r� such that nM�s���k �3��s
and n �s��&l����t� for all s'��� and n ��#�4u � �v� for
all �J�w� and u �R/ . In other words, n continuously
deforms � into � without moving any points in � . If
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� is a strong deformation retract of � , then
	 �� � is

isomorphic to
	 ��3� .

We say that the continuous function � 	 � - / is LR
(locally retractible) if for all % �J/ , there exists some
i���� k such that for all i � i�� , the set �

G �  % � is a strong
deformation retract of

f g  �
G � �%P� � � ���.	 %�B i@(

�������(<% ";i � .
Piecewise linear functions on finite simplicial com-

plexes are LR. If a continous function is Morse, then the
function is LR. (See Milnor [7, pp. 12–20] for a proof.
Milnor actually proves that �!� 	 ������"�
%7� is a de-
formation retract of ���J	 ������ � % "9i � but his proof
also shows that �

G � �%P� is a strong deformation retract
of �!�J	M% BRi;( ������ ( % "wi!� .) Some properties of
LR functions will be used in our proofs. We state them
in Lemma 1 and Lemma 2. The proofs are given in the
appendix.

Lemma 1 says that if � is LR, then we can replace �!��	
% � �������� *�� by suitably chosen small neighborhoods
without changing its homology.

Lemma 1. If continuous function � 	 �R- / is LR, then
for every %�� *?� / where % (�* , there exists an i � such
that for all i?(ti � , set �!� 	�% �$������3��*�� is a strong
deformation retract of �!�#	7% �+������ ($* " i!� and set
�!�@	 %"�6������3(6*�� is a strong deformation retract of
�!��	 %8B i ( ������ (@*�� .

Let non-zero T � 	  �
G � �%P� � be destroyed by

I �K . If
� is LR, then T is destroyed by �!� 	P% � ������ �'*�� for
some *���% . Equivalently, the image of T in

	  I JK � is
destroyed by �

G �  * � .
Lemma 2. Let � 	 � -�/ be a continous, LR function.
For any non-zero T � 	  �

G �  % � � , if
	  I �K � destroys T ,

then for some *�� % , the image of T under the mapping	  �
G �  %P� �,- 	  I JK � is destroyed by �

G �  *N� .
Lemma 2 has the following corollary.

Corollary 3. Let � 	+� - / be a continuous,
point destructible, LR function. For any non-zero T'�	  �

G �  %P� � , if
	  I �K � destroys T , then some �'�.�

destroys T .

Proof. By Lemma 2, there exists some *��'% such that
the image T�� of T under the mapping

	  �
G � �%P� � -	  I JK � is destroyed by �

G �  *N� . Since � is point destruc-
tible, there is some point � �"�

G �  *N� which destroys T��
and T .

3 Persistence

Intuitively, the persistence of a point � �"� is the “age”
of the “oldest” homology element destroyed by � . For-

mally, the persistence of point ����� is
	
� ���0� 
��������� � ������MB"% 	�� destroys some

non-zero T � 	  �
G � �%P� � � %

We use 
��������� in place of �L�� because it is possible
that � destroys non-zero elements of

	  �
G � �% " i � � for

any i�� k but not elements of
	  �

G �  % � � .
If point � has persistence � , and ������OB � ( %�(

����� , does � destroy some element of
	  �

G � �%P� � ? As
we show below, the answer is yes.

We will need to use subsets of � which are bounded
by two different functions in our discussion of persis-
tence. The set � � ���6	 %+�������� and � �����( *��
is properly bounded by � and � at % and * respectively,
if the level sets �

G � �%P� and �
G �  *N� are disjoint and � is

non-empty. Notice that � includes �
G � �%P� at the bottom

but not �
G �  *N� at the top.

In Lemma 4 we will establish a result relating three
functions and the spaces delimited by their level sets.
Later we will set these level sets only to those of two
functions � and � that are used to establish the stability
result.

Let �&��� ���&� � � 	&� -K/ be three continuous LR func-
tions. Let � be a point in � and let % � � � � ��G� . Let� �2�!� �.� 	)%)� � �&������ and � � ����#(
% � � and
�(� � �!�1� �4	 %%� � ���G���� and � � ����<(K% � � be
properly bounded subsets of � where � � � � and
�
G �� �% �N� :<�

G �� �%%��� ��� , see Figure 3. The essence
of the following lemma is that if � destroys a generator
in
	  �

G �� �% � � � , then it necessarily destroys some gener-
ator in

	  �
G ��  % � � � . Some subtle aspect of this destruc-

tion is narrated in the caption of Figure 3.

q)3
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)(a2f −1

2
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1
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1

C C
’

’ X
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Figure 3: Sets � � �!� � � 	�% � � � � ���� and
� � ���� ( % � � and �(�3�A������� 	�% � ��� � ���� and
� � ����J(>% � � . Cycle � generates T ^ � 	 �� � and
T��^ � 	 ��(� � where both T ^ and T��^ are destroyed at
� . Elements T ^ and T��^ are the images of some T � �	  �

G ��  % �N� � and some T�� � 	  �
G �� �%%� � � , respectively.

The mapping
	 �� � � - 	 �� � sends T��^ to T_^ . Cycle

� � generates T_^#� 	 �� � and T � �^ � 	 �� � � where T_^
is destroyed at � but T�� �^ is not, even though the mapping	 ��(� � - 	 �� � sends T�� �^ to T_^ .
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Lemma 4. If � destroys some non-zero T ^ � 	 �� �
and T_^ is the image of some T��#� 	  �

G �  %)� � � , thenT ^ is the image of some non-zero T��^ � 	 ��(� � which
is destroyed by � . Moreover, T��^ is the image of some
non-zero T � � 	  �

G � �% � � � .
Proof. Let T ^ � 	 �� � be the image of some T � �	  �

G �  % � � � under the mapping
	  �

G �  % � � �E- 	 �� �
where T ^ is destroyed by � . By Mayer-Vietoris, the se-
quence
	 �� � � - 	 �� � U���� � � @ 	 �� � - 	 ���U��
� ���

is exact. Since the induced mapping
	 �� ��- 	 �� U

�
� ��� sends T_^ to 0, the mapping
	 �� �MU �
� ���h@	 �� �O- 	 �� U"��� � � sends �k$@wT ^ � to 0. Since the

sequence is exact, there is some T��^ whose image is �k @
T ^ � under the mapping

	 �� � �,- 	 �� � U �
� ����@ 	 �� � .
Thus T ^ is the image of T��^ and T��^ is destroyed by � .

We now prove that T��^ is the image of some T � �	  �
G ��  %%�!� � . Since ��� is LR, there exists some i���� k

such that
	  �

G �� �%%��� � - 	  f g��  �
G �� �%%��� � � is an iso-

morphism for all i�� �+i�� . By Lemma 1,
	 �� � � -	 ��(� U f g��  �

G �� �%%�!� � � is an isomorphism for all i�� �
i � . Since �

G �� �% �!� : �
G �� �%%���,� � , there is some i � such

that
f g �  �

G �� �%%�!� � � 	 �� � . Let i be the smaller of i�� ,
i � and i � .

Let � equal
f g  �

G �� �%%�!� � . Let Z6� �!�5� ��	�% �?�
�&�G���� and ��� �����(R%%� " i!� and Z � �$�!����� 	 % ��B>i (
� � ���� and � � ����#( % � � . The following commutative
diagram gives the relevant mappings between homology
groups:

T��O�	  �
G ��  % � � �

��T!� � 	  �
G ��  %%�!� �

��

T�� �	 �� � //

��

	 `ZO����T_a

��T!�^ � 	 ��(� � T��a �	 `Z � � //
	 �� ��� T ^

Element T_^ is the image of T��O� 	  �
G ��  %)�!� � . Let TQa

be the image of T�� under the mapping
	  �

G �  % � � � -	 bZ�� . Let T��a be the image of T��^ under the mapping	 ��(� �O- 	 bZ � � . Element T_^ is the image of both T_a
and T!�a under the respective mappings

	 bZ��)- 	 �� �
and
	 bZ � � - 	 �� � .

By Mayer-Vietoris, the sequence
	 ��?� - 	 bZ�� @ 	 bZ � � - 	 �� �

is exact. Since the mapping
	 `ZO� @ 	 `Z � �)- 	 �� �

sends `T_a @wT!�a � to `TQ^ BRT_^ �O��k , element BT_a�@wT��a �

must be in the image of some T���� 	 B�3� . Since	  �
G ��  %%�!� �E- 	 ��?� is an isomorphism, there is someT � � 	  �

G ��  % � � � whose image is T � under the map-
ping

	  �
G �� �% � � � - 	 �� � .

All the mappings of homology groups are induced by
the inclusion mapping and thus the diagram is commu-
tative. Since

	 ��(� � - 	 bZ � � is an isomorphism, the
inverse mapping

	 `Z � � - 	 ��(� � takes T��a to T!�^ . The
mapping

	  �
G �� �% � � �8- 	 B� �8- 	 bZ � �8- 	 ��(� �

sends element T � � 	  �
G �� �% � � to T��^ � 	 �� � � . Thus

T �^ � 	 �� � � is the image of some non-zero T � �	  �
G ��  %%�!� .

Setting � � � � � � � � gives the following corollary:

Corollary 5. Let � 	&� - / be a continuous, LR func-
tion. If � � � has persistence � , then for every % where
���%P��B � (R% ( ����G� , point � destroys some element of	  �

G �  %P� � .

4 Stability

In this section we prove one of our main results, Theo-
rem 1. Let � and � be two functions defined on � . We
say L � B � L ( Q if L ������ B � ���� L (1Q for all �$�+� .
We show that if � is a destructor for � with persistence
� � F Q , there is a point ��� which is a destructor for �
where � and ��� lie in the same connected component of
the space

I � c/d e , �
	� c/d e
G�� . (Wherever we use the term con-

nected component, we always mean path connected.)
Moreover, the values ����G� and � �� � � are close. This the-
orem not only relates � and ��� in the range as in Cohen-
Steiner et al. [3] but also in the domain.

We will need the concept of chains and cycles that
define the homology groups. Chains are formal sums of
maps from standard simplices into the domain � and cy-
cles are chains which have no boundary. The boundary
of a chain is always a cycle. For details, see Hatcher [6].

Lemma 6. If non-zero T � 	  I JK � is destroyed by point
� and cycle ��� I JK generates T , then � and � lie in the
same connected component of  
  I JK � .
Proof. Since � destroys T , cycle � is the boundary of
some chain 8!� I JK U �
� � . The chain 8 must contain
point � or else � would be the boundary of a chain in

I JK
and T would be 0. Since all points in 8 other than � lie
in
I JK , point � is in  
  I JK � . Since 8 connects � and � in

 
  I JK � , cycle � and point � lie in the same component
of  
  I JK � .
Theorem 1. Let ��� � 	 �
- / be continuous, point
destructible, LR functions on � where L �;Bj� L�(JQ . If �
destroys non-zero T � � 	  �

G � �%P� � and L ����G� B % L �@F Q
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Figure 4: Sets
I JK , � ����� � � 	M% " Q �������� and

�������(@* � , " J
G 	K , 	 and " J

�
K , 	 .

and � is the connected component of  
  I � c/d e ,#�
	K � con-
taining � , then � contains a point �&� for � which destroys
some T��5� 	  � G � �% "'QG� � and ����G� B Q<� � ���� � �
����G� " Q .

Proof. Let * equal ����G� . Let

�=�$�!�����J	 % "5Q �W� �����LONQP������� (R*�� %
Since L �������BW� ���� LE( Q and *OBR% � F Q , space � is
properly bounded. Note that " J

G 	K , 	 �!��� I JK and

so there exist homomorphisms
	 �" J

G 	K , 	 � - 	 �� �)-	  I JK � induced by inclusions.
The following commutative diagram gives the rele-

vant mappings between homology groups:

T � �	  � G � �% " QG� �

��

T � �	  �
G �  % � �

��	 B" J
G 	K , 	 � //

��

T ^ �	 �� � //

��

	  I JK ����T�� �
��

T��� � 	 �" J
�
K , 	 �

��

	 ��XU �
� � �

xxpp
p
p
p
p
p
p
p
p
p

//
	  I JK U��
� � �

	 B" �K , 	 �
The value *�� will be defined below.

Let T�� � � 	  I JK � be the image of T � under the map-

ping
	  �

G �  % � � - 	  I JK � . Since T�� � is destroyed
at �

G �  * � , element T�� � is non-zero. By Lemma 4, el-
ement T�� � is the image of some element T ^+� 	 �� �
which is destroyed by � and is the image of some T � �

	 ��
G � �% "@QG� � . Since T�� � is non-zero, elements T ^ and

T � are non-zero.
Since T ^ is destroyed by � , the mapping

	 �� � -	 �� U �
� ��� - 	 �" �K , 	 � sends T ^ to zero. Thus the
composition of mappings

	  �
G �  % "5QG� � - 	 �� ��-	 B" �K , 	 � sends T�� to T ^ to zero.

By Corollary 3, there exists a point �&� �5� such thatT � is destroyed by ��� (i.e., the image of T � under the

mapping
	 ��

G � �% "@QG� � - 	 B" � c/d
� eK , 	 � is destroyed by

� � .) Let * � equal ���� � � . Since " J
G 	K , 	 is a subset of � ,

the image of T � under the mapping
	  �

G �  % "RQG� � -	 B" J
G 	K , 	 � is non-zero and so *�� � *8B Q . Let T��� be

the image of T � under the mapping
	  �

G �  % "RQG� � -	 B" J
�
K , 	 � .

Element T � is generated by some cycle � in �
G �  % "

QG� . Since the image of T � is TQ^ � 	 �� � under the map-
ping

	  � G � �% " QG�?- 	 �� � , cycle � also generates
T ^ . Similarly, cycle � generates T��� � 	 B" J

�
K , 	 � and

T�� � � 	  I JK � .
Since T_^ is destroyed by � , cycle � is the boundary

of some chain 8 �X� U"�
G �  *N� . Since L � BR� L,� Q ,

set �6U �
G �  * � is a subset of " J , 	K , 	 U �

G �  * " QG� and

so chain 8 is a subset of " J , 	K , 	 U � G �  * "'QG� . Since

T��� � 	 B" J
�
K , 	 � is non-zero, space " J , 	K , 	 U�� G �  * " QG�

cannot be a supspace of " J
�
K , 	 . Thus *�� is at most * "5Q .

As noted above, cycle � generates T��� � 	 B" J
�
K , 	 �

and T�� � � 	  I JK � . Point � destroys T�� � which is gener-
ated by � . By Lemma 6, point � must lie in the con-
nected component of  
  I JK � containing � . Similarly,
since ��� destroys T��� , point ��� must lie in the connected

component of  
 �" J
�
K , 	 � containing � . Since  
  I JK � �

 
  I J , � 	K � and  
 B" J
�
K , 	 �7�  
 B" J , 	K , 	 �t�  
  I J , � 	K � ,

points � and ��� must lie in the same connected compo-
nent � of  
  I J , � 	K � .

5 Computing persistence

Theorem 1 can be used to compare two real valued func-
tions � and � defined on a topological space � . The key
computation to apply Theorem 1 is:

(i) determine if a point � which destroys some T.�	  �
G � �%P� � has persistence greater than � .

We use Betti numbers and their persistent counter-
parts to compute (i). Recall that, for a homology group	 �� � , the Betti number is 	,�� � �9P �� 	 �� � . It gives
the number of generators in

	 �� � . The persistent Betti
numbers relate the homology classes of one space into
the other. For � � � , let

	��
� be the image of the map	 B� � - 	 �� � induced by inclusion �A- � . De-

fine 	,B� �4� �E�tP �� 	��� . In words, 	,�� ��� � counts the
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number of non-zero generators of
	 ��?� that remain so

in the larger space � .
We discuss the computations for the function � . It is

clear that similar computations are needed for � as well.
In general, for a point � and a value %�(K*5�4�����
we want to compute if an element of

	  �
G �  % � � gets

destroyed by � . Let

	 JK � 	, �
G � �%P��� I JK � and� � K � 	, �
G � �%P��� I � c � eK U�� � ��� %

Note that � is a point whereas % and * are real val-
ues. The number 	 JK counts the number of generators
of
	  �

G �  % � � surviving in
I JK and

� � K counts the num-
ber of generators of

	  �
G �  %P� � surviving in

I JK U � � � .
Therefore, � � K �w	 JK B � � K
counts the number of generators of

	  �
G � �%P� � de-

stroyed by � . So, if
� � K � k , we have a generator of	  �

G �  %P� � that is destroyed by � where ������ � * .
Notice that Theorem 1 can be applied to any point

����� and any value % (@������ . However, for a canonical
computation one can focus on the critical points of the
functions. We define the critical points of � as follows.

Definition 1. A point � � � is critical for ��	�� -�/ if	  I JK �,- 	  I JK U � � � � is not an isomorphism for some
%�� *��;/ where either ������ � % or ����� �J* .

The above definition of critical points is similar to that
of Cohen-Steiner et al. [3] with a distinction that the rel-
evant space is an interval set whose lower level may not
be at BS . Also, notice that the space

I JK could be above
or below the level of ������ .

Compute the critical points of � according to the
above definition. Let � � ��� � %-% � � be the critical points
of � ordered according to the increasing values, that
is, ��� # � � ��� # G � � for all � �+k . We compute the
persistence

	
� ����� for these critical points � # as fol-

lows. For l���� � �"BXl , let % # be a value with
��� # G �N� (�% #8( ��� # � . Compute

� ���K ) for any pair � �	�
where � �
� � k . Since

� ���K is constant for all % where
��� # G �N� ($% (+����_# � , if

� ���K ) is greater than 0, then the
persistence

	
� � � � is at least ��� � ��B���� # G � � . Thus we

compute
	
� �� � � as

�L��# L ���� � �MB#���_# G �!� L so that
� ���K ) � k %

Similarly, we can compute the critical points
� � � � � � %-%/% � ��� and a set of intermittent values
* � � * � � %/%-% � *� G � for the function � . The persistence
of a critical point � of � is measured similarly by

	
�P��G� .

To compare � and � , we check if any critical point
� of � has

	
� ���� greater than a user supplied parame-

ter � . If so, we search for a critical point � of � in the

connected component of  
  I � c � e ,��� c � e
G � � so that

	
�P��G� ���

and L ����� BW� ��G� L,� � � . If � � F Q , such a � exists by
Theorem 1.

5.1 PL case

Assume there is some finite triangulation of � such that
� and � are linear on each simplex of the triangulation.
Functions � and � are LR (locally retractible), but not
necessarily point destructible. The critical points of �
and � are located at the triangulation vertices. A small
perturbation of the scalar value at each triangulation ver-
tex and the linear interpolation of those values over the
triangulation simplices, gives new piecewise linear func-
tions which are point destructible.

Carlsson and Zomorodian in [9] show how to compute
persistent Betti numbers for homology groups of filtered
simplicial complexes over any field. However, spacesI JK and

I JK U � � � are not closed. To compute their per-
sistent Betti numbers, 	 JK and

� � K , we collapse them onto
closed sets which are simplicial complexes.

Consider the space
I JK . Let u �'� be a simplex with

a point in this space. If each vertex � of u either has
����P� � * or %�� ����P� (K* , the subset u : I JK can
be collapsed to the face of u made by the vertices whose
values lie in � %�� *N� . This cannot be done for simplices that
cut across the levels of % and * . These simplices have
vertices with values above * and also below % . For such
a simplex we take an edge �"����� ���I� where ������;(
% and ����P� �A* and consider a point � on this edge
where %<(.������ ( * . We divide u by starring from �
to all its vertices. After subdividing all such simplices
we obtain a subdivision �� of � which has no simplex
cutting across the interval � %�� * � . Consider the simplicial
complex made by the collection of simplices in �� that
have all vertices with values in � %�� *N� . The underlying
space of this simplicial complex is a deformation retract
of
I JK and therefore has homology groups isomorphic to

that of
I JK .

6 Maxima

We show that the neighborhoods of local maxima with
large persistence are pairwise disjoint. This enables us
to establish a matching of such critical points.

The idea of the proof is as follows. Consider two local
maxima, � ����� �@� , where ������3������� � . If � destroys
non-zero T � 	��  � G � �%P� � , then � equals ��B l . Let � be
the connected component of

I �K containing � . If � is a
manifold with boundary, then

I � c � eK U � � � must contain
� . Since ����� � ����� � , set

I � c � eK U � � � does not contain
��� and therefore point ��� is not in � .
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Lemma 7. Let
I �K be an oriented � -manifold with

boundary. If � is a local maximum and � destroys non-
zero T � 	 �  I � c � eK � , then � equals �8B l .
Proof. See appendix.

As previously noted, we always mean path connected
when referring to connected components.

Lemma 8. Let � be a connected, oriented � -manifold
with non-empty boundary. Let 8 � �48 � � %&%&% �48 �

be the
connected components of H�� with orientation inherited
from � . If %!� 8 � "5% �'8 � " %'%&% % � 8 �

generate the zero
element of

	��'G ����$� , then % � � % ��� %&%'% �J% � .
Proof. The sequence

	�� ��$�A- 	�� �� �4H��$�K-	��'G �G�H��$��- 	��'G �G��$� is exact [6, Theorem 2.16,
p. 117]. Since the boundary of � is not empty, the
homology group

	�� ��$� is zero. The homology group
of
	�� �� �4H��$� is � , the ground ring of the homology

group. The map
	�� �� ��H��$� - 		�'G � �H��$� is the con-

necting homomorphism. It maps � to T#� 	 �'G � BH��$�
which is generated by 8 � " 8 � " %&%&% " 8 �

. Since the
mapping is exact, the image of �$T under the mapping	 �'G � �H��$� - 	 �'G � ��$� is zero. Moreover, only el-
ements in �$T map to zero. Thus, if % � 8 � " % � 8 � "%&%'% % � 8 �

generate the zero element of
	��'G �G��$� , then

% � 8 � "5%%��8 � " %&%'% % � 8 �
must generate an element of

�$T in
	��'G � BH��$� and so % � � %%��� %&%'% � % � .

Lemma 9. Let � be a connected, oriented � -manifold
with non-empty boundary. If H�� � � ��� �
and

	��'G ��BH��$�+- 	��'G � �� � � takes non-zero T �	 �'G � �H��$� to zero, then � � equals � .

Proof. Assume � � does not equal � . Let � be a point
in �.B
� � . Let 3 be an open topological ball containing
� whose closure does not intersect H�� . There exists a
deformation retract from � B � � � to � B 3 . Thus	 ��2B<� � � � is isomorphic to

	 �� B 3 � .
The mapping

	��'G � �H��$� - 	��'G � �� � � -	��'G �G�� B � � ����- 	��'G �G�� B 3 � sends T to zero
in
	��'G ���� B 3 � . Let T � be the element of the homol-

ogy group of
	��'G �G�H��$� generated by H�� with orienta-

tion inherited from � . By Lemma 8, element T equals� T�� for some non-zero � . Let T� be the element of	��'G �G��>Bj3 � generated by H 3 with orientation inher-
ited from � B 3 . Let T � be the image of T under the
map

	 �'G � BH��$��- 	 �'G � BH�� UWH 3 � . The element
T and hence T�� is sent to zero in

	 �'G � �� Bw3 � . By
Lemma 8, element T�� equals 	,BT � ";T � � for some non-
zero 	 . Thus � T � equals 	,BT � " T � � . Since T � and T �
are linearly independent, � and 	 are both zero implyingT is a zero element, a contradiction. It follows that �
equals � � .

Let � ��  � � represent the connected component ofI �
� c � e

G��
containing � . We prove that the neighborhoods

� ��  � � of points with persistence greater than � are pair-
wise disjoint. (See Figure 5.)

Theorem 2. Let �J	M��- / be a continuous function
such that

I �K is a  � B l � -manifold with boundary for
all but a finite number of % . If points � �&��� � �#� are lo-
cal maxima with persistence greater than � , then � ����  � �
does not intersect � �� 0  � � .
Proof. Let � �&�����O��� be local maxima with persistence
� �&� �!� , both greater than � . Without loss of generality,
assume that ���� � ���R��� � � .

Assume that � ���� �� � intersects � �� 0  � � . Since
I �K is a

�� B l�� -manifold for all but a finite number of % , there
is some � ��� � such that � � � � � and � � � ��� andI �
� c � � e

G�� �
is a  � B7l�� -manifold with boundary. Since

� �� �  � � intersects � �� 0  � � , set � �� �  � � � intersects � �� 0 ���� � .Since ��� ��� � ��� �N� , set
I �
� c � � e

G�� �
containsI �

� c � 0 e
G�� �

. Since � ����  � � � intersects � �� 0 ���� � , set � ����  � � �
contains � �� 0 ���� � . Thus � ����  � � � contains � � .

By Lemma 4, point � � destroys some non-zero ele-
ment of

	 �  � G �  ���� � �,B � � � � . By Lemma 7, � equals
��B l . By Lemma 10 (appendix), point � � destroys a non-
zero elements of

	 �'G � �H � �� �  � � � � . In Lemma 9 putting
� � � �� �  � � � and � � equal the connected component ofI � c � � e� c � � e

G�� � containing � � , we conclude
I � c � � e� c � � e

G�� � U?� � � �
contains � �� � ���� � and thus contains � � . However, since

��� ���8� �����N� , set
I � c ��� eK U#� � �G� does not contain � � .

Thus, � �� � �� � does not intersect � �� 0  � � .
Our final theorem gives relationships between neigh-

borhoods of local maxima of � and of � .

Theorem 3. Let ������	7�+-A/ be continuous functions
such that

I �K and " �K are ���B$l�� -manifolds with bound-
ary for all but a finite number of % and L � BF� L&( Q . Let
�#�#� be a local maxima of � and let � and �&� be local
maxima of � such that �#� �%� ��� have persistence greater
than � and L ������MBj����G� L&(<Q and L ����� BF� ���� � LP(@Q .

(i) If � �� ��"B'FGQG� intersects � �d  �#B F QG� , then � �d  � �
contains � �� �� B#FGQG� .

(ii) If � �� ��EB8FGQG� intersects � �d  � B F QG� , then � ��  �EB8F QG�
does not intersect �

�d �  � B#FGQG� .

Proof of (i). Let s be a point in � �� ��OB FGQG� : � �d ��)B F QG�
and � be any point in � ��  � B F QG� . Set � ��  � B F QG� is path
connected, so there is a path � � � ��  � B FGQG� from s to � .
Since � � � �� �� B F QG� , ������ � ����� B(� " FGQ for every
point � ��� . Since L ������ Bj� ���� LI( Q for all � � � and
L �����&B?����G� L (RQ , it follows that � ���� �W� ��G�PB � for all
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�"� � . Thus �>� � �d  � � and � lies in � �d  � � . This holds
for all �"� � �� ���B@FGQG� so � �d  � � contains � �� ���B<FGQG� .
(See the neighborhoods of ��� and ��� in Figure 5.)

Proof of (ii). By Theorem 2, � �d �� � and �
�d � �� � are dis-

joint. By (i) above, if � ��  � B F QG� intersects � �d  � B FGQG� ,
then � �d  � � contains � �� �� B?FGQG� . Similarly, if � ��  � B?F QG�
intersects �

�d �  �?B F QG� , then �
�d �  � � contains � ��  �?B F QG� .

However, � �d  � � and �
�d �  � � are disjoint. Thus, if � ��  � B

FGQG� intersects � �d  � B#FGQG� , then � �� �� B#FGQG� does not in-
tersect � �d �� B#FGQG� . (See Figure 5.)

7 Matching

We assume that ����� 	 ��- / are continuous, point
destructible, LR functions such that

I �K and " �K are
�� B<l � -manifolds with boundary for all but a finite num-
ber of % . Let � � and � � be the set of local max-
ima of � and � , respectively, and let � �  � �w� � �and � � �� �7� � � be the set of local maxima of �
and � , respectively, with persistence greater than � . We
would like to match points in � �  � � with close points in
� �  � � in the sense of Theorem 1. However, there may
be no such matching. In fact, � may contain a set of
critical points with persistence a little bit above � while
nearby critical points in � all have persistence a bit be-
low � . Thus, � � �� � can contain any number of points
while � �  � � is empty! Instead of matching � � �� � and
� �  � � only with each other, we allow them to match
with points with slightly less persistence.

We say that a partial matching of � � with � � covers
� �  � � and � � �� � if all points in � �  � � and � �  � � are
matched. As before, let � ��  � � and � �d  � � be the con-
nected components of

I �
� c � e

G��
and " �� c d e G�� containing

� and � , respectively. A partial matching of � � and � �
is ( � ��	 )-close if for each pair � � �G� where � � � � and
� � � � , point � lies in � ��  � � and point � lies in � �d  � �
and L �����MBj� ��G� LP(R	 .

Assume that L ������ Bq� ���� L�( � D � for all �"� � . We
will find a partial matching of � � with � � which covers
� �  � � and � � �� � and is  � � � D � � -close.

The algorithm is as follows. For each point �K�
� �  � � , we compute � � � � �� �� D F � . Similarly, for
each �.� � � �� � , we compute � d � � �d  � DGF � . By
Theorem 3, each � � intersects at most one � d where
L ����� B ����G� L ( � D � and vice versa. If � � intersects such
a � d , then match � with � . If not, then match � with some
� � � � �  � DGF � lying in � � such that L ������BR���� � � LE(
� D � . (By Theorem 1 such a ��� exists.) Similarly, if � d
does not intersect any � � , match � with ����� � �  � DGF �lying in � d such that L ������ ��B"������!L ( � D � .

We claim that algorithm MatchPersistentMax
matches all maxima with persistence more than � :

MATCHPERSISTENTMAX( � � ��� ��� � )
/* ��� � 	 �@- / */

1 Compute sets � �  � � and � �  � � ;
2 For each point � � � �  � � , compute � �0�
� ��  � DGF � ;

3 For each point � � � �  � � , compute � d �
� �d  � DGF � ;

4 For each point ��� � � �� � and �?� � �  � � , if � � :
� d��� � and L ����� B ����G� L ( � D � , then match � with
� ;

5 For each unmatched ��� � �  � � , match � with ��� �
� �  � DGF �
: � � where L �����MB"������ � LP( � D � ;

6 For each unmatched �3� � �  � � , match � with ��� �
� �  � DGF � : � d where L � ��G�MBj� ��� �!LP( � D � .

1p

2p1q

q2

q3

Figure 5: Local maxima and their neighborhoods.
Solid lines around points � # and � # are neighborhoods
� �� ) �� D F � and � �d ) �� D F � . Dotted lines are neighborhoods
� �� ) �� � and � �d ) �� � . Neighborhood � ���� �� D F � intersects
� �d �  � DGF � so � � matches with � � . Point � � matches with
some point (not shown) from � �  � DGF � and points � � and
� � match with points (not shown) from � �  � DGF � .

Proposition 1. If L � B�� L � � D � , then
MATCHPERSISTENTMAX  � � ��� ��� � � produces a
partial matching of � � with � � which covers � �  � �and � �  � � such that every matched pair � � �G� where
��� � � and � � � � is  � � � D � � -close.

Proof. By Theorem 2, the � � � � �� �� D F � , � � � � �� � ,are pairwise disjoint and the � d � � �d �� D F � , �?��� �  � �
are pairwise disjoint. By Theorem 3, each � � intersects
at most one � d and vice versa. Thus Step 4 gives a one
to one partial matching.

By Theorem 1, � � contains some point � � � �� � DGF �
such that L �����)B9� ���� � L?� � D � . Since �#� ��� � is not
matched in Step 4, point ��� is not in � � �� � . Thus point
��� is not matched in Step 4. Since � � does not intersect
any � � � , ��� � � � �� � , point ��� is matched to at most one
� in Step 5. Similarly, point ��� in Step 6 is not matched in
Steps 4 and 5 and is matched to at most one � in Step 6.
Thus the matching is one to one and covers all of � �  � �

9



and � �  � � .
It remains to show that for each match ��#� �G� , set

� ��  � � contains � and � �d �� � contains � . If � and � are
matched in Step 4, then � �� �� D F � intersects and � �d  � DGF � .
This holds true even if � and � are matched in Steps 5
or 6. By Theorem 3 with Q+� � D � , � �� �� � contains
� �d  � DGF � which contains � and � �d  � � contains � ��  � DGF �
which contains � . Since points ��� � � and � � � � are
only matched if L �������BR����G� L,( � D � , the matching is
 � � � D � � -close.

8 Discussions

Results on stability of topological persistence can be
used in shape matching. If we take a dense point sample
from the boundary of a shape, the distance functions to
the shape boundary and and its point sample are simi-
lar. Therefore, if we have two similar shapes, the dis-
tance functions defined by their point samples are simi-
lar. As observed in previous works [1, 2], the results on
persistence apply to such functions. Our results in this
paper have some notable connections to a shape match-
ing algorithm proposed by Dey et al. [4]. According to
our results, we can expect that similar shapes have simi-
lar structures for maxima with large persistence in terms
of the interval sets. The algorithm in [4] uses maxima
and their stable manifolds for matching. We suspect that
these stable manifolds are playing the role of connected
components as suggested in this paper. Perhaps the per-
formance of the matching algorithm in [4] now can be
improved and better explained by our results. We plan
to address this issue in future work.

Persistence diagrams [3] can be used to match shapes
based on the critical values of the distance function.
Does adding critical points increase the discrimination
of this matching? Figure 6 provides such an example.
The two unsimilar shapes in this figure has matching per-
sistence diagrams. The distance function for each shape
contains three local maxima and two saddle points. For
each shape, two of the local maxima and one of the
saddle points has long persistence while the other local
maxima and saddle point have short persistence. (Persis-
tence of saddle points which “create homology” groups
is defined in [3].) Thus the persistence diagrams match.

Now assume that the two shapes are registered so that
each �'# lies on top of � # . Even with such a registration,
the local maxima � � does not match with � � since � �
and � � have different persistence and � � does not match
with � � or � � since they are not in the neighborhood
of � � in the domain. Thus, our matching based on
closeness of local maxima in both the range and domain
distinguishes these shapes.

4q
5q2q

1q 3

4p
2p 5p

1p 3p

q

Figure 6: Two shapes with matching persistence dia-
gram. Matching based on closeness in both the range
and domain distinguishes these shapes. Local maxima
� � , � � , � � , � � and saddle points ��� , ��� have long per-
sistence. Local maxima � � , � � and saddle points ��� , ���
have short persistence.

Acknowledgement: We thank Prof. Michael Davis
from OSU Dept. of Mathematics for providing the proof
of Lemma 8.
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9 Appendix

Proof of Lemma 1. Assume function �1	8� - / is
LR. Choose i�� �+k such that �

G �  %P� is a strong de-
formation retract of ��� 	 % B i'( ������ (2% "�i!�
for all i ( i � and % "Xi ( * . Similarly, choose
i � �tk such that �

G �  *N� is a strong deformation retract
of �!��	 * B i�( ������ (@*�"$i!� for all i ( i � and % ( * B i .
Let i � be the minimum of i � and i � and *EB"% .

For any i � i�� , let n Kg be the mapping from ��%�	&% B
i@(K������#( % "�i � o m to �

G � �%P� representing the
strong deformation retract of ��% 	 %OB�i�(@��(R% "ji!� to
�
G � �%P� . Let n Jg be the mapping from ��* 	 * Bi (R������ (

*!">i!� o$m to �
G �  *N� representing the strong deformation

retract of ��* 	 *EB i (@��(R* ";i!� to �
G �  *N� . Define

n g �� ��u �,�
�� � n Kg �� ��u �������M%3Bqi�(<��(R%��

� �����M% �5��� *��
n Jg ��#�4u �	������*�(<� (@* "Wi %

n g is constant on �!� 	�% � � �
*�� and continously
deforms ��� 	P% B iO(J� ( %7� and �!� 	&* ( � ('* ";i!�
onto ���<	�% �$�<� *�� . Thus �!�<	�%"��������3� *�� is a
strong deformation retract of ��� 	 % ��������?(�* "9i �
and ���"	&% �'������O('*�� is a strong deformation retract
of �!��	 %3Bqi�(R������ ( *�� .

Proof of Lemma 2. Since
	  �

G � �%P� � - 	  I �K �
sends T to zero, element T is the boundary of some chain
� � I �K . Chain � is compact. (See [8, p. 71].) Thus
� ������ 	 �R� � � is compact and has a maximum value
*�� . Since ��� I J �K , the mapping

	  �
G � �%P� �E- 	  I J

�
K �

sends T to zero.
Let * equal 
��� �/N
� � �* 	 	  �

G �  % � �)- 	  I � JK � sendsT to zero � . Note that *)� *�� . Since � is LR,
	  �

G � �%P� �
is isomorphic to

	  I K ,
gK G
g � for sufficiently small i and

thus
	  �

G � �%P� �8- 	  I K ,
g

K � does not send T to zero.
Thus * is strictly greater than % .

Let T�� be the image of T under the mapping	  �
G �  %P� �,- 	  I JK � . If T � were zero, then T would be

the boundary of some chain � � � I JK . Since � � is com-

pact, chain � � would also be a subset of
I � JK for some

�*"(�* , contradicting the choice of * . Thus T�� is non-
zero.

We show that T�� is destroyed by �
G �  *N� . Since

� is LR, there is some i�� � k such that
	  I JK U

�
G �  *N� � is isomorphic to

	  I J ,
g

K � for all i � i�� .
If
	  I JK �'- 	  I JK U �

G �  *N� � does not map T�� to
zero, then

	  I JK �J- 	  I J ,
g

K � does not map T�� to
zero for all i<�!i�� , and * does not equal 
��� �-N�� � �*5		  �

G �  *N� �>- 	  I � JK � sends T to zero � . Thus,	  I JK �8- 	  I JK U �
G �  *N� � maps T�� to zero and T�� is

destroyed by �
G �  * � .

Proof of Lemma 7. Since
I �K is an oriented � -

manifold and � is a local maximum, some neighbor-
hood

f � of � is homeomorphic to /
�

and all points inf � B � � � have value less than ����� . Let 3 be the unit
ball in /

�
, and let 3 � be its image under the homeomor-

phism from /
�

to
f � . Since all points in

f � B � � � have
value less than ����� , they are all in

I � c � eK .
By the Mayer-Vietoris Theorem, the sequence

	�� �3 �PB � � ��� - 	�� �3 � �4@ 	��  I � c � eK � - 	��  I � c � eK UE� � � �
is exact. Since the mapping

	D�  I � c � eK ��- 	��  I � c � eK U
� � � � sends T to zero, the mapping

	 � �3 � �R@	 �  I � c � eK � - 	 �  I � c � eK U � � � � sends �k(@ T7� to zero.
Since the sequence is exact, element �k$@wT�� is the im-
age of some non-zero T�� � 	 � �3 � � under the map-
ping

	�� B3 � B'� � ���?- 	?� �3 � � @ 	��  I � c � eK � . Since	 � �3 � B@� � � � is the zero group, for all � ��
�8B l , ele-
ment T�� must be in

	 �'G � �3 � B#� � � � . Therefore, T is an
element of

	��'G �  I � c � eK � and so � equals �3BRl .
Lemma 10. Let � �0� � be topological spaces, let
� �� � %'%&% � � � be the pathwise connected components of
� � , and let � equal � �# : � for each � . If the mapping	��  � � - 	��  � � � sends non-zero T � 	D�  � � to zero,
then there exists some non-zero T #)� 	��  � # � such that
the mapping

	��  � # �,- 	��  � � � sends T_# to zero. More-
over, if point � is an element of � �GB � , and the mapping	 �  � # �E- 	 �  � �PB<� � � � does not send T # to zero, then
� is an element of � �# .
Proof. Since the � # are pairwise disjoint, the homology
group

	��  � � is isomorphic to
	��  � �!� @������4@ 	��  �  � .

(See [8, Theorem 4.13, p. 69].) This isomorphism takes
T to BT � @������ @ T  � where T # � 	 �  � # � . At least one
of these T # must be non-zero.

Since the � �# are pairwise disjoint, the homology group	 �  � � � is isomorphic to
	 �  � �� � @������ @ 	 �  � � � . The

mapping
	��  � �,- 	��  � � � sends T to zero, so the map-

ping

	��  � �!� @�������@ 	��  �  � - 	��  � �� � @�������@ 	?�  � � �
sends BT�� @������ @?T  � to Bk @������ @ k � . Thus, the mapping	��  � # ��- 	��  � �# ��- 	?�  � � � , sends non-zero T # �	��  � # � to zero.

Let point � be an element of � � BO� where the mapping	��  � # ��- 	��  � ��B+� � � � sends T_# to some non-zero
T�� � 	��  � �IB@� � � � . If � �� � �# , then � �# 5 � �7B@� � � and
the mapping

	D�  � # � - 	?�  � �# � - 	��  � � B�� � � � sends
T_# to zero. Thus � �# contains � .
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