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Abstract

In clinical trials, pharmaceutical companies test a new drug

for the treatment of a disease by comparing the results from

a large number of diseased and healthy patients exposed

to either the new drug, an existing drug that treats the

disease, or a placebo. The goal of these trials is to

establish the safety and efficacy of the new drug. One

of the primary concerns is liver toxicity, which is usually

diagnosed by blood analyte tests. Often, such signals of

toxicity lead to the discontinuation of drug development or

withdrawal of the drug from the market. Early detection

of liver toxicity can save lives and also save such companies

billions of dollars. Existing approaches for detecting liver

toxicity typically ignore correlations between blood analyte

values which we hypothesize are essential for detecting liver

toxicity. Based on this hypothesis, in this work we present

novel dissimilarity measures based on principal component

analysis which can be used for detecting liver toxicity and

identifying subpopulations who may be susceptible. As

such, our measures account for differences in the correlation

structure of the data, and can be tuned by the user to

account for domain knowledge. Experimental results on real

clinical trial data validate our approach.

Keywords: Drug efficacy and safety analysis,
outlier detection, clustering, dissimilarity measures.

1 Introduction

Drug safety issues have received an enormous amount of
attention in the past year. Several large pharmaceutical
companies have issued warnings or removed their drugs
from the market altogether following reports of severe
or deadly side-effects. Such events are harmful to the
companies’ public image, as well as their financial sta-
tus. Each company invests large amounts of money in
developing and testing new drugs. Any drug under de-
velopment or clinical trials that does not make it to the
market represents a huge loss for the company. Also,
any drug that makes it to market but must be with-
drawn represents a double loss for the company, as it is
unable to recoup development costs, and may be held
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liable for any harmful effects of that drug. Therefore,
pharmaceutical companies have intense interest in dis-
covering any harmful effects of their drugs as early as
possible, so that they can cease development or sales in
order to save both lives and money.

The safety and efficacy of new drugs are determined
using a set of clinical trials. Clinical trials occur in four
phases. In Phase I, a new drug is tested on a relatively
small group healthy subjects in order to determine the
side effects and dosage levels of the drug. In Phases II
and III, the drug and placebos are given to both healthy
and ill subjects to determine the efficacy and safety
of the drug, and to compare it to existing treatments.
Phase IV studies occur after the drug has been put on
the market, in order to acquire additional information
on risks, benefits, and optimal dosage levels. The ability
to identify harmful drugs and cease development at least
one phase earlier than usual can save a pharmaceutical
company billions of dollars.

In pharmaceutical clinical trials, the efficacy and
safety of a compound in the treatment of a particular
disease is studied by comparing the results from some
healthy subjects and many patients who are randomly
assigned to either the experiment compound, an exist-
ing therapies for the disease, or a placebo (for example
sugar water or sugar pills often containing the inactive
ingredients of the drug). The goal is to show a statis-
tically significant improvement in two or more clinical
trials relative to the control group and to show that
the benefits outweigh the safety risks. Safety is studied
in many ways; serial clinical laboratory blood tests are
used commonly to monitor biochemical changes in the
body. An organ of particular concern is the liver, which
has a major detoxifying function. Abnormal blood test
values related to the liver is a common reason for stop-
ping a drug development project or causing discontinua-
tion in a particular patient or group of patients. When
liver tests are high, it is assumed that hepatotoxicity,
or liver toxicity, is present. However, the rules for de-
termining the presence of drug-induced hepatotoxicity
are mostly qualitative and involve considerable clinical
judgment. The current state-of-the-art in pharmaceu-
tical research uses univariate rules applied to multiple
analytes. Typically the threshold is some multiple of
the upper limit of a normal range specified by the labo-
ratory, but these rules are largely ad-hoc. More recently



a rule has been employed which requires the crossing of
at least two thresholds. It is known as “Hy’s Rule” [4].
This is the first attempt by regulatory agencies to in-
clude two analytes in a rule for hepatotoxicity. The
problems of misclassification should be obvious, because
hepatotoxicity may not be so much correlated with ab-
solute elevated blood analyte values as it is with how
the analytes move together. Our hypothesis is that Hy’s
rule is not sufficient, and that correlations between an-
alytes are extremely important for understanding the
effects of a drug on liver toxicity.

Clinical trial data is usually in the form of a set
of multivariate time series, where each variable corre-
sponds to a blood analyte and each series corresponds
to a different patient. Mining such data is particularly
challenging due to factors such as unequally spaced time
series, missing values, and noise due to instrumentation
error and variance. Detection of hepatotoxicity requires
the use of techniques that can distinguish the time se-
ries of unaffected patients and the series of hepatotoxic
patients. Besides counting boundary crossings, phar-
maceutical statisticians typically use univariate tests of
differences in population means to quantify liver effects.

In this paper we examine the notion of quantify-
ing the dissimilarity between different sets of data with
the goal of detecting hepatotoxicity. We propose dis-
similarity measures that can be used to quantify the
differences between two data sets. Our hope is that
our measures are more sensitive to liver toxicity than
more simple techniques such as “Hy’s Rule.” Other ap-
plications of our measure for clinical trial data involves
characterizing the differences between the different sub-
sets of patients (for example, the differences between
those on drug and those on placebo, or between males
and females), and discovering subpopulations that have
a greater risk of hepatotoxicity.

A suitable dissimilarity measure has several require-
ments. First, it must take into account as much of the
information contained in the data sets as possible. For
example, simply calculating the Euclidean distance be-
tween the centroids of two different data sets is ineffec-
tive, as this approach ignores the correlations present
in the data sets. Second, it must be user-tunable in
order to account for domain knowledge. For example,
the difference in the mean analyte values for two differ-
ent patients may only be determined their demographic
properties (e.g. age, sex, and weight), and not by any
effect of the drug. In this case, differences in the mean
should be weighted less than differences in the correla-
tions. Third, the dissimilarity measure should be toler-
ant of missing and noisy data, since in many domains
data collection is imperfect, leading to many missing
attribute values [19].

In this paper we propose the use of several dissim-
ilarity measures based on principal component analysis

(PCA). Our measures consists of components that sep-
arately take into account differences in the locations,
and correlations of the data sets being compared. As
such, our measure takes into account much of the infor-
mation in the data set. It is also possible to weight the
components differently, so one can incorporate domain
knowledge into the measure. Finally, our measure is ro-
bust towards noise and missing data. We demonstrate
the efficacy of the proposed measures using clinical trial
data provided by Pfizer that is known to contain sub-
jects suffering from hepatotoxicity.

The rest of the paper is organized as follows. We
first briefly review related work in Section 2. We
then present our dissimilarity measure in Section 3,
and discuss several applications of the measure. In
Section 4, we present experimental results showing
the performance of our measure when used for several
applications on stock market data sets. Finally in
Section 5 we conclude with directions for future work.

2 Related Work

As mentioned above, there have been many metrics
proposed that find the distance or similarity between
the records of a data set [2, 14, 11], or the between the
attributes of a data set [7, 24]. However, these metrics
are defined only between a pair of records or attributes.
Similarity metrics for comparing two data sets have
been used in image recognition [13], and hierarchical
clustering [15]. The Hausdorff distance [13] between
two sets A and B is the minimum distance r such that
all points in A are within distance r of some point in B,
and vice-versa. Agglomerative hierarchical clustering
frequently makes use of the single-link and complete-
link distances between two clusters [15] to decide which
pair of clusters can be merged. The single-link distance
between two clusters is the minimum pairwise distance
between points in cluster A, and points in cluster
B, while the complete-link distance is the maximum
pairwise distance between points in cluster A, and
points in cluster B. There is also an average-link
distance [12], which is the average of all pairwise
distances between points in cluster A and points in
cluster B. However, these metrics do not explicitly take
into account the correlations between attributes in the
data sets (or clusters). Parthasarathy and Ogihara [20]
propose a similarity metric for clustering data sets based
on frequent itemsets. By this metric, two data sets are
considered similar if they share many frequent itemsets,
and these itemsets have similar supports. This metric
takes into account correlations between the attributes,
but it is only applicable for data sets with categorical
or discrete attributes.

There has also been work for defining distance met-
rics that take into account the correlations present in
continuous data. The most popular metric is the Maha-



lanobis distance [22], which accounts for the covariances
of the attributes of the data. However this can only be
used to calculate the distance between two points in
the same data set. Yang et al [25] propose an algorithm
for subspace clustering (i.e. subsets of both points and
attributes in a data set) that finds clusters whose at-
tributes are positively correlated with each other. Böhm
et al [5] modify the dbscan algorithm [10] by using
PCA to find clusters of points that are not only density-
connected, but correlation-connected as well. That is
to say, they find subsets of a data set that have simi-
lar correlations. To determine if two points of the data
set should be merged into a single cluster, they must
be in each other’s “correlation” neighborhood which is
determined by a PCA-based approximation to the Ma-
halanobis distance. This approach is more flexible than
Yang et al’s in that it can find clusters with negative cor-
relations between the attributes. However, their mea-
sure is unable to find subsets of data with similar cor-
relations that are not density-connected. Furthermore,
both Yang et al’s and Böhm et al approaches are inter-
ested only in finding clusters of points within a single
data set, instead of clustering multiple data sets.

Recently, Aggarwal has argued for user interaction
when designing distance functions [1] between points.
He presents a parametrized Minkowski distance metric
and a parametrized cosine similarity metric that can
be tuned for different domains. He also proposes a
framework for automatically tuning the metric to work
appropriately in a given domain. Based on these
ideas in the next section we present a tunable metric
for computing a measure of dissimilarity across data
(sub)sets.

3 Algorithms

In this section we first discuss the challenges that min-
ing clinical trial data sets present. We then describe a
simple feature extraction procedure that enables us to
represent the data alleviating the problems described.
The remainder of this section is then devoted to devel-
oping our dissimilarity measure and demonstrating its
utility and flexibility via a simple example, for exposi-
tory simplicity.

3.1 Challenges As we discussed in Section 1, clini-
cal trial data are presented in the form of a multivariate
time series for each subject in the trial. At each time
point, the values of various blood analytes are recorded.
While there are many techniques for analyzing (multi-
ple) times series data [3, 6, 9], clinical trial time series
data is quite challenging. Such time series data sets
suffer from irregular sampling, missing data, and vary-
ing lengths. This may be due to a variety of reasons,
including missed appointments, unexplained absences,
and drop outs. Furthermore, there are also several po-
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Figure 1: Plot of four different subjects’ ALT levels over
time.
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Figure 2: Plot of four different subjects’ ALT levels
versus their AST levels.

tential sources of noise. Measurement errors, laboratory
bias1, and circadian effects on analyte values (depending
on when the blood sample was drawn) can be contribut-
ing factors to noise.

To illustrate these issues consider the following ex-
amples drawn from a real data source. Figure 1 shows
the levels of the blood analyte ALT (alanine amino-
transferase) measured over the course of the clinical trial
for four different subjects. From this graph, one can
see that different series have different lengths, the sub-
jects have different numbers of samples, and on a given
day, not all subjects’ ALT values are sampled. However,
subjects A and B suffer from hepatotoxicity, and this is
marked by the large spikes in ALT values. Time series
plots for other blood analytes for these subjects would
show similar spikes in values.

In Figure 2 we ignore the time component and show
a scatter plot of the values of the ALT analyte versus
that of the AST (aspartate aminotransferase) analyte

1Different laboratories, where these tests are often
analyzed, often have different protocols resulting in
a significant variation in analyte values for the same
subject.



for the same four subjects shown in Figure 1. Here we
see that even if we ignore the time component, the hep-
atotoxic patients are obvious: There is a strong correla-
tion between the values of the ALT and AST analytes,
and these analytes both take on extreme values. Fur-
thermore, the vector pointing in the direction of maxi-
mum variance for subject A points in nearly the same
direction as that for subject B. This infers that not only
the magnitude of the variance in a time series impor-
tant, but its direction is as well.

3.2 Feature Extraction and Key Intuition The
basis of Hy’s rule, and the typical signal physicians look
for when evaluating liver toxicity, is usually a significant
and consistent departure from the normal levels of one
or more liver analytes. Moreover, it is usually the case
that not all the analytes are affected simultaneously.
A conclusion one can draw from these two statements
is that the covariance or in most cases the correlation
among analytes should be capable of identifying such
significant departures from the norm.

This key intuition leads us to the use of correlation
or covariance matrices to represent patient data and
subsequently the use of principal component based
methods for computing dissimilarity measures for such
datasets. We note that correlation and covariance
matrices can easily be imputed in the presence of
missing data and moreover, principal components based
techniques have been shown in the literature to be noise-
tolerant [19].

To summarize, our feature vector, representing the
data for each subject, consists of the matrix of covari-
ances or correlations between each pair of attributes,
and the principal components derived from this matrix.
The dissimilarity measures quantify the differences be-
tween the principal components of two different sub-
jects. Additionally, we would like to note that such
measures are general-purpose, and can be used to com-
pare any two data sets, times series or not, so long has
they have the same dimensionality.

3.3 Dissimilarity Measures Our goal is to quantify
the dissimilarity of two k-dimensional data sets X and
Y. Our measures take into account the correlations
between the attributes of the two data sets. In general,
the dissimilarity of two data sets X and Y is denoted
as D(X,Y). We define the function D in terms
of two dissimilarity functions that take into account
the differences in rotation, and variance between the
data sets. These components are combined by means
of a weighted sum, which allows one to weight the
components differently, so as to incorporate domain
knowledge.

The first step of using our dissimilarity measures is
to the find the principal components of the data sets

being compared. The principal components of a data
set are the set of orthogonal vectors such that the first
vector points in the direction of greatest variance in
the data, the second points in the orthogonal direction
of the second greatest variance in the data, and so
on [17, 23]. We consider X and Y to be most similar
to each other when their principal components, paired
according to their ranks, are aligned and have the
same magnitude, and most dissimilar when all of the
components of X are orthogonal to those of Y.

More formally, given a data set X, consider the
singular value decomposition (SVD) of its covariance
matrix:

(3.1) cov(X) = UΛXXT

where the columns of X are the principal components
of the data set X, arranged from left to right in order
of decreasing variance in their respective directions, and
ΛX is the diagonal matrix of singular values. Note that
one can also find the SVD of the correlation matrix of
X as an alternative to the covariance matrix.

Having found the principal components, we can now
represent each data set X as a single feature vector F

X
:

(3.2) F
X

=
√

Λ1 × X1

where X1 is the first principal component of the data
set, or the first column of X in Equation 3.1, and Λ1

is its corresponding eigenvalue. That is to say each
data set is represented by the scaled primary principal
component vector pointing in the direction of greatest
variance.

Having such a feature vector, we can then apply
any standard distance metric. For example, applying
the Euclidean distance metric:

(3.3) De(FX
, F

Y
) = |F

X
− F

Y
|2

on the first principal component derived from the covari-
ance matrix of the data would result in a value that si-
multaneously measures differences in direction and mag-
nitude of the vector. We have also developed an alter-
native distance metric called the Projection distance:

(3.4) Dp(FX
, F

Y
) = 1 −

F
X
· F

Y

max(|F
X
|2, |F

Y
|2)

which measures the length of the projection of the
shorter vector onto the longer one.

These two measures can be extended to account for
the differences in the mean of the data sets. First we
define the dissimilarity of the means of the data sets as
follows:

(3.5) Dµ(X,Y) = |µ
X
− µ

Y
|2.



that is to say, the Euclidean distance between the
centroids of the two data sets. We can then define the
extended De measure as follows:

(3.6) De(X,Y) = β0 + β1 × Dµ + β2 × De

and the extended Dp measure as:

(3.7) Dp(X,Y) = β0 + β1 × Dµ + β2 × Dp.

This formulation allows us to weight differences in the
means and correlations according to domain informa-
tion. For example, in clinical trial data, differences in
the means of the observations of two different subjects
may be caused more by differences in demographic char-
acteristics (e.g. sex, age, weight) than by any effect of
the drug, and so one would want to weight the differ-
ences in correlations higher.

Finally, we note that we can generalize these mea-
sures to account for all the principal components as fol-
lows. Let F i

X
be the feature vector for the ith compo-

nent:

(3.8) F i

X
=

√

Λi × Xi.

Then the De measure can be generalized as:

(3.9) D′

e(X,Y) =

k
∑

i=1

De(F
i

X
, F i

Y
),

while the Dp measure has a similar general form:

(3.10) D′

p(X,Y) =
k

∑

i=1

Dp(F
i

X
, F i

Y
).

3.3.1 Missing Data Our measure is also robust
to missing data, which commonly occurs in clinical
trial data. Reasons for missing data include the fact
that subjects may not show up at appointments; the
protocol may not require a complete set of tests; or
a blood sample may be mishandled or may contain
interfering ingested substances. If a data set X has
records with missing attribute values, and assuming
that the data has a normal distribution, one can use
the Expectation-Maximization algorithm [8] to find the
maximum-likelihood values of the centroid µ

X
and the

covariance matrix cov(X). The principal components
one finds are the sample principal components [16],
and one can develop confidence intervals to test the
closeness to the true (population) principal components.
If the missing data is not excessive, then the maximum
likelihood/sample estimates of the components will be
accurate, and the computation of the dissimilarity
metric can continue as before. Other approaches for
handling missing data involve just ignoring records with
missing data completely.

A B C D

A — 751 271 284

B 751 — 930 936

C 271 930 — 29.5

D 284 936 29.5 —

Table 1: Euclidean dissimilarity (De).

A B C D

A — 0.779 0.974 1.024

B 0.779 — 0.995 1.002

C 0.974 0.995 — 1.396

D 1.024 1.002 1.396 —

Table 2: Projection dissimilarity (Dp).

3.4 Example Here we present an example to illus-
trate how each dissimilarity performs with respect to
the clinical trials subjects presented in Figures 1 and 2.
We examine the basic De and Dp measures as defined
in equations 3.3 and 3.4. For this example, we use
the values of the eight primary blood analytes responsi-
ble for measuring liver function. These serum analytes
are ALT, AST, GGT (γ-glutamyltransferase), LD (lac-
tate dehydrogenase), ALP (alkaline phosphatase), total
bilirubin, total protein, and albumin.

In Table 1 we present the pairwise dissimilarities
for the De measure. For this example we perform
SVD using the covariance matrix as opposed to the
correlation matrix (see Equation 3.1) As can be seen,
the two non-hepatotoxic subjects (C and D) are the
most similar, followed by the hepatotoxic patients A and
B. This result is visualized as a dendrogram in Figure 3.

We next look at the Dp measure. The results
are presented in Table 2. Unlike De, the Dp measure
identifies the two hepatotoxic subjects (A and B) as
being the most similar, followed by subjects C and D.
The resulting dendrogram is shown in Figure 4. This

Figure 3: Subject clustering dendrogram for Table 1.



Figure 4: Subject clustering dendrogram for Table 2.

result is to be expected, as the hepatotoxic patients have
principle component vectors of nearly the same length
pointing in nearly the same direction. This example
illustrates the differences between these two measures:
The De measure tends to be more sensitive to the
magnitude of the feature vectors, while the Dp measure
tends to be more sensitive to the direction of the feature
vectors.

3.5 Applications In this section we present an
overview of how our dissimilarity measures can be used
to analyze the clinical trial data. The techniques we
consider are anomaly (outlier) detection, and data set
clustering.

3.5.1 Anomaly Detection Detection of anomalies
or outliers in clinical trial data is very important.
Subjects’ analyte values may be anomalous for many
reasons related to sample processing including subject
ingestion of interfering substances, sampling handling
conditions, analyzer error, and transcription error. If
these data points can be identified and the cause
attributed to a non-treatment-related event, then the
data point may need to be removed from a particular
analysis. Subjects’ values may be anomalous because
they are having abnormal reactions to the drug. If this
is the case, the drug maker may want to study more
subjects similar to the anomalous ones to see if they
are true anomalies or indicative a small sub-populations
that may have toxic reactions to the drug.

Using our dissimilarity measures, it is straightfor-
ward to implement basic outlier detection algorithms
such as those described in [18]. These are nested-loop
approaches that calculate the dissimilarity between each
pair data points (or in our case, each pair of sub-
jects). Having calculated these values one can rank
the data points (subjects) according to several differ-
ent approaches. The kth approach ranks the subjects
according to their dissimilarity from their kth most sim-
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Figure 5: Outlier ranking using the Euclidean dissimi-
larity measure (De).

ilar subject. The ksum approach ranks the subjects ac-
cording to the sum of the dissimilarities from the k most
similar subjects. Finally, the nsum approach ranks the
subjects according to the dissimilarities from all other
(n − 1) subjects. In this paper we use the ksum ap-
proach.

Once we have these outlier rankings for all the sub-
jects in a given study, we can use them to determine
not only which subjects are the most anomalous, but
also to determine if the drug being studied has any ap-
preciable effect. For example, if we examine a ranking
of the subjects, we would expect the hepatotoxic pa-
tients to be highest-ranked, followed by the remaining
subjects who were on the drug, and finally the patients
who were given a placebo. However, a drug that has
little or no effect on the liver tests is less likely to cause
hepatotoxicity, and subjects on such a drug should not
be very dissimilar from those on placebo, meaning that
the ranking would be random.

To examine the effects of the drug being studied, we
use graphs such as the one in Figure 5. In this graph,
we plot the cumulative number of subjects on drug and
on placebo given the outlier ranking using thick lines.
The thin lines express the expected cumulative number
of subjects on drug or placebo for a given ranking
assuming the ranking is random. Of the example
subjects presented in Section 3.1, A, B, and D were
taking the drug, while C was on placebo. If we use the
nsum approach on Euclidean distance measure results
in Table 1, we would rank B as the most anomalous
subject, followed by A, D, and C. This is an “optimal”
ranking, in that it ranks the subject on placebo last,
and the hepatotoxic patients first. The graph arising
from this ranking is presented in Figure 5.

3.5.2 Clustering The dissimilarity measures we
present above allow us to easily perform clustering of
the subjects, as we did in the example in Section 3.4



(see the dendrograms in Figures 3 and 4). Finding clus-
ters of subjects in clinical trial data is helpful in that it
allows us to identify sub-populations who may have a
greater risk of hepatotoxicity, sub-populations on whom
the drug may have little or no effect, sub-populations
that may have a higher risk of severe side-effects, et
cetera. This allows the drug makers to determine the
efficacy of the drug, to determine dosage levels for dif-
ferent patients, and to determine if the side-effects are
too severe or widespread to continue development of the
drug.

It is straightforward to perform agglomerative hi-
erarchical clustering of data sets using our dissimilarity
measures. If one has n data sets, one can construct an n

by n table containing the pairwise dissimilarities of the
data sets. Once this table has been constructed, one can
use any distance metric (e.g. single-link or complete-
link) to perform the hierarchical clustering. We present
experimental results on using hierarchical clustering for
the clinical trial data in Section 4.3. This table also
facilitates non-hierarchical clustering approaches, such
as the k-medoid approach [12]. This works by selecting
several data sets at random to be medoids of the clus-
ters, and then assigning the remaining data sets to a
cluster with the most similar medoid. After this phase,
the medoids are checked to see if replacing any of them
with other data sets would reduce the dissimilarity in
their respective clusters. If so, the process repeats until
no medoids are replaced, or some other stopping crite-
rion is met.

4 Experimental Results

In this section we evaluate the efficacy of the proposed
approach on clinical trials data obtained from Pfizer,
Inc. The end objective of this study is to evaluate the
impact of drug on liver analytes in order to understand
the hepatotoxicity effects of the drug. Below we describe
details about the datasets used in this evaluation.

4.1 Setup The first dataset we use, henceforth re-
ferred to as D1, consist of a set of subjects suffering
from diabetes, who were given either a placebo (a for-
mulation that includes only the inactive ingredients) or
the drug under study (drug A). Since we are primarily
concerned with hepatotoxicity, under suggestions from
our domain experts we only considered data from eight
serum analytes (often referred to in the literature as the
liver panel or liver function tests): ALT, AST, GGT,
LD, ALP, total bilirubin, total protein, and albumin.
Using advice from a domain expert, we used the log-
arithm transformation of the first six analytes’ values
(total protein and albumin are excepted), unless other-
wise noted. This dataset consisted of 446 patients on
placebo and 680 patients on drug. This drug was un-
der development but development was discontinued in

Phase III for various reasons including possible hepato-
toxicity.

The second dataset we use, henceforth referred to as
D2, consisted of a set of post-menopausal women, who
again were given either a placebo or one of two drugs
(B, C) (both are different from the one used in D1).
Again, we limited our focus to the liver panel. This
dataset consisted of 201 patients on placebo, 41 patients
on drug B, and 126 patients on drug C. All three of
these drugs were marketed drugs and were expected to
have little or no hepatotoxicity.

Both datasets suffer from the problems we men-
tioned earlier. They contain missing data, unequally
spaced time series data for different patients, some pa-
tients had many readings over a period of time, others
had much fewer etc. As noted earlier we transformed
the data from each patient into a feature vector as de-
scribed earlier in Section 3.3. Since the differences in
the mean are not significant in these data sets, we use
the basic forms of the De and Dp measures defined in
equations 3.3 and 3.4 in these experiments. All of our
implementations are done using Octave, an open-source
version of Matlab. All dendrograms were visualized us-
ing the njplot software [21].

4.2 Anomaly Detection In our first experiment, we
want to see how our dissimilarity measures perform on
the clinical trial data set of diabetic patients. As noted
earlier we have two groups of patients: one on placebo,
and another on the drug under study. The experiment
we conduct is to flag outliers from the dataset using the
dissimilarity measures discussed in the previous section.
The null hypothesis is that if the drug does not result in
hepatotoxicity, then the outliers are likely to be flagged
at random from each group. Note that previous to drug
intake the distributions of the two groups are nearly
identical. A significant deviation from random, or to be
more exact, if the people on drug tend to be flagged as
outliers with a greater probability than expected, then
a reasonable conclusion would be that there may be a
hepatotoxic effect resulting from drug intake.

In Figure 6 we plot the outlier ranking arising from
both the De and Dp measures for the top 10% (113) of
the outliers in this dataset. We observe that in both
cases the expected number of outliers from the drug
group is significantly exceeded by the actual number
indicating a clear signal that the drug under question
is causing a change in analyte behavior in the patients
being flagged as outliers. The De measure appears to be
a little more sensitive to this phenomenon than the Dp

measure. We would like to note that Phase III continued
for approximately two more years after these cases were
completed. Had this signal been detected at that time,
Pfizer might have been able to save on the resources it
expended to continue Phase III.
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Figure 6: Top outlier rankings for D1 using the (A) De, and (B) Dp dissimilarity measures.
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Figure 7: Top Outlier rankings for (A) using De on Drug B in D2, (B) using Dp on Drug B in D2, and (C) using
De on Drug C in D2

In our second experiment we evaluate the perfor-
mance of our method on the second dataset composed of
healthy post-menopausal women. As these are healthy
women taking either a placebo or drugs on the market
with no known hepatotoxic effects, we expect there to
be few (if any) true outliers. In such a case, our plots
should show that the number of outliers corresponding
to subjects on drug should be at or below the expected
levels. In Figure 7(A) and (B), we plot the top 10% of
the outliers for both drugs using the De measure. As
we hypothesize, the mixture of subjects on drug and
placebo marked as outliers are near the expected lev-
els. In Figure 7(C), we show the plot resulting from
using the Dp measure on Drug B. Again, the mixture
of subjects on drug and placebo is near the expected
level. The plot when Dp is run on Drug C is similar
and not included here. As can be seen, there is little
or no difference from the expected numbers for placebo
and drug, inferring that there are no subjects suffering
from hepatotoxicity in this case which is what we would
expect from two drugs that are currently on the market.
Both measures are equally effective in this experiment
and there is little to choose among them.

In our third experiment we examined what effect
varying the number of principal components has on the
outlier rankings. In this case, we varied the number
of components used by D′

e (see Equation 3.9) between
2 and 4 and applied it to the data sets for Drug A.

The results can be seen in Figure 8. For reference,
recall that Figure 6(A) shows the D′

e measure with
only 1 component. As can be seen from the graphs,
when we move from 1 component to 2, there is little
change. However, when we move to 3 components, we
mark significantly more subjects on drug as outliers.
This appears to be the optimum number of components
in this case, for when we move to 4 components, the
sensitivity decreases somewhat. Though they are not
pictured here, the results for D′

p are similar.
These experiments demonstrate and advantage of

our approach over Hy’s rule. They show that we are
capable on not only finding important differences in
magnitude, but also in direction (correlation) that may
be missed by Hy’s rule.

4.3 Data Set Clustering In our final experiment
we demonstrate the utility of using our dissimilarity
measures to perform clustering. In Figure 9 we present
the dendrogram resulting from performing complete-
link hierarchical clustering. In this case we use a subset
of the subjects corresponding to all males with diabetes
who were taking the drug being studied, for a total
of 450 subjects. We use the Euclidean dissimilarity
measure De and the covariance matrices. We find
that clustering results in an intuitive grouping of the
subjects. For example, we look at two different branches
of the dendrogram in Figures 10 and 11.
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Figure 8: Top Outlier rankings for Drug A as function of the number of components used in D′

e: (A) 2 components,
(B) 3 components, (C) 4 components.

In Figure 10, we examine the top-most branches of
the dendrogram in Figure 9. These branches correspond
to a cluster of subjects with relative low spikes in
analyte values. These spikes may not be large enough
to be considered a sign of hepatotoxicity according to
Hy’s rule. In Figure 11 we examine the bottom-most
branches of the full dendrogram, and find that these
correspond to a cluster of subjects with very large
spikes in analyte values, nearly an order of magnitude
larger than those in Figure 10. Although we only plot
the ALT levels here, we note these spikes extend to
the other blood analytes as well and affect the overall
covariances. Hy’s rule would definitely categorize the
cases in Figure 11 as being hepatotoxic, whereas the
cases in Figure 10 may or may not be categorized as
hepatotoxic depending on the amplitude of the spike.
Other branches show different behaviors that may not
be indicative of hepatotoxicity, but may be related to
the subjects’ demographic or other health attributes,
which may aid in determining dosage levels.

5 Conclusion

Efficient and precise analysis of clinical trial data is very
important to pharmaceutical companies, as it allows
them to determine the efficacy and safety of a drug.
Pharmaceutical companies want to halt development on
unsafe and ineffectual drugs as early as possible in order
to save on development costs and to avoid unnecessary
complications and severe side-effects that may lead to
liability suits if the drug were to reach the market. Cur-
rent approaches for detecting hepatotoxicity in clinical
trial data sets have limited effectiveness, due to the fact
that they typically ignore correlations between blood
analytes. Since clinical trial data is the form of irreg-
ular time series, it is difficult to apply standard statis-
tical approaches to determine the (dis)similarity of two
or more subjects. In this paper we presented several
dissimilarity measures for data sets that takes into ac-
count the means and covariance structures of the data
sets. Our results on real clinical trial data show that

our measures can be very helpful in detecting true hep-
atotoxicity and finding subpopulations of subjects who
may have different reactions to the drug under study.
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Figure 9: Dendrogram resulting from clustering males with diabetic neuropathy taking drug.
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Figure 10: (A) Upper branch of complete dendrogram containing subjects with (B) small spikes in analyte values.
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Figure 11: (A) Lower branch of complete dendrogram containing subjects with (B) large spikes in analyte values.


