
MPI over uDAPL: Can High Performance and Portability Exist Across
Architectures?

LEI CHAI, RANJIT NORONHA AND D. K. PANDA

Technical Report
OSU-CISRC-1/06-TR11

MPI over uDAPL: Can High Performance and Portability Exist Across
Architectures?

�

Lei Chai Ranjit Noronha Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University�

chail, noronha, panda � @cse.ohio-state.edu

Abstract

Looking at the TOP 500 list of supercomputers we can
see that different architectures and networking technologies
appear on the scene from time to time. The networking
technologies are also changing along with the advances of
processor technologies. While the hardware has been con-
stantly changing, parallel applications written in different
paradigms have remained largely unchanged. With MPI
being the most popular parallel computing standard, it is
crucial to have an MPI implementation portable across dif-
ferent networks and architectures. It is also desirable to
have such an MPI deliver high performance. In this paper
we take on this challenge. We have designed an MPI with
both portability and portable high performance using the
emerging uDAPL interface. We present the design alterna-
tives and a comprehensive performance evaluation of this
new design. The results show that this design can improved
the startup time and communication performance by 30%
compared with our previous work. It also delivers the same
good performance as MPI implemented over native APIs of
the underlying interconnect. We also present a multi-stream
MPI design which aims to achieve high bandwidth across
networks and operating systems. The design also has the
potential to be extended easily for fault tolerance purpose.
Experimental results on Solaris show that the multi-stream
design can improve bandwidth over InfiniBand by 30%, and
improve the application performance by up to 11%.

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506; National Science Foundation’s Grants #CCR-
0204429 and #CCR-0311542; grants from Mellanox, Intel, Sun MicroSys-
tems, Cisco, and Linux Networx; and equipment donations from Apple,
AMD, Intel, IBM, Microway, Mellanox, PathScale, SilverStorm, and Sun
MicroSystems.

1. Introduction

The TOP 500 list [6] of supercomputers has been mea-
suring the capacity of computers to process large scale ap-
plications for more than a decade. This list serves as a gauge
of the rapid technological changes taking place in this area.
Different architectures have made their appearance on the
scene from time to time, with clusters becoming the dom-
inant technology. Additionally, different networking tech-
nologies have been used for clusters. These networking
technologies change over time as the ratio of processing
to network speed changes. While the underlying hardware
changes, the software packages and interfaces used by dif-
ferent applications has remained largely unchanged, with
the message passing interface (MPI) [17] paradigm being
the most popular. With the rapid advance in different tech-
nologies, having an MPI that can deliver high-performance
over all these different architectures, interconnects and op-
erating systems etc. has become crucial.

Native implementations of MPI over different high-
performance interconnects currently exists. These include
implementations like MPICH-MX for Myrinet [11], MVA-
PICH for InfiniBand [4], and MPI/Elan for Quadrics [22].
Though all these implementations provide the same inter-
face to the applications, internally they might differ in their
designs. They might also differ in the range of applica-
tions they may have been tested for. Thus deploying ap-
plications over a new network may expose latent problems
in the MPI library or application that might not have been
seen before. In addition, supporting all possible configu-
rations might burden the application developer. If the ap-
plication vendor can test his application with a single MPI
library which can be moved across different networks and
architectures with high-performance, this might potentially
reduce the burden.

The user-level direct access transport APIs (uDAPL) de-
fined by the DAT Collaborative attempts to provide a net-
work, architecture and operating system independent inter-

face to the application for communication. This potentially
allows applications to seamlessly use different networks as
the underlying transport with minimal effort. While new
applications may take advantage of the uDAPL interface, a
large number of legacy applications exist which are writ-
ten in MPI. The effort required to port these applications to
uDAPL may be significant, given their size and complex-
ity. In some cases, it may be impractical, especially if the
expertise needed to rewrite these applications is not avail-
able. The easiest way to achieve this with minimal effort is
to develop a port of MPI over uDAPL.

While it is possible to design an MPI that uses the
uDAPL interface, an important consideration is whether this
design can deliver high-performance close to that of the
underlying networking system or not. Initial building of
MVAPICH2 over uDAPL [12] suggests that it is possible
to achieve latency and bandwidth close to that of the native
implementation. Due to limitations in the design of MVA-
PICH2, we choose to revisit the issue of whether the widely
deployed MVAPICH can be redesigned to use the uDAPL
interface.

In addition to portability, we also choose to explore the
issue of portable high-performance. This issue comes into
play because the uDAPL library may have different per-
formance characteristics on various architectures. This is
because the uDAPL library may be designed in a variety
of ways. In addition, the uDAPL library depends on the
performance of the underlying communication library. Ad-
ditionally, there are operating system considerations such
as memory registration, scheduling and memory allocation
strategies which might affect performance. Thus, a design
optimized for one architecture may not be able to achieve
optimal performance on a different architecture.

In this paper, we take on the challenge of designing a
high-performance MPI over uDAPL. The rest of the paper
is organized as the following: In Section 2, we introduce
the background for this work. We explore several design
alternatives for the basic design in Section 3. Following
that, a multi-stream MPI design is presented in section 4 for
achieving high performance across different architectures.
We evaluate our design on Linux and Solaris in section 5
and 6 respectively, and describe the related work in section
7. Finally, in section 8, we provide our conclusions and
future work.

2. Background
In this section we introduce the background knowl-

edge of uDAPL, MVAPICH and MVAPICH2, and popu-
lar networks and operating systems in the area of high-
performance computing (HPC).

The emerging uDAPL (User Direct Access Program-
ming Library) standard [14] defines a set of transport-
independent, platform-independent Application Program-
ming Interfaces that exploit the RDMA (remote direct

memory access) capabilities of next-generation intercon-
nect technologies such as InfiniBand, the Virtual Interface
Architecture and iWARP. uDAPL is defined by DAT Col-
laborative [1].

MVAPICH [4] is a high-performance MPI-1 imple-
mentation over InfiniBand. It is an implementation of
MPICH [17] ADI2 layer. MVAPICH is implemented on
top of Verbs Level Interface (VAPI), developed by Mel-
lanox Technologies. It uses eager protocol for small mes-
sages and rendezvous protocol for large messages as shown
in Figure 1. The detailed design is discussed in [20]. MVA-
PICH2 [21] is an MPI-2 implementation over InfiniBand,
which is also on top of VAPI. It was implemented based on
MPICH2 [8] RDMA channel. Starting from version 0.9.0
the design has been moved to MPICH2 ADI3 layer. MVA-
PICH and MVAPICH2 are currently being used by more
than 280 organizations worldwide (in 30 countries).

Rendezvous Message
Rendezvous Finish

Rendezvous Reply

Rendezvous Request

ReceiverSender
Rendezvous Protocol

Sender Receiver
Eager Protocol

Eager Message

Figure 1. MVAPICH Eager and Rendezvous
Protocols

Modern interconnect technologies in the high-
performance computing area support RDMA operations as
well as send/receive operations, and allow MPI programs
to deliver low latency and high bandwidth. These networks
include InfiniBand [3], Myrinet [11], Quadrics [22], Am-
masso Gigabit Ethernet [7], etc. While similar in semantics,
these networks have syntactically very different native APIs
from each other, but they all support uDAPL interface. As
high performance computing advances rapidly, more and
more operating systems start to support these high speed
networks. Linux has been supporting various networks for
a long time. Solaris is also active in this area. It starts to
support InfiniBand since Solaris 10 and the transport layer
is IBTL [24]. Recently MS Window also joined the HPC
arena. In this paper we focus on Linux and Solaris.

3. Design Issues

In this section we address various issues in designing
MPI over uDAPL. We present a single-stream design in this
section and extend it to multi-stream design in the next sec-
tion.

2

3.1. Overall Design

Our design is adapted from MVAPICH. As can be
seen from Figure 2, MVAPICH has four major compo-
nents: connection management, communication channels,
progress engine and memory management. On the other
side, uDAPL provides various services. To design a high-
performance MPI over uDAPL, we need to map the MVA-
PICH components onto uDAPL services in an efficient
manner.

Shared MemoryRDMA Send/Receive

ChannelsCommunication

Single−stream Multi−stream

ManagementEndpoint

Write
RDMA

Model Read
RDMAServer−Client

Connection Send
Receive

Memory
Registration

Event
Dispatcher

MVAPICH ADI2 Layer

Progress
Engine Management

MemoryConnection
Management

Fast Connection
Establishment Management

BufferMessage
Ordering

uDAPL

Adaptation

Figure 2. Overall Design for MVAPICH-uDAPL

This work is more challenging compared with our pre-
vious work of designing an MPI-2 over uDAPL through
MPICH RDMA channel [12]. First of all, MVA-
PICH utilizes multiple communication channels (RDMA,
send/receive, and shared memory) which makes the de-
sign more complicated, whereas in our previous work only
RDMA channel is used. Secondly, we would like to de-
sign a more efficient connection management component
because connection establishment time becomes critical as
clusters scale to really large sizes. In addition, our goal is
to design a high-performance and portable MPI not only for
Linux but also for other operating systems such as Solaris,
thus optimization for other operating systems is also a big
challenge.

We discuss a single-stream based design in this section
in detail, and move to a multi-stream based design in the
next section.

3.2. Efficient Connection Establishment

MPI assumes a fully connected topology and uDAPL
currently only supports Reliable Connection (RC) service,
which implies that every process needs to establish a con-
nection with every other process at the initialization phase.
We use the server-client model provided by uDAPL for con-
nection establishment.

We proposed a thread based approach in our previous
work [12]. In this approach, every process acts as a server
for processes who have higher ranks and acts as a client for

processes who have lower ranks. Every process first creates
a server thread. The server thread persistently listens on the
Public Service Point (PSP), which is a listen handle used
for detecting incoming connection requests. Then every
process issues connection requests to all its corresponding
servers. A connection is established between two processes
as soon as the server thread accepts a request. The server
thread exits once all the connections are established. In this
way connections can be established concurrently among all
the processes.

As we did more research on connection management, we
found several disadvantages of the thread based approach.
First, thread creation and switching overhead makes this ap-
proach less efficient than we would expect. Second, thread
creation and execution functions may not be portable across
different operating systems and C libraries. In this con-
text, we propose a threadless connection establishment ap-
proach, which maintains the concurrency but makes it more
efficient and portable.

Figure 3 shows the basic idea of the approach. Suppose
we have n processes, then we need to establish n*(n-1)/2
connections. We can do so in only (n-1) steps. In step 1,
every process issues a connection request to its left neigh-
bor, then listens on PSP to accept the request from its right
neighbor. In step 2, every process issues a connection re-
quest to the process with rank = myrank-2, and listens on
PSP to accept the request from the process with rank =
myrank+2. So on and so forth, at the end of the (n-1)th step,
all the connections will be established. Experimental results
show that this simple approach works quite efficiently.

3.3. Multi-channel Communication

After initialization, a connection has been established
between every two processes. In the single-stream de-
sign only one connection is established for a pair of pro-
cesses. But to achieve high communication performance,
we can use multiple channels for communication. Here
we define a channel as a type of communication operation.
We use RDMA and send/receive channels for inter-node
communication and shared memory channel for intra-node
communication as in MVAPICH. To use uDAPL RDMA
and send/receive operations (or Data Transfer Operations
(DTOs)) we post descriptors, which are the encapsulation
of communication information, to End Points (EPs), which
are the abstraction of the local part of a connection. Once
a DTO completes, it generates a completion event to the
Event Dispatcher (EVD).

uDAPL requires the memory to be registered with the
Interface Adapter (IA) before it can be used for communi-
cation. To remove the memory registration time from the
critical communication path, we use a set of pre-registered
RDMA buffers for small messages. In the case when the
RDMA buffers are consumed, small messages will go to the

3

Process 2 Process 3 Process 4

CRCR CR

Process 1

(a) Step 1

Process 1 Process 2 Process 3 Process 4

CRCR

(b) Step 2

Process 1 Process 2 Process 3 Process 4

CR

(c) Step 3

Figure 3. Threadless Connection Establishment Scheme. CR: Connection Request
send/receive channel. Large messages are also sent through
the RDMA channel as long as there is sufficient amount of
memory that can be registered. Buffers for large messages
are registered on the fly.

Processes poll the shared memory buffers, RDMA
buffers, and the EVDs to discover incoming messages.
Message ordering within one channel is ensured by the
uDAPL specification, but there may be out-of-order mes-
sages among different channels. Assigning every message
a sequence number solves this problem. Out-of-order mes-
sages are left in the channel without further processing.

4. Multi-Stream MPI Design

The design described in section 3 delivers high perfor-
mance for various networks on Linux. However, when we
moved on to InfiniBand on Solaris, we found out that the
MPI-level bandwidth was not as high as we expected. Fur-
ther study reveals that it is because Solaris does not allow
one pair of EPs to take up all the bandwidth due to some
QoS concern. To the best of our knowledge there is no
easy way to overcome this limit. In order to get the desired
bandwidth for MPI applications, we present a multi-stream
design for Solaris in this section. This framework can also
easily be extended to serve other purposes later such as fault
tolerance.

EP 2

EP 0

EP 1

EP n

Process 2

EP 0

EP 1

EP 2

EP n

Small Message Send/Recv

Small Message RDMA

...

Process 1

Large Messages and
Rendezvous Finish

(Round Robin)

Figure 4. Multi-stream MPI Design

The basic design idea is to use multiple pairs of EPs be-
tween every two processes to achieve high aggregate band-
width as shown in Figure 4. It is to be noted that multi-
stream is different from multi-channel described in sec-
tion 3.3 in the sense that multi-channel refers to different
types of operations while multi-stream refers to different

connections. Different channels can utilize the same con-
nection and the same channel can utilize different connec-
tions. There are various issues associated with this design
that we discuss in detail below.

4.1. Memory Management

As we mentioned in section 3.3, we use a set of pre-
registered buffers for small messages going through RDMA
channel. Now we have multiple EPs, one important ques-
tion is: should all the EPs share the same set of RDMA
buffers or should they have separate buffers? We choose
to use the shared buffers for three reasons. Firstly, using
shared buffers saves memory space. Otherwise, the mem-
ory usage grows quickly as the number of nodes and num-
ber of EPs increase. Secondly, it reduces polling overhead.
To discover incoming messages, the process needs to poll
RDMA buffers from time to time. If we have multiple
sets of RDMA buffers, the process needs to poll multiple
buffers for each connection, which adds unnecessary over-
heads. And thirdly, it simplifies the design for flow control.
If we have multiple sets of RDMA buffers we need to man-
age flow control for every set which also adds overhead.

4.2. End Point Selection Policy

One critical issue in our design is how to decide which
message goes to which End Point. This policy can affect the
overall performance. In this section we discuss how we deal
with small and large messages respectively. The scheme is
illustrated in Figure 4.

In the current design, small messages are sent eagerly
through the RDMA channel. Once the RDMA buffers are
consumed the messages go to the send/receive channel.
These two channels are quite different in terms of EP selec-
tion. For send/receive, if a process posts a send to some EP,
the receive must have a receive already posted on the cor-
responding EP. Otherwise the send fails. This requires that
the receiver knows in advance which EP the sender is going
to use. This information is not available with the current
scheme. One alternative is to let the receiver post receives
on every EP, but this adds memory and time overhead. So
we choose to use a fixed EP for the send/receive channel.
For RDMA, however, there is no corresponding operation
at the remote side, so the sender can choose any EP to use.
But experimental results show that using multiple EPs hurts

4

small message bandwidth, so we also use a fixed EP for
small message that goes through RDMA channel.

Large messages are sent using rendezvous protocol. We
use a round robin policy to select EPs for large messages.
In this way nonblocking MPI calls will be able to saturate
the network bandwidth. However, there are three control
messages associated with each rendezvous message that we
must take care of: rendezvous request, rendezvous reply,
and rendezvous finish, as shown in Figure 1. The first two
can be dealt as normal small messages using the policy
specified above. We need to pay special attention to ren-
dezvous finish, because the receiving of rendezvous finish
indicates the corresponding rendezvous send has finished,
therefore, we must make sure the rendezvous finish is not
received before the rendezvous message has completely ar-
rived. We make sure of this by letting the sender select the
EP before it sends the rendezvous request, and use the se-
lected EP for both the actual message and the rendezvous
finish. The order of operations posted on the same EP is en-
sured by the uDAPL specification. The sender also informs
the receiver which EP it is going to use through rendezvous
request, and the receiver can post receive on the correspond-
ing EP for rendezvous finish. We force all the rendezvous
finish messages to go through the send/receive channel, be-
cause otherwise the receiver doesn’t know whether it should
post receive or not since it has no means to know which
channel (RDMA or send/receive) the rendezvous finish mes-
sage is coming from.

4.3. Ensuring Message Ordering

As described in section 3.3, the receiver can handle the
ordering of the messages coming from different channels
based on sequence number, and within each channel the or-
dering is guaranteed by the uDAPL specification when only
one EP is used. However, in the case of multiple EPs the
above mechanism is not sufficient, because the rendezvous
finish messages can go to any one of the EPs which leads
to out-of-order messages within the send/receive channel.
To deal with this problem we still use the sequence number
based approach, and put the out-of-order completion events
into a “wait for process” queue. Whenever the MPI calls
need to make progress, we need to check the “wait for pro-
cess” queue in addition to polling shared memory buffers,
RDMA buffers, and the event dispatcher to process appro-
priate messages.

5. Performance Evaluation on Linux

In this section we evaluate our single-stream design of
MPI over uDAPL on Linux. We first evaluate the per-
formance of MVAPICH-uDAPL over InfiniBand. The
evaluation includes the threadless connection establish-
ment scheme and the communication performance of
MVAPICH-uDAPL in terms of both micro-benchmarks and

applications. We compared the performance of MVAPICH-
uDAPL with that of MVAPICH2-uDAPL proposed in our
previous work, and also with MVAPICH-VAPI. We also
present the performance of MVAPICH-uDAPL over Am-
masso Gigabit Ethernet.

Experimental setup for InfiniBand: We use an 8-node
EM64T cluster. Each node has dual 3.4 GHz Intel Xeon
processors and 2GB main memory. The nodes are equipped
with MT25208 HCAs with PCI Express interfaces. An In-
finiScale MTS2400 switch is used to connect all the nodes.
The uDAPL library is from Mellanox IBGD version 1.8.0.

Experimental setup for Ammasso Gigabit Ethernet: We
use an 8-node IA32 cluster. Each node has dual Intel Xeon
3.0 GHz processors and PCI-X 133 MHz bus. The uDAPL
library is dapl-1.2 from Ammasso.

5.1. Threadless Connection Establishment

In this experiment we measured the total time spent on
connection establishment in MPI Init. We add a barrier be-
fore and after the connection establishment procedure so
that when the result is printed out we know all the connec-
tions have been established. From Figure 5 we can see that
the threadless connection establishment scheme proposed
in this paper performs 30% better than the thread based ap-
proach. This is because the overhead associated with thread
creation and switching is eliminated.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 8 16

Ti
m

e
(m

s)

Number of Processes

Thread Based Approach
Threadless Approach

Figure 5. Time Spent on Connection Estab-
lishment

5.2. Latency and Bandwidth over InfiniBand

We measured the basic latency and bandwidth of
MVAPICH-uDAPL and compared it with the performance
of our previous work. Figure 6 shows the results. The
small message latency of MVAPICH-uDAPL is 4.07 micro-
seconds, which is 33% better than our previous work. Band-
width is improved by up to 25%, and the peak bandwidth is
962 MB/s (MillionBytes/sec).

5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 16 64 256 1K 4K

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-uDAPL
MVAPICH-uDAPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 4 16 64 256 1K 4K 16K 64K 256K

Ba
nd

w
id

th
 (M

B/
s)

Message Size (Bytes)

MVAPICH2-uDAPL
MVAPICH-uDAPL

Figure 6. Latency and Bandwidth over InifiniBand on Linux

5.3. Application Performance over InfiniBand

We also conducted experiments using some of the NAS
parallel benchmarks [10] and some of the benchmarks in
Fluent [16]. We compared the performance of MVAPICH-
uDAPL with MVAPICH-VAPI which is known to be one
of the best MPI implementations over InfiniBand. From
Figures 7 and 8 we can see that MVAPICH-uDAPL
and MVAPICH-VAPI perform comparably, which means
MVAPICH-uDAPL is able to deliver high performance for
real applications.

0
2
4
6
8

10
12
14
16

CG IS LU
Benchmarks

Ti
m

e
(s

ec
)

MVAPICH-VAPI MVAPICH-uDAPL

Figure 7. CG, IS, and LU on 16 Processes
(Class A)

0
2000
4000
6000
8000

10000
12000
14000
16000

FL5S1 FL5S2 FL5S3 FL5M1 FL5L1

Benchmarks

R
at

in
g

(r
un

s/
da

y)

MVAPICH-VAPI MVAPICH-uDAPL

Figure 8. Fluent Benchmarks on 16 Processes

5.4. Performance over Ammasso Gigabit Ethernet

In this section we evaluate the latency of MVAPICH-
uDAPL over Ammasso, which is an RDMA-enabled Giga-
bit Ethernet. We compared with MPICH-iWARP which is
an MPI implemented over Ammasso RDMA transport se-
mantics. From Figure 9 we can see that MVAPICH-uDAPL
and MPICH-iWARP perform almost exactly the same. For
small messages MVAPICH-uDAPL performs even slightly
better due to the efficient design. This experiment demon-
strates the portable high performance of our design.

 0

 20

 40

 60

 80

 100

4K 1K 256 64 16 4 1

La
te

nc
y

(u
s)

Message Size (Bytes)

MPICH-iWARP
MVAPICH-uDAPL

Figure 9. Latency Comparison over Ammasso
Gigabit Ethernet

6. Performance Evaluation over InfiniBand on
Solaris

In this section we present the performance evaluation
of our multi-stream MPI for Solaris and compare with the
single-stream design. We first present the micro-benchmark
results, followed by application results.

Experimental setup: We use an 8-node Opteron clus-
ter. Each node has dual 2.2 GHz processors and 2GB main
memory. They are equipped with MT23108 HCAs with
PCI-X 133MHz interfaces. A SilverStorm 3032 switch is
used to connect all the nodes. The operating system used is
Solaris 10, which has uDAPL over IBTL with the distribu-
tion.

6

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 4 16 64 256 1K 4K 16K 64K 256K

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH-uDAPL-1EP
MVAPICH-uDAPL-2EPs
MVAPICH-uDAPL-4EPs
MVAPICH-uDAPL-8EPs

Figure 10. Latency over InfiniBand on Solaris

 0

 200

 400

 600

 800

 1000

 1 4 16 64 256 1K 4K 16K 64K 256K

Ba
nd

w
id

th
 (M

B/
s)

Message Size (Bytes)

MVAPICH-uDAPL-1EP
MVAPICH-uDAPL-2EPs
MVAPICH-uDAPL-4EPs
MVAPICH-uDAPL-8EPs

Figure 11. Bandwidth over InfiniBand on Solaris

6.1. Latency and Bandwidth
We first evaluate the ping-pong latency and bandwidth

on Solaris. Figure 10 shows that the small message latency
of MVAPICH-uDAPL on Solaris is 5.37 micro-seconds,
and using multiple EPs doesn’t hurt the latency. Figure 11
shows that the multi-stream design can dramatically im-
prove the bandwidth. We find that two EPs gives the best
performance. It improves the peak bandwidth from 659
MB/s to 914 MB/s compared with the single-stream de-
sign. We also find that if we use more than two EPs the
bandwidth performance decreases as the number of EPs in-
creases. This is because as we use more and more EPs,
the MPI takes more and more resources and leaves less re-
sources available for the MPI program.

6.2. Application Performance

From section 6.1 we see that the multi-stream MPI can
largely improve MPI-level bandwidth for large messages
compared with the single-stream design. To get a com-
prehensive understanding of how the improvement trans-
lates to MPI application performance, we conducted exper-
iments using application level benchmarks. CG and IS are
selected from the NAS parallel benchmarks, because these
two benchmarks mainly use large messages [15]. We also
use a benchmark called PSTSWM [5] which is a parallel
spectral transform shallow water modeling program and is
bandwidth sensitive. We compared the performance of the
multi-stream design with the single-stream design. Since
from the latency and bandwidth study described in sec-
tion 6.1 we know that two EPs perform the best, in the ap-
plication level study we use two EPs for multi-stream.

The total execution time is shown in Figure 12. For CG
and IS, Class A benchmarks are used, and they were run-
ning on 2 and 4 processes. We used a small number of
processes for CG and IS, because as the number of pro-
cesses increases the message size decreases, which makes
the benchmarks not bandwidth sensitive any more, thus out
of our interest. From the results we can see that the multi-
stream design can improve the performance of CG by 11%

and 8% on 2 and 4 nodes respectively, and improve the per-
formance of IS by 8.6% and 4.6% on 2 and 4 nodes.

We conducted the experiment for PSTSWM on 8 pro-
cesses. The result shows that the multi-stream design im-
proves the performance by 7%.

To further study where the benefit comes from, we pro-
filed the MPI functions used in CG and the time spent in
each function using DTrace, which is a comprehensive dy-
namic tracing framework for Solaris [2]. Profiling results
show that the benefit mainly comes from the reduced time
spent in the progress engine. That is because large messages
in nonblocking sends can be pushed out more quickly now.

0

1

2

3

4

5

6

7

8

CG-A-2 CG-A-4 IS-A-2 IS-A-4 PSTSWM-8

Ti
m

e
(s

ec
)

MVAPICH-uDAPL-1EP MVAPICH-uDAPL-2EPs

Figure 12. Application Total Execution Time

7. Related Work
There are several MPI implementations in the litera-

ture that aim for portability across networks. We proposed
an MVAPICH2-uDAPL design based on MPICH RDMA
channel in [12]. Scali MPI [23] and Intel MPI library [18]
also support uDAPL, but unlike MVAPICH-uDAPL they
are not open source software. MPICH-Madeleine [9] is
another portable MPI which is based on the MadeleineIII
communication library.

In addition to the MPI implementations above, there
are also various MPIs that aim for high performance for
particular networks, such as MVAPICH [4] and MVA-
PICH2 [21] (InfiniBand), MPICH-MX (Myrinet), Quadrics

7

MPI (Quadrics), MPI/GAMMA [13] (Gigabit Ethernet),
MPICH-iWARP [7] (iWARP), etc. Most of these imple-
mentations are based on MPICH layered structure, and can
be ported to different lower-layer programming interfaces.
But they cannot be used directly across networks. Further,
the designs of these MPIs are highly optimized for the spe-
cific networks, and may not deliver portable high perfor-
mance when ported to other networks.

Using multi-rail networks to overcome bandwidth bot-
tleneck on InfiniBand is discussed in [19] and [25]. The
authors discussed various design issues and presented per-
formance benefit. But they mainly focused on InfiniBand
and Linux while the design proposed in this paper is more
general with respect to networks and operating systems.

8. Conclusions and Future Work
In this paper, we have explored the design alternatives

for a high performance implementation of MVAPICH over
the uDAPL communication interface. The design goals in-
clude true portability across networks, architectures and op-
erating systems. In addition to portability, we have also ex-
plored mechanisms for portable high-performance. These
mechanisms include a multi-stream design and a scalable
threadless based startup. Evaluation in terms of micro-
benchmarks over the uDAPL interface on Solaris shows an
improvement in large message bandwidth of up to 30%.
This improvement in bandwidth also translates into im-
proved application performance of up to 11%. In addition
to an improvement of up to 30% in startup time, it is also
more scalable. In addition, evaluation over other networks
like Ammasso showed that our implementation is compara-
ble in performance to the native implementation.

We would like to explore how the overall framework
can be extended to provide features like network based
fault-tolerance. In addition, we would like to explore how
technologies like PCI-Express coupled with Single Data
Rate (SDR) and Double Data Rate (DDR) InfiniBand will
impact the portable high-performance design. Under-
standing how these designs can be portably extended to
other networking technologies like Myri 10G might help
us understand the limitations and potential enhancements
to our design. Finally, we would like to examine how
extensions to the uDAPL layer itself such as the addition of
support for unreliable datagram can impact the scalability
of our MPI design.

Software Distribution: The basic design proposed in
this paper has been incorporated into the open source
software MVAPICH version 0.9.6. It can be downloaded
from [4]

References

[1] DAT Collaborative. http://www.datcollaborative.org.

[2] Dtrace. http://www.sun.com/bigadmin/content/dtrace/.
[3] InfiniBand Trade Association. http://www.infinibandta.com.
[4] MPI over InfiniBand Project. http://nowlab.cis.ohio-

state.edu/projects/mpi-iba/.
[5] Parallel Spectral Transform Shallow Water Model.

http://www.csm.ornl.gov/chammp/pstswm/.
[6] Top 500 Super Computer Sites. http://www.top500.org/.
[7] Ammasso, Inc. http://www.ammasso.com.
[8] Argonne National Laboratory. MPICH - A Portable Imple-

mentation of MPI. http://www-unix.mcs.anl.gov/mpi/mpich.
[9] Olivier Aumage and Guillaume Mercier. MPICH/MADIII:

a Cluster of Clusters Enabled MPI Implementation. In CC-
Grid, 2003.

[10] D. H. Bailey and et al. The NAS parallel benchmarks. vol-
ume 5, pages 63–73, Fall 1991.

[11] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-Second
Local Area Network. IEEE Micro, pages 29–35, Feb 1995.

[12] L. Chai, R. Noronha, P. Gupta, G. Brown, and D. K. Panda.
Designing a Portable MPI-2 over Modern Interconnects Us-
ing uDAPL Interface. In Euro PVM/MPI, 2005.

[13] G. Ciaccio and G. Chiola. GAMMA and MPI/GAMMA on
Gigabit Ethernet. In 7th EuroPVM-MPI, 2000.

[14] DAT Collaborative. uDAPL: User Direct
Access Programming Library Version 1.2.
http://www.datcollaborative.org/udapl.html, July 2004.

[15] Ahmad Faraj and Xin Yuan. Communication Characteristics
in the NAS Parallel Benchmarks. In IASTED International
Conference on Parallel and Distributed Computing and Sys-
tems, 2002.

[16] Fluent Inc. http://www.fluent.com/.
[17] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-

Performance, Portable Implementation of the MPI, Message
Passing Interface Standard. Technical report, Argonne Na-
tional Laboratory and Mississippi State University.

[18] Intel Corporation. http://www.intel.com/cd/software/products
/asmo-na/eng/cluster/mpi/index.htm.

[19] J. Liu, A. Vishnu, and D. K. Panda. Building Multirail Infini-
Band Clusters: MPI Level Designs and Performance Evalu-
ation. In SuperComputing, 2004.

[20] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-
based MPI implementation over InfiniBand. Int’l Journal of
Parallel Programming, In Press, 2005.

[21] Network-Based Computing Laboratory. MPI over Infini-
Band Project. http://nowlab.cis.ohio-state.edu/projects/mpi-
iba/index.html.

[22] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Sal-
vador Coll, and Eitan Frachtenberg. The Quadrics Net-
work: High Performance Clustering Technology. IEEE Mi-
cro, 22(1):46–57, January-February 2002. Available from
http://www.c3.lanl.gov/ fabrizio/papers/ieemicro.pdf.

[23] Scali Inc. http://www.scali.com/.
[24] Sun Microsystems. Solaris 10 Reference Manual Collection,

man pages section 7: Device and Network Interfaces.
[25] A. Vishnu, G. Santhanaraman, W. Huang, H. W. Jin, and

D. K. Panda. Supporting MPI-2 One Sided Communication
on Multi-Rail InfiniBand Clusters: Design Challenges and
Performance Benefits. In HiPC, 2005.

8

