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Abstract

Information-sharing is a key aspect of distributed applications such as database servers,
application servers, web servers, etc., in cluster-based web data-centers. Information-sharing
also assists services such as load-balancing, dynamic caching, reconfiguration, etc. In the
past, information-sharing has been implemented using ad-hoc messaging protocols which of-
ten incur high overheads and are not very scalable. This paper presents a new design for a
scalable and a low-overhead distributed data sharing substrate (DDSS). DDSS is designed to
perform efficient data and memory management and supports a variety of coherence models
by leveraging the features of modern interconnects like one-sided communication and atomic
operations. It is implemented over the OpenFabrics standard interface and hence is portable
across multiple modern interconnects including iWARP-capable networks both in LAN and
WAN environments. Experimental evaluations with emerging networks like InfiniBand and
iWARP-capable Ammasso networks through micro-benchmarks and data-center services such
as reconfiguration and active caching not only show an order of magnitude performance im-
provement over traditional implementations but also show the load resilient nature of the sub-
strate. Application-level evaluations with Distributed STORM using DataCutter achieves close
to 19% performance improvement over traditional implementation, while evaluations with
check-pointing application suggest that DDSS is scalable and has a low overhead.

1 Introduction
Distributed applications in the fields of nuclear research, biomedical informatics, satellite weather

image analysis etc., are increasingly getting deployed in cluster environments due to their high

computing demands. Advances in technology have facilitated the storing and sharing of the large
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datasets that these applications generate, typically through a web interface forming web data-

centers [25, 15, 10, 24]. A web-based data-center environment (illustrated in Figure 1) comprises

of multiple tiers; the first tier consists of front-end servers such as the proxy servers that provide

web, messaging and services like caching and load balancing to clients; the middle tier comprises

of application servers that handle transaction processing and implement business logic, while the

back-end tier consists of database servers that hold a persistent state of the databases and other data

repositories. In addition to hosting these distributed applications, current data-centers also need ef-

Figure 1: Web-based data-centers

ficient and scalable support for intelligent services like dynamic caching of documents, resource

management, load-balancing, etc. Apart from communication and synchronization, these applica-

tions and services exchange some key information at multiple sites (e.g, versioning and timestamps

of cached copies, coherency and consistency information, current system load). However, for the

sake of availability, high-performance and low-latency, programmers use ad-hoc messaging proto-

cols for maintaining this shared information. Unfortunately, as mentioned in [27], the code devoted

to these protocols accounts for a significant fraction of overall application size and complexity. As

system sizes increase, this fraction is likely to increase and cause significant overheads. Further,

the performance of these protocols can degrade in the presence of load imbalances.

On the other hand, System Area Network (SAN) technology has been making rapid progress

during the recent years. SAN interconnects such as InfiniBand (IBA) [2] and 10-Gigabit Ether-

net (10GigE) [17, 14] have been introduced and are currently gaining momentum for designing

high-end computing systems and data-centers. Besides high performance, these modern intercon-

nects provide a range of novel features and their support in hardware, e.g., Remote Direct Memory

Access (RDMA), Remote Atomic Operations, Offloaded Protocol support and several others. Re-



cently OpenFabrics [22] has been proposed as the standard interface that allows for a generic

implementation to be portable over several modern interconnects such as IBA, 10-GigE including

iWARP-capable [26] networks such as Ammasso [1] both in LAN and WAN environments.

In this paper, we design and develop a low-overhead distributed data sharing substrate (DDSS)

that allows efficient sharing of data among independently deployed servers in data-centers by lever-

aging the features of the SAN interconnects. DDSS is designed to perform efficient data and mem-

ory management and supports a variety of coherence models by leveraging the features of modern

interconnects like one-sided communication and atomic operations. Specifically, DDSS offers

several coherency models ranging from null coherency to strict coherency model. In addition,

the substrate provides basic features for locking mechanisms by utilizing the atomic operations,

several data management and data distribution techniques, etc.

Experimental evaluations with IBA and iWARP-capable Ammasso networks through micro-

benchmarks and data-center services such as reconfiguration and active caching not only show an

order of magnitude performance improvement over traditional implementations but also show the

load resilient nature of the substrate. Application-level evaluations with Distributed STORM us-

ing DataCutter achieves close to 19% performance improvement over traditional implementation,

while evaluations with check-pointing application suggest that DDSS is scalable and has a low

overhead. The proposed substrate is implemented over the OpenFabrics standard interface and

hence is portable across multiple modern interconnects.

The rest of the paper is organized as follows. Section 2 provides a brief background on the

capabilities of modern interconnects. The basic requirements of several applications and services

for DDSS are mentioned in Section 3 and design goals are mentioned in Section 4. The design and

implementation of DDSS is discussed in Section 5. Section 6 presents the experimental results.

Related work is given in Section 7 and Section 8 presents our conclusions and future work.

2 Background
This section describes the two salient features of modern interconnects: (i) Remote Direct Memory

Access (RDMA) and (ii) Atomic Operations, that are used in designing DDSS.

2.1 Remote Direct Memory Access
Modern interconnects such as InfiniBand (IBA), 10-Gigabit Ethernet, etc., provide two types of

communication semantics: channel semantics (send/receive communication model) and memory



semantics (one-sided communication model). In channel semantics, every send request has a cor-

responding receive request at the remote end. On the other hand, memory semantics follows a

one-sided communication model. Here, Remote Direct Memory Access (RDMA) operations are

used, which allow the initiating node to directly access the memory of the remote-node without the

involvement of the remote-side CPU. RDMA operations are allowed only on pinned memory loca-

tions thus securing the remote node from accessing any arbitrary memory location. There are two

kinds of RDMA operations: RDMA Write and RDMA Read. In an RDMA write operation, the

initiator directly writes data into the remote node’s memory, while in an RDMA Read operation,

the initiator reads data from the remote node’s memory.

2.2 Atomic Operations over IBA
In addition to RDMA, the reliable communication classes over IBA optionally include atomic op-

erations [3] which can be performed directly on remote memory without the involvement of the

remote CPU. Atomic operations are posted as descriptors similar to any other type of communica-

tion. However, the operation is completely handled by the network adapter. The atomic operations

supported are Fetch-and-Add and Compare-and-Swap, both on 64-bit data. The Fetch-and-Add

operation performs an atomic addition at the remote end, while the Compare-and-Swap compares

two 64-bit values and swaps the remote value with the data provided if the comparison succeeds.

OpenFabrics [22] interface has been proposed recently as a standard for several modern inter-

connects. We propose to use this interface for implementing DDSS to ensure portability across

different interconnects.

3 Constraints of Data-Center Applications
This section describes the necessary characteristics and features to be provided by the DDSS both

in the context of applications as well as services that are deployed in data-centers.

3.1 Requirements of Data-Center Servers
Existing data-center applications such as Apache, PHP, MySQL, DB2, etc., implement their own

data management mechanisms for state sharing and synchronization. Applications like database

servers communicate and synchronize frequently with other database servers to satisfy the co-

herency and consistency requirements of the data being managed. Web servers implement com-

plex load-balancing mechanisms based on current system load, request patterns, etc. To provide

fault-tolerance, check-pointing applications that save the program state at regular intervals are also



extensively used. Many of these mechanisms are performed at multiple sites in a cooperative fash-

ion. Unfortunately, these applications have been implemented in an ad-hoc manner using two-sided

communication protocols such as TCP/IP, which makes the sharing of state information between

applications difficult and inefficient. Clearly, all the applications mentioned above can be greatly

benefited by an efficient run-time substrate that can support their different needs efficiently. Since

communication and synchronization are an inherent part of these applications, support for basic

operations to read, write and synchronize are critical requirements from the DDSS. Further, as the

nodes in a data-center environment may experience fluctuating load conditions depending on the

traffic pattern of the incoming requests, the DDSS needs to be resilient and robust to changing

system loads.

3.2 Requirements of Higher-level Data-Center Services:
Higher-level data-center services are intelligent services that are critical for the efficient function-

ing of data-centers. Services such as active caching [20] and cooperative caching [21] deal with

efficient and load-resilient caching techniques for both static and dynamic content, while the active

resource adaptation service deals with scalable management of various system resources. Other

services such as resource monitoring actively monitors the resource usage and helps other higher-

level services in identifying the bottleneck resources and alleviating such bottlenecks as they occur.

All these services require sharing of some state information. For example, caching services

require the need for maintaining versions of cached copies of data and locking mechanisms for

supporting cache coherency and consistency. Other services such as active resource adaptation

require the need for advanced locking mechanism in order to move nodes serving one website to

another in a transparent manner and needs simple mechanisms for data sharing. Resource moni-

toring services, on the other hand, require efficient, low overhead access to the load information

on the nodes. The DDSS has to be designed in a manner that meets all of the above requirements.

4 Design Goals of DDSS
To effectively manage information-sharing in a data-center environment, the DDSS must under-

stand in totality, the properties and the needs of data-center applications and services and must

cater to these in an efficient manner.

Caching dynamic content at various tiers of a multi-tier data-center is a well known method

to reduce the computation and communication overheads. Since the cached data is stored at mul-



tiple sites for caching purposes, there is a need to maintain cache coherency and consistency.

Current data-centers support methods like Adaptive TTL [13], invalidation schemes [18] and also

strong cache coherence schemes [20] for online transactions. Broadly, to accommodate the di-

verse coherency requirements of data-center applications and services, DDSS supports a range of

coherency models.

The six basic coherency models [12] to be supported are: 1) Strict Coherence, which always

obtains the most recent version and excludes concurrent writes and reads. Database transactions

require strict coherence to support atomicity. 2) Write Coherence, which always obtains the most

recent version and excludes concurrent writes. Resource monitoring services [29] need such a

coherence model so that the server can update the system load and other load-balancers can read

this system information concurrently. 3) Read Coherence is similar to write coherence except that

it excludes concurrent readers. Services such as reconfiguration [6] are usually performed at many

nodes and such services constantly monitor the system load information and dynamically move

applications to serve other websites in order to maximize the resource utilization. Though all

nodes perform the same function, such services can benefit from a read coherence model to avoid

two load balancers looking at the same load information and performing a reconfiguration. 4) Null

Coherence, which always accepts the currently cached version. Proxy servers that perform caching

on data that does not change in time usually require such a coherence model. 5) Delta coherence

guarantees that the data is no more than x versions stale. This model is particularly useful if a

writer has currently locked the shared segment and there are several readers waiting to the read the

shared segment. 6) Temporal Coherence guarantees that the data is no more than t time units stale.

This is similar to the adaptive TTL model mentioned previously.

Secondly, to meet the consistency needs of data-center applications, the DDSS should support

versioning of cached data and ensure that requests from applications at multiple sites view the data

in a consistent manner. Thirdly, services such as resource monitoring require the state information

to be maintained locally due to the fact that the data is updated frequently. On the other hand,

services such as caching and resource adaptation can be cpu-intensive and hence require the data

to be maintained at remote nodes distributed over the cluster.

Apart from the above, DDSS should also meet the following needs. Due to the presence of

multiple threads of each of these applications at each node in the data-center environment, the



DDSS should support the access, update and deletion of the shared data by all threads in a trans-

parent manner. Services such as resource adaptation and monitoring are characterized by frequent

reading of the system load on various nodes in the data-center. In order to efficiently support

reading of this distributed state information, the DDSS must provide asynchronous interfaces for

reading and writing of shared information and provide the relevant wait operations for detecting

the completions of such events. Further, as mentioned in Section 3, the DDSS must be designed

to be robust and resilient to load imbalances and should have minimal overheads and provide high

performance access to data. Finally, the DDSS must provide an interface that clearly defines the

mechanism to allocate, read, write and synchronize the data being managed in order for such ser-

vices and applications to utilize the DDSS efficiently.

5 Proposed DDSS Framework and Implementation Issues
This section describes the proposed framework and its implementation details. Specifically, we

present the mechanisms through which we achieve our design goals in an efficient manner.

The basic idea of DDSS is to allow efficient sharing of information across the cluster by cre-

ating a logical shared memory region. It supports two basic operations, get operation to read the

shared data segment and put operation to write onto the shared data segment. Figure 2a shows a

simple distributed data sharing scenario with several processes (proxy servers) writing and several

application servers reading certain information from the shared environment simultaneously.

Figure 2b shows a mechanism where coherency becomes a requirement. In this figure, we

have a set of master and slave servers accessing different portions of the shared data. All master

processes waits for the lock to be acquired for updating since the shared data is currently being

read by multiple slave servers.

In order to efficiently implement distributed data sharing, several components need to be built.

Figure 3 shows the various components of DDSS that help in satisfying the needs of the current

and next generation data-center applications. Broadly, in the figure, all the colored boxes are

the components which exist today. The white boxes are the ones which need to be designed to

efficiently support next-generation data-center applications. In this paper, we concentrate on the

boxes with the dashed lines by providing either complete or partial solutions. In this section,

we describe how these components take advantage of advanced networks in providing efficient

services.
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5.1 Connection Management
Connection management takes care of establishing connections to all the nodes participating in

either accessing or sharing its address space with other nodes in the system. It also allows for

new connections to be established and existing connections to be terminated. All the nodes in the

system are assigned specific ranks and applications interested in communicating with other nodes

can either explicitly mention the node name or the rank.

5.2 Memory Management and Data Access
Similar to other data sharing mechanisms, memory management is an important issue for maintain-

ing distributed data sharing. In our implementation, each node allocates a large pool of memory

to be shared with DDSS. We perform the allocation and free operations inside this distributed

pool of memory region. One way to implement the memory allocation in DDSS is to inform all

the nodes about an allocation. However, as we mentioned earlier, since we focus on providing a

low-overhead DDSS, informing all the nodes may lead to large latencies for memory allocation.

Another approach to achieve this is to assign one node for each allocation (similar to home-node

based approach but the node can maintain only the metadata and the actual data can be present

elsewhere). This approach reduces the allocation latency. The nodes are chosen in a round-robin

fashion for every allocation so that the burden of maintaining the meta-data information is well

distributed. The nodes also maintain a list of free blocks available within the pool memory. During

a release ss() operation for releasing the free block, we inform the designated remote node. In the

next allocation, the remote node searches through the free block list and informs the free block

which can fit the allocation unit. While searching for the free block, for high-performance, we get

the first fit free block which can accommodate the allocation unit and send it to requesting node.

For the release ss() operation, we can also use the advanced IBV WR RDMA WRITE WITH IMM

feature set offered by modern interconnects. This design allows for better progress as this event

generates an interrupt at the remote node and the event is immediately handled. We plan to im-

plement this feature as a part of future work. To gain access to DDSS, end-applications need to

create an allocation unit and use get(), put() operations for reading and writing to the data sharing

segment. High-speed networks provide one-sided remote memory operations (like RDMA read

and RDMA write) that allow access to remote memory without interrupting the remote node. In

our design, we use these operations to perform the read and write. All the applications and services



mentioned in Figure 3 will need this interface in order access/update the shared data.

5.3 Coherency and Consistency Maintenance
As mentioned earlier, we support six different coherence models. We implement the different

coherence models by utilizing the one-side RDMA operations and atomic operations of advanced

networks. However, for networks which lack atomic operations, we can easily build software-

based solutions using the send/receive communication model. In the case of Null coherence model,

since there is no explicit requirement of any locks, applications can directly read and write on the

shared data segment. For strict, read, write coherence models, we maintain locks and get() and

put() operations internally acquire locks to DDSS before accessing or modifying the shared data.

The locks are acquired and released only when the application does not currently hold the lock

for a particular shared segment. In the case of version-based coherence model, we maintain a

64-bit integer and use IBV WR ATOMIC FETCH AND ADD operation to update the version for

every put() operation. For get() operation, we perform the actual data transfer only if the current

version does not match with the version maintained at the remote end. In delta coherence model,

we split the shared segment into memory hierarchies and support up to x versions. Accordingly,

applications can ask for up to x previous versions of the data using the get() and put() interface.

Basic consistency is achieved through maintaining versions of the shared segment and applications

can get a consistent view of the shared data segment by reading the most recently updated version.

We plan to provide several consistency models as a part of future work. Proxy servers, applications

servers and services such as dynamic content caching and reconfiguration utilize this component

extensively.

5.4 Basic Locking Mechanisms
Basic locking mechanisms are provided using the atomic operations offered by modern intercon-

nects. In our implementation of DDSS, every allocation unit is associated with a 64-bit integer

which serves as a lock for acquiring access to the shared data. As mentioned earlier, modern in-

terconnects such as IBA provide one-sided atomic operations which can be used for implementing

basic locking mechanisms. In our implementation, we perform atomic compare and swap oper-

ations to check for the lock status and in acquiring the locks. If the locks are implicit based on

the coherence model, then the interface automatically unlocks the shared segment after successful

completion of get() and put() operations. Several services such as caching and reconfiguration can



utilize this component for providing efficient and scalable services.

5.5 Data Placement Techniques
Though DDSS hides the placement of shared data segments, it also exposes specific interfaces to

the application to explicitly mention the location of the shared data segment (e.g. local or remote

node). For the remote node case, the interface also allows the application to choose a particular

node. As mentioned earlier, resource monitoring services can utilize this component to provide

fine-grained services.

5.6 IPC Management
In order to support multiple user processes or threads in the system to access the DDSS, we option-

ally provide a run-time daemon to handle the requests of the multiple processes in the system. We

use shared memory channels and semaphores for communication and synchronization purposes

between the user process and the daemon. The daemon typically establishes connections with

other data sharing daemons and forms the distributed data sharing framework. Any service which

is multi-threaded or the presence of multiple services need to utilize this component for efficient

communication.

5.7 Distributed Sharing Mechanism
In our implementation, every time a data segment is allocated, the next data segment is auto-

matically allocated on a different node. This design allows the shared data segments to get well-

distributed among the nodes in the system and accordingly help in distributing the load in accessing

the shared data segments for data-center environments. This is particularly useful in reducing the

contention at the NIC in the case where all the shared segment resides in one single node and sev-

eral nodes needs access different data segment residing on the same node. In addition, distributed

shared segments also help in improving the performance for applications which use asynchronous

operations on multiple segments distributed over the network.

5.8 Locks Vs Data Sharing
Each shared data segment has an associated lock. Though we maintain the lock for each shared

segment, the design allows for maintaining these locks separately. Similar to the distributed data

sharing mechanism, the locks can also be distributed which can help in reducing the contention at

the NIC if too many processes try to acquire different locks on the same node.



Table 1: DDSS Interface

DDSS Operation Description
int allocate ss(nbytes, type, identifier) allocate a memory block of size nbytes in the shared state
int release ss(key) free the shared data segment
int get(key, data, nbytes, timestamp, stack) read nbytes of memory from the shared state and place it in data
int put(key, data, nbytes, timestamp, stack) write nbytes of memory to the shared state from data
int acquire lock ss(key) lock the shared data segment
int release lock ss(key) unlock the shared data segment

5.9 Interface
Table 1 shows the current interface of DDSS that is available to the end-user applications and

services. The interface essentially supports six main operations for gaining access to DDSS:

allocate ss(), get(), put(), releast ss(), acquire lock ss(), release lock ss() operations. The allo-

cate ss() operation allows the application to allocate a chunk of memory in the shared state. This

function returns a unique shared state key which can be shared among other nodes in the system

for accessing the shared data. get() and put() operations allow applications to read and write data

to the shared state and release ss() operation allows the shared state framework to reuse the mem-

ory chunk for future allocations. acquire lock ss() and release lock ss() operations allow end-user

application to gain exclusive access to the data to support user-defined coherency and consistency

requirements.

In addition, DDSS also supports asynchronous operations such as async get(), async put(),

wait ss() and additional locking operations such as try lock() operation for a wide range of appli-

cations.

6 Experimental Results
In this section, we evaluate DDSS with a set of microbenchmarks to understand the performance,

scalability and associated overheads. Later, we analyze the applicability of DDSS with data-center

services such as reconfiguration and active caching. Also, we analyze the performance and scala-

bility of DDSS with applications such as Distributed STORM and check-pointing. We evaluate our

DDSS framework on two interconnects IBA and Ammasso using the OpenFabrics implementation.

The iWARP implementation of OpenFabrics over Ammasso was available only at the kernel space.

We wrote a wrapper for user applications which in turn calls the kernel module to fire appropriate

iWARP functions.



Our experimental testbed consists of a 12 node cluster with dual Intel Xeon 3.4 GHz CPU-

based EM64T systems. Each node is equipped with 1 GB of DDR400 memory. The nodes

were connected with MT25128 Mellanox HCAs (SDK v1.8.0) connected through a InfiniScale

MT43132 24-port completely non-blocking switch. For Ammasso experiments we use two node

dual Intel Xeon 3.0 GHz processors with a 512 kB L2 cache and a 533 MHz front side bus and

512 MB of main memory.

6.1 Microbenchmark
In this section, we present the basic performance of DDSS. We also report the overhead and scal-

ability of using DDSS.

6.1.1 Measuring Access Latency

The latency test is conducted in a ping-pong fashion and the latency is derived from round-trip

time. For the measuring the latency of put() operation, we run the test performing several put()

operations on the same shared segment and average it over the number of iterations. Similarly, we

perform the get() operation and report the latency of get() operation. Figure 4a shows the latencies

of different coherence models achieved by using the put() operation of DDSS using OpenFabrics

over IBA through a daemon process. We observe that the 1-byte latency achieved by null and read

coherence model is only 20µs and 23µs. We observed that the overhead of communicating with

the daemon process is close to 10-12µs which explains the large latencies we see with null and

read coherence models. For write and strict coherency model, the latencies are 54.3µs and 54.8µs

respectively. This is due to the fact both write and strict coherency models use atomic operations

to acquire the lock before updating the shared data segment. Version-based and delta coherence

models report a latency of 37µs and 41µs respectively, since they both need to update the version

status maintained at the remote node. Also, as the message size increases, we observe that the

latency increases for all coherence models.

We see similar trends for get() operation as shown in Figure 4b. However, we observe that the

latency of Version-based coherence model does not change with varying message sizes. The reason

being, the current version maintained at the site requesting for the get() operation matches the

version maintained at the remote end throughout the benchmark run. We see similar trends in the

performance of latencies using OpenFabrics over Ammasso as shown in Figure 5. As mentioned

earlier, the communication through the daemon process adds some amount of overhead. However,
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Figure 5: Basic Performance using OpenFabrics over Ammasso: (a) put() operation (b) get() operation

if we access DDSS without the daemon process (assuming only one service per node), the overhead

is very minimal.

6.1.2 Measuring Substrate Overhead

One of the critical issues to address on supporting DDSS is to minimize the overhead of the middle-

ware layer for applications. Table 2 reports the overhead of the middle-ware layer for different

scenarios. We measure the overhead for different configurations (i) Direct scheme allows appli-

cation to directly communicate with underlying network through DDSS library, (ii) Thread-based

scheme allows application to communicate through a daemon process for accessing DDSS and

(iii) Thread-based asynchronous scheme is same as thread-based scheme except that applications

use asynchronous calls. We see that the overhead is less than a microsecond through the direct

scheme. If the run-time system needs to support multiple threads, we observe that the overhead

jumps to 10µs using the thread-based scheme. The reason being the overhead of round-trip com-

munication between the application thread and the DDSS daemon consumes close to 10µs. If the



Table 2: Overhead of DDSS
DDSS-Model Protocol Overhead Synchronization Time Total Overhead
Direct 0.35 20 20.35
Threading Support 10 20 30
Threading + Asynchronous 12 20 32
Operations

application uses asynchronous operations (thread-based asynchronous scheme), this overhead can

be significantly reduced for large message transfers. However, in the worst case scenario, for small

message sizes and scheduling of asynchronous operations followed by a wait operation can lead to

an overhead of 12µs. The average synchronization time observed in all the schemes is around 20µ.

6.1.3 Substrate Scalability with Access Contention

In order to test the scalability of DDSS, we designed several experiments accessing the shared

data segments with increasing number of clients. In the first experiment as shown in Figure 6a,

every client accesses different portions of the shared data segment on the same node. The graphs

clearly indicate that DDSS using OpenFabrics over IBA is highly scalable for such scenarios and

increasing number of clients does not seem to affect the performance. The primary reason being

DDSS is based on one-sided operations on the shared segment and the remote CPU is not disturbed.

However, if multiple clients access the same shared data segment residing on a particular node,

we observe some amount of performance degradation based on the contention-level as shown in

Figure 6b. In this experiment, every client performs several get() operation or a put() operation

based on a contention percentage. If the contention percentage is 10% and if total number of op-

erations including both get() and put() is 1000, then the total number of put() operation performed

would be 100. We report the performance of various coherence models for this experiment. Due

to requirement of acquiring the locks before accessing the shared data segment for strict and write

coherence model, we expect the get() and put() operations to have a longer waiting time in acquir-

ing the locks. As shown in the figure, we observe that for relatively lesser contention-levels of up

to 40%, the performance of get() and put() operations do not seem to be affected. However, for

contention-levels more than 40%, the performance of clients degrades significantly in the case of

strict and write coherence model mainly due to the waiting time for acquiring the lock.
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Figure 6: Performance of put() operations using OpenFabrics over IBA (a) Increasing Clients accessing different
portions (b) Contention accessing the same shared segment
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Figure 7: Performance of get() and put() operations

6.2 Impact of Asynchronous Operations
We have also measured the performance of asynchronous operations using OpenFabrics on IBA as

shown in Figure 7. As expected, large message asynchronous transfers siginificantly reduces the

overhead of DDSS.

6.3 Data-Center Service Evaluation
In this section, we evaluate our DDSS with data-center services in terms of performance, scalability

and loaded conditions in a data-center environment.

6.3.1 Dynamic Reconfiguration

Multi-tier data-centers are logically broken down into several tiers or sub-clusters which handle

different aspects of the data-center functionality. The increase in such services and partitions

results in a growing fragmentation of the resources available and ultimately in the degradation

of the performance provided by the data-center. Active resource adaptation and reconfiguration



alleviates this problem of wastage of resources by dynamically mapping applications to resources

available inside the data-center.

In our previous work [7, 6] we have shown the strong potential of using the advanced features of

high-speed networks in designing reconfiguration techniques. In this section, we use this technique

to illustrate the overhead of using DDSS for such a service in comparison with implementations

using native protocols. We modified our code base to use the DDSS and compared it with the

previous implementation. Also, we simulate the loaded conditions of a real data-center scenario

by firing client requests to the respective servers. Reconfiguration service dynamically moves the

nodes inside the data-center based on server load and the website that is currently being served.

If the load on the servers are significant and fluctuating, we expect the number of reconfiguration

(moving nodes from one web-site to another) to increase. Also, the service needs to make sure

that the loaded servers and free servers are locked before performing the switching and informing

other nodes of the recent change. We use the direct scheme of DDSS for this implementation.

As shown in Figure 8a, we see that the average reconfiguration time is only 133µs for increas-

ing loaded servers. The x-axes indicates the number of servers that are currently heavily loaded.

The DDSS overhead is only around 3µs and more importantly, as the number of loaded servers

increases, we see no change in the reconfiguration time. This indicates that the service is highly

resilient to the loaded conditions in the data-center environment. Further, we observe that the num-

ber of reconfigurations increase linearly as the number of loaded servers increase from 5% to 40%.

Increasing the loaded servers further does not seem to affect the reconfiguration time and when

this reaches 80% the number of reconfigurations decreases mainly due to insufficient number of

free servers for performing the reconfiguration. Also, for increasing number of reconfigurations,

several servers get locked and unlocked in order to perform efficient reconfiguration. The figure

clearly shows that the contention for acquiring locks on loaded servers does not affect the total

reconfiguration time showing the scalable nature of this service.

6.3.2 Strong Cache Coherence

In our previous work [20], we have shown the strong potential of using the features of modern

interconnects such as IBA in alleviating the issues of providing strong cache coherence with tradi-

tional implementations. In this section, we show the load resilient nature of the one-sided feature

in providing such strong cache coherency using DDSS over Ammasso. OpenFabrics implemen-
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Figure 8: Software Overhead on Data-Center Services (a) Active Resource Adaptation using OpenFabrics over IBA
(b) Dynamic Content Caching using OpenFabrics over Ammasso

tation over Ammasso is iWARP-compliant and hence the communication can also go over WAN.

As shown in Figure 8b, we observe that as we increase the number of server compute threads,

the time taken to check for the version number increases exponentially for a two-sided communi-

cation protocol such as TCP/IP. However, since DDSS is based on one-sided operations (RDMA

over iWARP in this case), we observe that the time taken for version check remains constant for

increasing number of compute threads.

6.4 Application-level Evaluation
In this section, we evaluate the performance of DDSS with applications such as check-pointing

and Distributed STORM with DataCutter.

6.4.1 STORM with DataCutter

STORM [19, 4] is a middle-ware service layer developed by the Department of Biomedical Infor-

matics at The Ohio State University. It is designed to support SQL-like select queries on datasets

primarily to select the data of interest and transfer the data from storage nodes to compute nodes

for processing in a cluster computing environment. It is implemented using DataCutter [8] which

is designed to enable exploration and analysis of scientific datasets. DataCutter library provides a

set of services on which application developers can implement more application-specific services.

We concentrate only on the applicability of DDSS with respect to STORM application. As men-

tioned above, STORM selects the data of interest and transfers this data to the compute nodes. In

distributed environments, it is also common to have several STORM applications running which

can act on same or different datasets serving the queries of different clients. Due to the fact that

the same dataset is processed by multiple STORM nodes and multiple compute nodes, DDSS can
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Figure 9: Application Performance using OpenFabrics over IBA (a) Distributed STORM application (b) Check-
pointing

help in sharing this dataset in a cluster environment so that multiple nodes can get direct access

to this shared data. DDSS can also benefit applications exchanging several meta data information

frequently. We realize that the meta data management of STORM is significant and all the compute

nodes access STORM to get meta data frequently. However, we are currently facing some minor

porting issues in the implementation. We will include these results in the final version of the paper.

In our experiment, we modified the STORM application code to use DDSS in maintaining the

dataset so that all nodes can have direct access to the shared information. We vary the dataset size

in terms of number of records and show the performance of STORM with and without DDSS. Due

to the fact that larger datasets showed inconsistent values, we perform the experiments on small

datasets and we completely flush the file system cache in order to show the benefits of maintaining

this dataset on other nodes memory. As shown in Figure 9a, we observe that the performance of

STORM is improved by around 19% for 1K, 10K and 100K record dataset sizes using DDSS in

comparison with the traditional implementation.

6.4.2 Check-pointing

We use a check-pointing benchmark to show the scalability and the performance of using DDSS.

In this experiment, every process attempts to checkpoint a particular application at random time

intervals. Also, every process simulates the application restart, by attempting to take a consistent

check-point and informing all other processes to revert back to the consistent check-point at other

random intervals. In this experiment, we show the scalability of this application with increasing

number of processes. In Figure 9b, we observe that the average time taken for check-pointing is

only around 150µs for increasing number of processes. Since this value remains constant around



this range for increasing number of clients and increasing number of application restarts, we can

conclude that the application scales well using DDSS. Also, we see that the average application

restart time to reach a consistent checkpoint increases with the increase in the number of clients.

This is expected as each process needs to get the current checkpoint version from all other pro-

cesses in order to decide the most recent consistent checkpoint.

In summary, we notice that DDSS enhances several services like reconfiguration and active

caching and applications such as distributed STORM and check-pointing by improving both per-

formance and scalability.

7 Related Work
There has been several distributed data sharing models proposed in the past for a variety of envi-

ronments. The most important feature that distinguishes DDSS from previous work is the ability to

take advantage of several features of high-performance networks, its applicability and portability

with several high-performance networks, its exploitation of relaxed coherence protocols and its

minimal overhead. Further, our work is mainly targeted for real data-center environment on very

large scale clusters.

Several run-time data sharing models such as InterWeave [11, 28], Khazana [9], InterAct [23]

offer many benefits to applications in terms of relaxed coherency and consistency protocols. Fried-

man [16] and Amza et. al [5] have shown ways of combining consistency models. Khazana [9]

also proposes the use of several consistency models. InterWeave [11, 28] allows various coherence

models allowing users to define application-specific coherence models. Many of these models are

implemented based on traditional two-sided communication model targeting the WAN environ-

ment addressing issues such as heterogeneity, endianness, etc. Such two-sided communication

protocols have been shown to have significant overheads in a real cluster-based data-center envi-

ronment under heavy loaded conditions. Also, none of distributed data sharing models take advan-

tage of high-performance networks for communication, synchronization and supporting efficient

locking mechanisms. Though many of the features of high-performance networks are applicable

only in a cluster environment, with the advent of advanced protocols such as iWARP included in

the OpenFabrics standard, DDSS can also work well in WAN environments and can still benefit

applications using the advanced features offered by modern networks.



8 Conclusion and Future Work
In this paper, we proposed and evaluated a low-overhead distributed data sharing substrate for

cluster-based data-center environment targeting the applications and services that are traditionally

hosted in these environments. Traditional implementations of data sharing using ad-hoc messaging

protocols often incur high overheads and are not very scalable. The proposed substrate is designed

to minimize overheads and provide high performance by leveraging the features of modern inter-

connects like one-sided communication and atomic operations. The substrate performs efficient

data and memory management and supports a variety of coherence models. The substrate is im-

plemented over the OpenFabrics standard interface and hence is portable across multiple modern

interconnects including iWARP-capable networks both in LAN and WAN environments. Experi-

mental evaluations with IBA and iWARP-capable Ammasso networks through micro-benchmarks

and data-center services such as reconfiguration and active caching not only show an order of mag-

nitude performance improvement over traditional implementations but also show the load resilient

nature of the substrate. Application-level evaluations with Distributed STORM using DataCutter

achieves close to 19% performance improvement over traditional implementation, while evalua-

tions with check-pointing application suggest that DDSS is scalable and has a low overhead.

We plan to enhance the distributed data sharing substrate by supporting advanced locking

mechanisms and study the performance benefits in a wide range of services and applications such

as meta-data management and access and storage of BTree data structure in database servers, ad-

vanced caching techniques and several others.
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