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Abstract

In this paper we present a novel method to generate 3D
animation of tornados from video clips taken from a single
camera. Our source of input data is a variety of tornado
video clips of widely-varying fidelity available on the world
wide web. By extracting the silhouette of the foreground fig-
ure and using a model-based approach, the problem is re-
formulated as a local, optimized search of the shape space.
The silhouette of the figure from the captured video is com-
pared against the silhouette of a synthetic revolute using a
pixel-by-pixel cost function. By using temporal coherence,
physical constraints, and knowledge of tornado motion, the
motion can be reconstructed. Additionally, we use this re-
construction to synthesize animations of the captured phe-
nomena. Our main contribution is a method to synthesize
a motion of highly dynamic objects like the tornado from
a single video source. In addition, we employ simple yet
robust 2D shape descriptors to reconstruct the shape and
form of the tornado.

1 introduction

The tornado is one of the most spectacular natural phe-
nomena on the planet. The highest local wind velocities on
earth are observed in tornados. These columnar whirlwinds
with a diameter up to 500 m and a height of about 3 km,
reach rotational velocities up to 200m/s [16]. Given their
ability to inspire amazement, they are often employed as
special effects in many feature films such as Twister (1996),
X2 (2003), and The day after tomorrow (2004). Twister was
the first feature film successfully generating realistic tor-
nado animations through the exploitation of modern com-
puter graphics hardware and custom-made software [5].
However, without any prior model, creating a realistic an-
imation of a tornado requires a great amount of manual
work. Though there have been a significant number of ef-
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forts directed towards the modeling of natural phenomena
like smoke, fog, cloud, water, and fire, efforts which model
tornados are relatively rare if non-existent.

In this paper we present a method to create 3D anima-
tions of tornados from video footage recorded on a single
camera. There has been much reported work on reconstruct-
ing 3D models of solid objects from image sequences in
computer vision and computer graphics. However, there is
again a relatively small amount of work available that de-
scribes the reconstruction of dynamic natural phenomena
from 2D image sequences.

The source of our data is a repository of video clips avail-
able on the world wide web recorded by various users. The
quality of the video clips varies from very good to poor and
are often of different resolution and duration. The illumina-
tion is often poor and the camera calibration is unknown. A
tornado shape is reconstructed for each frame of the orig-
inal video using its corresponding silhouette images. For
this purpose we employ a silhouette-based inverse render-
ing framework [13]. A cost function is minimized for each
frame, which measures the difference between a model-
generated silhouette image and the input silhouette image.
After extracting a series of 2D tornado structures from im-
ages, we construct 3D tornado surfaces leveraging knowl-
edge of problem domain. Later, we synthesize a keyframe
animation of successive 3D tornado reconstructions. We
render the surface of tornado using textured particles and
achieve a swirling effect by rotating the particles along with
the surface.

Our contribution to the literature is two-fold. We report
one of the first attempts to synthesize highly dynamic ob-
jects like the tornado from a single video source. Secondly,
we employ simple yet robust 2D shape descriptors to recon-
struct the shape and form of the tornado.

In Section 2 we describe relevant previous work on the
image based synthesis of natural phenomena. Then, in sec-
tion 3 we describe our tornado model and formulate its use
for extracting the shape of tornado from silhouette images.
Our method for creating a 3D animation of a given tornado
is described in Section 4. We present the results of applying
our methods to some input tornado videos in Section 5. In
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Section 6 we provide discussion and future work.

2 Related Work

There are many methods of reconstructing a version of
natural pheonmena from an observed sequence of 2D im-
ages. Wang and Zhu [22] use a generative model to ana-
lyze textured motion to learn about basic patterns motion.
After weeding out photometric and geometric influences,
they use the underlying dynamics of observed motion to
synthesize new motion. Schödl et al. [20] present a new
paradigm of representation namely video texture. They cap-
ture cyclic patterns in a relatively short video clip, which are
very common among video depictions of natural phenom-
ena (e.g. fire, waterfall), and generate infinitely varying dy-
namic video. Although video textures were also applied
to applications in 3D through the use of view-morphing
techniques, these methods are essentially two dimensional.
Hasinoff and Kutulakos [8] use flame sheet decomposition
method to reconstruct fire as a 3D density field from a set of
images from two or more views. The method is based on the
observation that a pair of photos of a semi-transparent scene
defines a unique density field, called a flame sheet. Fire is
reconstructed as the convex combination of sheet-like den-
sity fields. Dobashi et al. [3] also use a volume density field
to reconstruct large-scale cloud-like objects such as a ty-
phoon from satellite images. Their approach search an op-
timal configuration of metaballs which leads to the closest
match to the given satellite image. They also generate an
animation of clouds by interpolating the parameters of the
constitutive metaballs using user-specified flow curves de-
fined between two subsequent images.

Related to our framework for extracting tornado struc-
ture using silhouette images, there exists work which ap-
plies similar techniques to problems of motion analysis and
synthesis. Internal/external camera parameters are recov-
ered using exact geometry information of an object and its
silhouette images [9, 14]. In [21], a method is presented
to search the optimal configuration of human motion pa-
rameters by applying a silhouette/contour likelihood term.
In [13, 17], the shape parameters of a 3D face model are re-
covered from multiple silhouette images through an inverse
silhouette rendering framework.

To the best of our knowledge, there is very little pub-
lished research for creating 3D tornado animations from
video clips. In the feature film Twister, tornados are mod-
eled using conical solids. The surface of the tornado con-
sists of multiple layers of particles, which are rendered in-
dividually with a variety of light sources [5]. The deforma-
tion of the tornado surface is selected by animators driven
by the need to obtain certain visual effects. In our approach,
the overall shape and surface deformation is extracted from
the real video clips automatically.

3 Extracting Tornado Structure

In this section we present our tornado model and a
method to extract the structure of a tornado from a video
sequence using the proposed model. Before describing
our techniques we first describe some of the challenges we
faced and also explain the choices and trade-offs we made
to ward off the challenges.

3.1 Modeling a Tornado

Shape: The tornado can assume many forms. The shape
is often amorphous and enormous. Besides the primary
structure, there often exists secondary structures that are
not easy to define given the high amount of turbulence
the tornado generates. For this effort, we limit ourselves
to a single primary structure. An essential primary struc-
ture of a tornado is a large vortex plume rising above the
ground [15], therefore exhibiting a strong geometric signa-
ture in the form of a funnel. Moreover, the strong swirling
wind field is mostly confined to the funnel-shaped region.
Therefore, a characterization of the funnel shape will suf-
fice and any additional visualization or animation can be
limited to particles or the field inside or around the funnel.

Segmentation: Given the often poor and highly dif-
fused illumination that exists in many of the video clips it
is often a challenge to eliminate the background and ex-
tract the tornado. Also, artifacts in the form of buildings,
electric poles, etc. make the extraction process even more
tenuous. The silhouette extraction is performed by for-
ground/background segmentation. By inspecting the his-
tograms of several frames of the target sequence, we de-
termine the appropriate threshold of the image region con-
taining the tornado. Then, we apply the threshold to all the
frames in a video to extract the tornado silhouettes automat-
ically.

Camera: The calibration of the camera must be pre-
cisely known to extract a high-fidelity version of the ob-
ject. However, in our problem, the camera information is
unknown since tornado video clips are obtained from the in-
ternet. Instead of estimating the camera parameters, we as-
sume the projected appearance of a tornado is orthographic.
This is reasonable because the distance between the camera
and the tornado is large in general.

3.2 Geometric Model

We use a simple two dimensional tornado model to cre-
ate segmented funnel shapes. The resolution of a tornado
model is controlled by the number of segments (Ns). Fig-
ure 1 shows an instance of the model and its parameters
(p = (p1, .., p15)) when Ns = 6. The first two parameters
(p1, p2) describe the offset of the model along the X and Y
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principal axis from the image origin respectively. (p1, p2)
is considered the origin of model coordinate system. Pa-
rameter p3 controls the height of a tornado. The remain-
ing parameters (p4, ..., p15) describe the X coordinates of
the end-points of each segment in model coordinate system.
An alternative parameterization is to take the spine offsets
and radii instead of end-points. We noticed a slightly bet-
ter performance in the shape fitting process with the former
parameterization since it provides more locality during opti-
mization. Note that the position and length along the Y -axis
of each segment can be determined by overall height of a
tornado (p3) assuming that the heights of all segments are
equal and the segments are parallel to X-axis. Thus, in our
model, given Ns, the total number of parameters to describe
a 2D tornado shape is 2Ns + 3. Our model is thus a collec-
tion of frusta segments that are blended together.
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Figure 1. (left) A tornado model. (right) 3D
instance of the tornado model

There are several advantages of using this simplified tor-
nado model for extracting tornado shapes from video clips.
Though it is a constrained model of small dimensionality,
the model is flexible enough to conceive several segmented
funnel shapes. Essentially it is a 2D model which is suit-
able for video-based matching especially when the depth
information is hard to recover. Moreover, it can be easily
converted to a 3D mesh object by generating circles paral-
lel to the Z-axis with the segments as their diameters and
pairing neighbor circles (Figure 1).

3.3 Fitting Tornado Model to Silhouette Images

We fit our model of the tornado to the silhouette images
of a tornado, which are extracted from a video sequence.
Model fitting is performed by minimizing a residual be-
tween an input silhouette and a model-generated silhouette
image. The residual is obtained by computing the XOR of
two silhouette images. Given n-dimensional model param-
eter p, the cost function based on XOR operation is defined

as follows:

Fxor(p) =
W

∑
i

H

∑
j

c[i, j] (1)

c[i, j] =
{

0 if SI [i, j] = SM(p)[i, j]
1 otherwise,

where W is image width and H is image height, SI is input
silhouette image and SM(p) is silhouette image generated
by a model parameter p. To reduce the time required for
evaluating the cost function, instead of creating the silhou-
ette image of a given tornado model, we compute XOR by
determining whether a pixel location is inside of a model
tornado region and then checking the intensity of the corre-
sponding pixel in the input silhouette image.

In most cases, this cost function is enough to confine the
shape of tornado model to the real silhouette of a tornado.
However, we need to deal with the inherent ill-posedness
that is present in model-generated silhouette images. This
happens because the same silhouette images can be gen-
erated by different model parameters. If we allow part of
a tornado model to be outside the image boundary, some
model parameters may not affect the cost function. There-
fore, those parameters tend to be uncontrolled during mini-
mization. To cope with this problem we impose constraints
on our model parameters in the following way:

(a) 0 < p1 < W,0 < p2 < H,
(b) 0 < p3 < H − p2,
(c) 0 < p2n+1 − p2n < fW for n = 2..Ns +1
(d) p2n+1 − p2n < p2n+3 − p2n+1 for n = 2..Ns

Constraint (a) limits the location of a tornado in an image.
(b) is the constraint on the height of the tornado given p2.
Constraint (c) confines the width of each segment to multi-
ples of image width by a weight factor, f . Note that Con-
straint (d) is not based on the image extent but on perti-
nent domain knowledge: usually particles in a tornado have
broader circulation (engaged in rotation) radii when they
are farther above from the ground. These constraints are
combined with our XOR error metric to yield another com-
prehensive cost function:

F(p) = Fxor(p)+
m

∑
i

wiFi
c(p) (2)

Fi
c(p) =

{
0 if i’th constraint is satisfied
1 otherwise,

where m is the number of constraints and wi is the weight of
i’th constraint, which controls how strictly each constraint
needs to be satisfied.

We optimize the cost function (Eq. 2) using downhill
simplex method [18], a non-linear multi-dimensional opti-
mization algorithm. The downhill simplex method is not
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very efficient in terms of the number of function evalua-
tions. However the method does not require gradient in-
formation, which is usually hard to obtain analytically or
expensive to compute numerically in very high dimensional
space. Furthermore, it is robust in the presence of noise and
allows the solution to be rescued from a local minima by
simple repetitions of the algorithm [19].

At the very first frame of a target video sequence, the
difference between model and input silhouette is large. This
implies that the optimization has more chance to be stymied
by local minima. With this observation, we start the op-
timization process with a model of lower resolution (e.g
Ns = 5) and repeat the process 2-3 times after increasing
the model resolution by a factor of two each time. In this
way we fit a higher resolution model to the initial frame
with a smaller chance of being trapped by local minima.
Figure 2 depicts this hierarchical fitting process for a given
initial frame. For fitting in subsequent frames, we do not
need to lower the model resolution and just initiate the op-
timization process from the position and the shape found in
the previous frame since contiguous frames have no abrupt
changes in their tornado silhouettes. To reiterate, the result
of the optimization process is the vector p that defines the
shape and the position of the tornado.

(a) (b)

(c) (d)

Figure 2. Initialization and optimization for the
first frame: (a) initial position and shape of a
tornado model, (b,c,d) fitting from lower res-
olution to higher resolution (Ns = 5,10,20)

4 Motion Synthesis and Animation

The synthesis of tornado motion from a single video clip
is inherently ill-posed. Therefore the motion (and hence
animation) may at best be superfluous and not match in ap-

pearance with the tornado under observation. It is therefore
imperative that we incorporate inherent knowledge about
tornados in our methods. We now list salient features of a
tornado that are useful for exploitation in an animation:

• To reiterate (see Section 3) a tornado is a relatively
organized structure. In its simplest form it is a single
vortex plume in which air loaded with dust and debris,
moves at very high speeds in an upward spiral. And
certainly, we can use the extracted funnel-shape as our
basic entity of animation.

• The rising air enters the vortex at its base and exits in
the upper part of the funnel [7, 15].

• Tornados rotate counterclockwise with few exceptions
since they are in most cases derived from cyclones in
the northern hemisphere [16].

• The tornado is a swirling body of air and dust. There-
fore, it can be treated as vortex and will have vortex
core line where the velocity is zero [11].

We use these facts to reconstruct tornados that may seem
real enough. Thus, we first build a multi-layer tornado
structure to approximate a tornado as a volumetric entity.
Then, we move particles along each surface layer proce-
durally. Therefore, the original motion of the tornado is
closely emulated in this manner. The surface representation
of the tornado allows users to exercise many flexible con-
trols. Many attributes such as position, scale, and rotational
speed can be controlled and animated in modern keyframe
animation systems. Furthermore, the tornado wind field can
be effectively simulated to align a vortex field along the me-
dial axis curve of the tornado. Finally, sprites are used to
render the tornado.

We now explain the animation reconstruction process in
detail. To illustrate the method clearly, we use a single-
layer tornado construction since the multi-layer extension is
straightforward. First, a tornado skeleton consisting of cross
sectional circles is reconstructed from the shape parameters
obtained from the first frame of silhouette matching (Fig-
ure 3(a)). Since a tornado has mostly a funnel shape, we
can assume axial symmetry along the medial axis curve of
the tornado surface to reconstruct three dimensional coordi-
nates of the surface. In the subsequent step, the tornado sur-
face is created as a lofted NURBS surface passing through
all cross sectional circles (Figure 3(b)). Because we do not
estimate the depth information(Z-axis direction) in the ex-
traction step, the reconstructed tornado surface has a sym-
metric profile in Y-Z plane. However, we found this artifact
is less noticeable in practice when the tornado surface has
an irregular X-Y profile and deforms in every frame. We
can also add variations along the z-axis of the center points
to avoid the problem. Once the tornado surface is created,
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(a) (b)

(d)(c)

u

v

Figure 3. Animation Process Overview:(a)
Tornado section curves, (b) Tornado surface:
red dotted line for v direction and blue line
for u direction, (c) Multi-streak particles on a
tornado surface, (d) Tornado rendered using
sprites

the keyframe is set for every control point of the surface
for each time step. Hence, the synthesized keyframe tor-
nado animation is created to depict the deformation of the
tornado shape.

In the third major step, we emulate the spinning wind by
advecting many particles around the tornado surface (Fig-
ure 3(c)). Instead of generating real wind field, we use a
procedural approach. The surface coordinates are denoted
by u and v which represent the tornado height direction and
the circular direction respectively (Figure 3(b)). Particles
are uniformly created on the surface, and the movement
of each particle is constrained on the surface. Accelerat-
ing each particle in the direction of the v coordinate axis,
the spinning particle motion is achieved with ease. We
determine the direction of rotation based on the original
video footage if possible. Otherwise, we elect the counter-
clockwise direction since most tornados in our videos were
created in North America. Realistic tornado motion is gen-
erated by adding some upward motion in u direction.

Finally, sprites are used for efficient and realistic ren-
dering. Several sprite images are prepared that have pre-
rendered a dust volume based on a fractional brownian
function [4]. A ray marching method is empolyed to ren-
der the hypertexture density volume [2]. The color of the
volume is determined by spherically mapping the tornado
texture from an input video to match the visual appearance

of the original tornado. Figure 4 shows a couple of sprite
images. One of the few sprite images is randomly assigned
to each particle. As the tornado moves, the scale and orien-
tation of the sprites are changed to overcome the limited fre-
quencies covered by the sprite images and directional arti-
facts. Figure 3(d) shows the rendering results obtained with
sprites.

Figure 4. Sprite images

5 Results

Among the vast collection of tornado videos on the inter-
net, some of them have very rapid camera movements while
others exhibit a non-uniform range of grayscale intensities
in the region of the image containing the tornado. Such
video clips are not suitable for our silhouette-based shape
reconstruction methods. However on the other hand, many
of them exhibit relatively constant intensity for the regions
of the tornado with stable or slow camera movements. We
acquired several such tornado video clips and applied the
proposed methods to create tornado animations based on
those video clips. The resolution of the videos was often
320×240.

A video footage from a web site [10] was chosen to
present our primary result. Since the camera was follow-
ing the tornado, a period of sequences with a seemingly
constant viewpoint was extracted from the whole sequence.
The extracted sequence consists of a total of 90 frames. A
set of selected frames is shown in Figure 6. The first row
shows the original frames and the second row displays the
extracted silhouette images. The third row depicts the re-
sults of our model fitting, while the fourth row shows the
final synthesized 3D tornado animation. A frontal view is
used for the rendering to compare the original motion with
the synthesized one. The images shown on the same column
have the same frame number. Only one frame is shown for
the input video clips in Figure 7. Figure 8 shows the bird
eye view of reconstructed 3D tornados. The 2D tornado fit-
ting process is performed within 0.3-4 seconds per frame
for Ns = 20 on a Intel Pentimu IV 3.0 GHz machine with 1
GByte RAM. The animation is automatically reconstructed
by using MEL script [6], and the rendering is done with
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Maya 6.0 [1]. Six layers are used for the results. The recon-
struction of a 90-frames animation takes about 130 seconds.
The rendering takes less than 1 second per frame.

Once having the tornado feature data, we can create vari-
ous tornado animations by manipulating them. For instance,
a rigid transformation(rotate and translate) is applied to gen-
erate a path animation as shown in Figure 9. Another exam-
ple is a spline-based control as illustrated in Figure 5. A
spline is the line along the central axis of a tornado, which
is shown as a green chain. Each joint of the spline defines
the local transformation of the corresponding section. Thus,
a new animation can be produced by controlling the spline.
The left column represents an original spline configuration
and its rendering. The right column is a controlled version
of the data in the left column.

Figure 5. spline-based controls: (left) an orig-
inal spline configuration and its rendering be-
low, (right) a controlled version

One problem of our approach is the length of a re-
constructed animation is limited by the length of an input
video. We alleviate this limitation by using a video tex-
ture idea [20]. We arbitrarily extend the length of an an-
imation by forming random loops in shape feature vector
sequence instead of image sequence. An extended data se-
quence is used in the animation of Figure 9, in which the
length of the data from Figure 6 is increased from 90 to 200
frames. We also generate the wind field of a reconstructed
tornado to simulate interactions between the tornado and
environments. The wind field is procedurally created by
approximating a tornado vortex core as a discrete chain of

vortex vectors. The rigid body simulation is performed in
Maya [1]. All the result animations are provided as supple-
mentary movies.

6 Conclusion and Future Work

We presented a novel method to create realistic 3D tor-
nado animation from video clips captured by a single cam-
era. The reconstruction process consists of three stages.
First, we extract the shape of a simple 2D tornado model
from silhouette images using a non-linear optimization al-
gorithm and silhouette-based XOR cost function. Second,
we generate a 3D tornado surface for the first frame from the
extracted 2D shape of the tornado using NURBS surfacing.
A tornado animation is created by keyframing every con-
trol point on the surface for the rest of frames. Finally, the
tornado is rendered by associating a sprite image for each
particle.

Our work is one of the first to reconstruct a tornado ani-
mation from a single video camera. We employ a simple 2D
shape descriptor to extract and generate the tornado wind
field. Our techniques are easy to implement, and the ob-
tained 3D surface dataset is handy for animators to process
further to add their own special effects. Currently, we as-
sume constant intensity for the tornado region across a given
images and relatively slow camera movements. In future,
we plan to explore more advanced techniques in computer
vision to segment the tornado region and therefore consider
a wider range of tornado clips. It would be also useful to
further explore video texture idea in a shape feature space
in order to extend a tornado animation to an arbitrary length.
Lastly, we want to employ a physics-based tornado field
model such as Rankine or Burgers-Rott vortex [12] with tor-
nado shape features to produce wind fields of a tornado.
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Figure 7. Resulting images for a frame for two tornado video clips

Figure 8. A bird eye view of 3D reconstructed tornados

Figure 9. Tornado animation derived from the analysis of Figure 6
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