
Design and Implementation of High Performance MVAPICH2 (MPI2 over
InfiniBand)

WEI HUANG, GOPALAKRISHNAN SANTHANARAMAN, HYUN-WOOK JIN
QI GAO AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-12/05-TR76

Design and Implementation of High Performance MVAPICH2 (MPI2 over
InfiniBand) ∗

W. Huang G. Santhanaraman H.-W. Jin Q. Gao
D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210
{huanwei, santhana, jinhy, gaoq, panda}@cse.ohio-state.edu

Abstract
MPICH2 provides a layered architecture for implementing

MPI-2. In this paper, we provide a new design for implement-
ing MPI-2 over InfiniBand by extending the MPICH2 ADI3
layer. Our new design aims to achieve high performance
by providing a multi-communication method framework that
can utilize appropriate communication channel/device to at-
tain optimal performance without compromising on scalabil-
ity and portability. We also present the performance compar-
ison of the new design with our previous design MVAPICH2-
0.6.5 based on MPICH2 RDMA channel. We show significant
performance improvements in micro-benchmarks and up to
24% improvement in case of NAS CG benchmark for 16 pro-
cesses.

1 Introduction

In the last decade, Message passing interface (MPI) has be-
come the de facto standard for writing parallel applications.
Next generation of supercomputers built with thousands of
nodes are becoming commonplace, which poses challenges
for researchers to provide high performance and scalable MPI
designs. Further the need for a high performance MPI is
growing with the increasing proliferation of clusters.
MPI-2 standard [?] has been proposed to extend the func-

tionality of the earlier proposed MPI-1 standard [?] in the
area of one sided communication, I/O and dynamic process
management. MPICH-2 from Argonne National Laboratory
is a popular implementation of MPI-2, which aims to combine
performance with portability across different interconnects.
Over the past decade there is a strong trend towards RDMA

capable networks since they can provide improved perfor-
mance and scalability. With its RDMA capability and sev-

∗This research is supported in part by Department of Energy’s Grant #DE-
FC02-01ER25506; National Science Foundation grants #CNS-0403342 and
#CCR-0509452; grants from Intel, Mellanox, Sun, Cisco, and Linux Net-
worx; and equipment donations from Apple, AMD, IBM, Intel, Microway,
Pathscale, Silverstorm and Sun.

eral advanced hardware features, InfiniBand has emerged as a
strong player in the area of high performance computing.
In our group we have been working on providing a high per-

formance implementation of MPI-2 over InfiniBand based on
MPICH2 design. To scale well for large scale next generation
clusters, the design should be able to fully exploit the high
performance and the hardware features provided by Infini-
Band. It should also be flexible to incorporate multiple com-
munication channels provided by underlying hardware. Our
goal is to achieve the optimal performance while not compro-
mising on scalability and portability.
Previously, we implemented MPI2 over the MPICH2

RDMA channel [?] due to the ease of porting at this layer.
Implementing at such a lower layer can have its disadvan-
tages due to lack of flexibility in implementing novel solu-
tions. In [?] we have studied the design alternatives and per-
formance trade-offs associated in implementing at the differ-
ent MPICH2 layers. We concluded that extending the ADI3
layer and implementing at this layer would provide the best
opportunity to achieve better performance.
In this paper we describe our new extended ADI3 level

design for MPI-2 over InfiniBand. We provide a frame-
work that attempts to address the issues of performance and
scalability mainly in the context of InfiniBand network, yet
portable to other programming APIs provided by RDMA ca-
pable interconnects. We propose a layered design includ-
ing an ADI3 extended layer, a multi communication method
(MCM) layer which chooses the appropriate communication
channel/device that can give the optimal performance, and a
device layer which encapsulates all device specific informa-
tion. We also provide schemes that can improve the scala-
bility. More over, by keeping the device specific informa-
tion to the lowest device layer, we ensure easy portability
across other programming interfaces like OpenIB-Gen2 [?]
and uDAPL [?].
The rest of the paper is organized as follows. In Section 2 we

describe the background of our work and also discuss our pre-
vious designs and its limitations. We propose our new design
in Section 3. In Section 4 we describe the potential benefits of

1

our new design with respect to performance, portability and
scalability. We evaluate the performance in Section 5. In Sec-
tion 6 we discuss the related work and finally conclusions and
future work are discussed in Section 7.

2 Background

2.1 InfiniBand

InfiniBand defines a System Area Network(SAN) to inter-
connect processing nodes and I/O nodes. In addition to
send/receive semantics it also provides RDMA semantics
which can be used to directly access/modify the contents of
remote memory. RDMA operations are one sided and do not
incur software overhead on the remote side. It provides fea-
tures like scatter/gather, shared receive queues, hardware mul-
ticast etc. Because of its high performance, InfiniBand has
becoming more and more popular in the area of high perfor-
mance computing [?].
There are two popular user level programming libraries for

InfiniBand. VAPI [?] is the Mellanox implementation and
OpenIB Gen2 [?] has recently come out as part of the new
generation of IB stack provided by the OpenIB community.
InfiniBand also supports User Direct Access Protocol Library
(uDAPL), which has emerged as a standard that defines de-
vice independent interface for accessing the transport mecha-
nisms of RDMA capable networks, including other intercon-
nects like Myrinet and Quadrics.
2.2 MPICH2

2: CH3 Level Design
3: RDMA Channel

Level Design

1: ADI3 level Design

1

2

3
ChannelChannel

CH3

ADI3

TCP Socket SHMEM
Channel
RDMA

SHMEM Shared Memory
Sys V InfiniBand

MPI 2

Figure 1. Layered Design of MPICH2

MPICH2 from Argonne National Laboratory is a popular
implementation of MPI-2. It aims to combine performance
with portability across different interconnects.
MPICH2 follows a layered design which is described in Fig-

ure 1. Lines 1, 2, and 3 illustrate the alternatives for imple-
menting MPI2 over InfiniBand.
The ADI3 is a full featured, abstract device interface used

in MPICH2. It is the highest layer in the MPICH2 hierar-
chy. It is responsible for all the point to point and one sided

communications. ADI3 completes its tasks through function
interfaces provided by the CH3 layer to increase portability.
The CH3 layer provides a communication channel that con-

sists of a dozen interfaces. Those interfaces provide basic
functionalities for eager, rendezvous communication proto-
cols, as well as auxiliary functions such as process startup,
finalize, etc. MPICH2 provides several implementations for
CH3, including channels which communicate through shared
memory and sockets, etc.
To further increase the portability over RDMA capable

networks, MPICH2 also has proposed CH3 implementation
based on RDMA channel interfaces. All communication op-
erations that MPICH2 supports are mapped to just five func-
tions at the RDMA channel, thus the RDMA channel provides
the least porting overhead.
2.3 MVAPICH2

MVAPICH2 is a high performance implementation of MPI-2
over InfiniBand[?] from the Network Based Computing Lab-
oratory at the Ohio State University. MVAPICH2 and MVA-
PICH (MPI-1 version) are currently being used by more than
280 organizations across the world.
We have earlier designed the MVAPICH2 based on the

RDMA channel in MPICH2 [?], which is reflected in our
earlier public released version MVAPICH2-0.6.5. In this de-
sign, we use eager and rendezvous schemes to support the
communication interfaces of the RDMA channel. For small
messages, we use the eager protocol. It copies messages to
pre-registered buffers and sends them through RDMA write
operations, which achieves good latency. And for large
messages, a zero-copy rendezvous protocol is used, because
using pre-registered buffers introduces high copy overhead.
The user buffer is registered on the fly and sent directly
through RDMA. However, as we have analyzed in our pre-
vious work [?], a design at RDMA channel has several disad-
vantages:

• First, there is a known limitation of MPICH2’s CH3 im-
plementation based on the RDMA channel. It makes
only one outstanding request to the RDMA channel and
will not issue the next one until the previous one has
completed, which results in serialization of communica-
tion requests to the RDMA channel. This adversely af-
fects the throughput. At RDMA channel we can hardly
do anything to overcome this problem since we do not
have control on the progress engine. The MPICH2 team
also has observed this problem and the RDMA channel
has been removed from their newest release.

• Second, at this layer many important data structures are
hidden and this prevents us from performing many high
level optimizations. For example, our earlier work has
proposed to use the InfiniBand scatter/gather feature to
benefit the non-contiguous datatype communication [?].
With this scheme the receiver understands the exact lay-
out of the datatype and posts scatter descriptors, while
the sender posts the exactly matching gather descrip-

2

tors. This Send Gather Receive Scatter (SGRS) avoids
the copy overhead and shows great improvement over
the packing/unpacking schemes, which is generally used
to deal with non-contiguous datatype. However, this
scheme requires both the sender and the receiver to un-
derstand the total layouts of the datatype, which is actu-
ally hidden from the RDMA channel. Thus such func-
tionality cannot be implemented at the RDMA channel
only.

To overcome these limitations, we propose ADI3 level de-
sign, which is reflected in the latest MVAPICH2 release ver-
sion 0.9.0[?].

3 Design and Implementation

In this section we present the new design of MVAPICH2.
We will elaborate the potential advantages of our design in
Section 4. The main objectives we are trying to achieve
through this new design are:

• Modern clusters provide multiple low level methods
for communication, such as intra-node communication
through file system shared memory, and different pro-
gramming libraries for various interconnects, etc. Our
new design should be able to take advantage of the avail-
able communication methods on a cluster to achieve the
best performance.

• For portability reasons, it is desirable to have a con-
cise device abstraction for each of these communication
methods. And this abstraction should be well designed
so that we can have enough information to perform most
of the hardware-specific optimizations and enable the
MPI library to achieve maximum performance and scal-
ability.

As illustrated in Figure 2, we follow the basic idea of the lay-
ered structure of MPICH2. We start from an extension of the
ADI3 layer (ADI3-Ex) in MPICH2. And below that we have
our own design of the multi-communication method (MCM)
layer and the device layer. The device layer provides abstrac-
tions of the communication methods on the cluster, which can
be either an intra-node communication device or an inter-node
communication device. And the MCM layer aims to exploit
the performance benefits provided by these abstract devices.
The following subsections describe the design details for all

these three layers.

3.1 ADI3-Ex Layer

The ADI3-Ex layer, which extends from the ADI3 layer in
MPICH2, is the highest level in our design. We inherit the
other MPI functionality from MPICH2 implementation.
Similar to the ADI3 layer, the main responsibilities of our

layer include selecting appropriate internal communication
protocol, eager or rendezvous, for each point to point or one
sided operation from the user application. Our extensions for

Primitive Primitive Primitive Detection
Query Copy & Send Registration Zero−Copy

Primitive
Message

Query Protocol

Query Point to Point Header Caching One Sided Collectives

Other InterconnectsInfiniBand

Progress
Engine

Direct One Sided
Protocol

Rendezvous
Protocol

Eager

Inter−node Devices Intra−node Comm−
unication DeviceUDAPL

The Device Layer

ADI3−Ex

MPI−2

Multi−Communication Method

Gen2VAPI

Figure 2. Overall new design of MVAPICH2

the ADI3-Ex layer are mainly for high level optimizations
along the following fronts:
• Query: Instead of choosing the rendezvous or eager

protocols solely based on the message size, as most of
the current MPI implementations do, the ADI3-Ex layer
makes decisions based on the preference of the MCM
layer. Because the MCM layer dynamically chooses
from the available communication devices to send out
the message and the optimal point to switch from the ea-
ger to rendezvous protocol might be different for each
device, this query process helps the ADI3-Ex layer to
select the most efficient communication protocol for a
specific message.

• Point to Point operations: Point to point communica-
tion can take advantage of header caching. The Header
caching feature caches the content of internal MPI head-
ers at the receiver side. As a result, if the next message
to the receiver contains the same cached fields in header,
we reduce the message size, thus reducing the small mes-
sage communication latency. As discussed in [?], header
caching can only be put at this layer since only ADI3-Ex
layer is able to understand the content of the message.

• One Sided Operations: In our previous work we have ex-
tended ADI3 layer to directly implement one sided oper-
ation based on InfiniBand RDMA operations to achieve
higher performance and less CPU utilization [?]. This
piece of work is also incorporated into the added func-
tionality of the ADI3-Ex layer based on the direct-one-
sided interface provided by the MCM layer.

• Collectives: Our current implementation of this new de-
sign supports point to point and one sided communica-
tion. Collective operations in MPICH2 are implemented
based on point to point communication, thus can take ad-
vantage of our design. The framework we propose can

3

also be extended to incorporate optimized algorithms for
collectives which directly utilize the hardware capabili-
ties of InfiniBand, such as hardware multicast [?], etc.

3.2 The Multi-communication Method Layer

The multi-communication method (MCM) layer implements
the communication protocols selected by the ADI3-Ex layer
using the communication primitives supported by the device
layer. It understands the performance features of each com-
munication device provided at the device layer and chooses
the most suitable one to complete the communication at run-
time. Right now our implementation supports one inter-node
and one intra-node communication devices simultaneously,
but in future we plan to extend this framework to support
multiple communication devices. Figure 3 illustrates the in-
terfaces and the basic functional modules of this layer.

The Device Layer Interfaces

Selection
Device

Query
Primitive

Copy & Send
Primitive

Registration
Primitive

Zero−Copy
Primitive

Message
Detection

The MCM Interfaces

Eager
Progress Progress

Progress Engine
One Sided
Scheduling Ordering

The MCM Layer Components

Rendezvous

ProgressDirect One Sided
ProtocolProtocol

Eager
ProtocolQuery Rendezvous

Figure 3. Design details of the MCM layer

The device selection component collects the performance
characteristics from the device layer through the device query
interfaces. It knows the message size and the destination from
the ADI3-Ex, thus it is able to decide the most suitable de-
vice to complete this message and the preferred communica-
tion protocol. The information is passed back to the ADI3-Ex
layer through the query interface.
Once the ADI3-Ex layer decides the communication proto-

col, the actual communication is taken care of by the progress
engine at the MCM layer. There are several important com-
ponents of the progress engine.
The eager and rendezvous progress components implement

the eager and rendezvous communication protocols. The
communication requests will be processed through the com-
munication device chosen by the device selection compo-
nents. Typically for eager protocols, the messages will be sent
through the copy-and-send primitives provided by the device
layer. And for rendezvous protocol, the user buffers involved
in the communication are first sent to the device through the
registration primitives for registration and then the data is sent
through the zero-copy primitives. In our design the progress
engines are supposed to mask the recoverable failures of the

device level. For example, the ADI3-Ex layer may send an ea-
ger message too large for the device to send out at one time,
in that case the message needs to be broken down to smaller
sizes and sent out in multiple packets. Also the device may
fail to register the user buffer for zero-copy rendezvous pro-
tocols, then large messages will also need to be broken down
into pieces to be sent through copy-and-send primitives. As
we will discuss in Section 4, this behavior benefits both the
portability and scalability.
The direct one sided progress component implements the di-

rect one sided communication support for one sided opera-
tions. The detailed design and implementation details are de-
scribed in [?, ?].
The ordering component helps to keep the correct ordering

of the messages sent from different devices at the receiver
side. The incoming message from a specific device is de-
tected through the message detection interface provided by
the device layer.

3.3 The Device Layer

The lowest device layer implements the basic network trans-
fer primitives. The paradigm of this layer allows us to hide the
difference between various communication schemes provided
by system while exposing the maximum number of features
(such as zero-copy communication) to the MCM layer. The
interfaces provided by the device layer include copy-and-send
primitives, zero-copy primitives, and the registration primi-
tives which prepares for zero-copy communication.
Since there can be multiple devices existing at the same time,

each device also implements the query primitive to provide
the device selection component of the MCM layer with the
basic performance features. This enables the MCM layer to
select at runtime the most suitable device for a particular mes-
sage.
The message detection primitive is queried by the progress

engine at the MCM layer to detect the next incoming packet.
The communication primitives at this layer are directly im-
plemented based on the programming libraries provided by
communication systems.

4 Potential Benefits of the New Design

In this section we take a closer look at how the proposed
design achieves our design objectives with respect to perfor-
mance, portability and scalability.

4.1 Performance

We start from the bottom most device layer to analyze the
performance benefits of our design. In our design, the lowest
devices will have enough information to optimize the perfor-
mance based on hardware specific features. And these opti-
mizations can be conducted without the involvement of higher
layers.

4

1

1

2 3

5

4

6

Zero−copy Send

Layer
Multi−method

Layer Device Layer Device Layer Multi−method

Registration
1. Register whole
 user buffer
2. Post scatter to
 user buffer

Sending
rendezvous
request−to−send

Receiving
rendezvous
clear−to−send Sending

rendezvous
clear−to−send

Sender Receiver

Registration

Data arrived
Rendezvous Progress
1. Data has already

1. Post send gather
 from user buffer

 user buffer
1. Register whole

 been placed in user
 buffer

request−to−send
rendezvous
Receiving

Figure 4. Incorporating SGRS

Let us take non-contiguous datatype communication as an
example. In our design, the lowest device layer will get
the whole datatype layout of the message from the MCM
layer. With this information, we can incorporate the zero-
copy SGRS scheme mentioned in Section 2. Fig 4 illustrates
how the SGRS scheme works in our design. The layout ex-
change takes place as part of the rendezvous handshake. In
the registration primitive, the device registers the user buffers
involved in the communication, the receiver side also posts
scatter receive descriptors. Upon receiving the rendezvous
clear-to-send message, the sender will post the exactly match-
ing gather send descriptor. Note that from view of the MCM
layer, the whole process is exactly the same as a normal ren-
dezvous transfer, where the user buffer is registered through
the registration primitive and the RDMA is posted through the
zero-copy primitives.
In addition, many other performance optimization schemes

can be naturally implemented without the MCM layer being
aware of it. For instance, the device layer can stripe large
messages and send them through multiple rails [?] within
the zero-copy primitive. Further any advance registration
cache [?] can be implemented within the registration prim-
itive. Hiding the details of the hardware-specific optimiza-
tions keeps the progress engines simple at the MCM layer.
So we can focus more on high level optimizations, such as
device selection components, or striping message across mul-
tiple devices. It also helps to keep the interface of the device
layer concise thus helping the portability.
The MCM layer in our design is able to automatically choose

the best available communication device among the available
intra- or inter-node communication devices to communicate.
Since the MCM layer understands the performance features
of the devices through the query primitives provided by each
device, under most circumstances the choice will be optimal.
Further, the device selection component is an independent
module in our design. In future it can be easily extended
to consider more factors, such as the current communication
load on each device.

At the ADI3-Ex layer, header caching will help to reduce
the small message communication latency. And the one sided
operations are also optimized through the direct one sided im-
plementation.

4.2 Portability

Compared with the RDMA channel of old MVAPICH2 de-
sign, the device layer of our new design has increased the
number of interfaces, to facilitate more features. However,
we believe that the additional complexity for implementing a
new device is limited, which allows us to maintain the good
portability as delivered with the RDMA channel.
First, the added device layer communication interfaces in

our new design are mainly the zero-copy communication in-
terface. Those interfaces are very close to most of the pro-
gramming interfaces provided by the RDMA capable net-
works and can be implemented without much overhead.
Further, since the MCM layer provides enough schemes to

mask the recoverable failures as described in Section 3.2, a
device may choose to only implement a part of the interfaces.
For example, we implemented the intra-node communication
based on file system shared memory. And in this case it is
difficult to direct access memories of the remote processes
without complex schemes involving the kernel [?]. Thus we
only implement the copy-and-send primitives and return fail-
ure for every call to the registration primitive. In this case,
the MCM layer will automatically switch to send large mes-
sages through copy-and-send primitives instead of attempting
a zero-copy scheme.
In addition to the devices based on VAPI and shared mem-

ory, we have already implemented devices based on Gen2
verbs over InfiniBand and uDAPL programming interfaces.

4.3 Scalability

The requirement on the scalability of MPI usually contains
two aspects:

• Memory scalability: The memory usage of MPI needs to
be kept under a reasonable amount even when the pro-
cess number of the parallel job is very large.

• Performance scalability: The communication perfor-
mance, such as point-to-point latency, etc., should not
be largely affected as the number of processes increases.

Usually these two aspects are tightly coupled. For example,
to have better memory scalability, we typically need to reduce
the size of pre-registered communication buffer for copy-and-
send schemes as the number of processes increases. However
in our earlier design, if the message cannot fit into one com-
munication buffer, it has to be sent through rendezvous proto-
col. Since the rendezvous protocol requires memory registra-
tion and also involves a handshake process, the performance
for small message sizes will be sub-optimal.

5

In our new design, the MCM layer keeps track of each un-
finished request. Thus even if a message may not fit into the
communication buffer at the device layer, the device layer can
just send as much as it can. And the rest of the data will be
sent out through further calls to the copy-and-send primitives.
As a result, a message can be sent in a ‘packetized’ fashion.
As we can see in Section 5, the packetization greatly helps the
medium range message latency and throughput if the commu-
nication buffer is small.
Further, the MCM layer polls the incoming message through

the message detection primitive of the device layer. The actual
implementation is left to each communication device. Our
previous work targeted towards scalability, such as RDMA
polling set [?] and using Shared Receive Queue [?] can also
be implemented at the device layer. These schemes help both
the memory and performance scalability. In the old RDMA
channel based design the lowest level only had control on the
message detection with respect to each connection, hence it
was not possible to incorporate such novel schemes.

5 Performance Evaluation

In this section we evaluate our new design with a set of
micro-benchmarks as well as NAS Parallel Benchmarks (NPB
3.2 version). We evaluate VAPI and intra-node communica-
tion devices for our new design. We compare this new design
with MVAPICH2-0.6.5, which is our old design based on the
RDMA channel over VAPI on InfiniBand.
Our experimental testbed is a cluster of eight nodes. Each

node is equipped with dual Intel Xeon 3.0GHz CPU, 2 Giga-
bytes memory, and a Mellanox MT23108 PCI-X InfiniBand
HCA. All nodes are connected through a MTS2400 Infini-
Band switch.

5.1 Inter-Node and Intra-Node Communication

We first look at the improvement on the basic point to point
communication performance. We evaluate the latency and
throughput between two processes for the two cases.

1. Inter-node - the two processes are on two different com-
pute nodes

2. Intra-node - the two processes are on the same compute
node

Figures 5 and 6 show the latency and throughput between
two processes on different computing nodes. We observe that
the 1 byte message latency is reduced from 5.8µs to 4.9µs,
a 16% of improvement for the new design. This can be at-
tributed to the header caching scheme we have implemented
in the ADI3-Ex layer. Since our new design also overcomes
the shortcoming of only one outstanding communication re-
quest, the message throughput increases greatly, especially
for medium size messages. For message size of 64KB, we
observe almost 29% improvement on throughput.

 0

 5

 10

 15

 20

4k1k 256 64 16 4 1

La
te

nc
y

(u
s)

Message Size (Bytes)

new design
mvapich2-0.6.5

Figure 5. Inter-node communication latency

 0

 200

 400

 600

 800

 1000

1M256k64K16k4k1k 256 64 16 4 1

T
hr

ou
gh

pu
t (

M
ill

io
nB

yt
es

/s
)

Message Size (Bytes)

new design
mvapich2-0.6.5

Figure 6. Inter-node communication through-
put

 0

 5

 10

 15

 20

4k1k 256 64 16 4 1

La
te

nc
y

(u
s)

Message Size (Bytes)

new design
mvapich2-0.6.5

Figure 7. Intra-node communication latency

6

 0

 200

 400

 600

 800

 1000

 1200

1M256k64K16k4k1k 256 64 16 4 1

T
hr

ou
gh

pu
t (

M
ill

io
nB

yt
es

/s
)

Message Size (Bytes)

new design
mvapich2-0.6.5

Figure 8. Intra-node communication through-
put

Figures 7 and 8 show the latency and throughput when the
two processes are on the same node. Our previous design,
mvapich2-0.6.5, did not have multiple communication de-
vices, so the messages reach the HCA and loopback. How-
ever, the MCM layer in our new design automatically chooses
to communicate through the intra-node communication de-
vice, which reduces the latency from 5.7µs to 1.1µs for small
messages. And it also increases the throughput drastically es-
pecially for medium size messages. For example, for 16KB
message, the throughput is improved by 150%, from 398
MB/s to 1019 MB/s. The drop for messages after 256KB is
due to the cache effect. Even then it is comparable with the
mvapich2-0.6.5 numbers. Note that the MCM layer has the
ability to switch to using loopback for messages larger than
256KB, then the difference will no longer be there.
Our new design also incorporates the optimization for one

sided communication based on direct one sided operations
which utilize InfiniBand’s RDMA capabilities. The benefits
of this approach have already been demonstrated in [?].

5.2 Non-Contiguous Datatype Communication

Performance can largely benefit from the hardware-specific
optimizations at the device level. Here we take the SGRS
scheme (described in Section 4) as an example to see how
it can enhance the performance for non-contiguous datatype
communication.
The micro-benchmarks we use transfers increasing number

of columns in a two dimensional M ∗ 8192 integer matrix be-
tween 2 processes on 2 cluster nodes. These columns can be
represented as vector datatype, which are widely used in sci-
entific applications. Figures 9 and 10 show the comparison
of latency and throughput between our old design, which uses
pack and unpack approach involving copies on the sender and
receiver side, and the new design with SGRS scheme incor-
porated. As we increase the number of columns from 64 to
4096, we clearly observe that the zero-copy SGRS scheme
outperforms the copy based scheme.

 0

 500

 1000

 1500

 2000

 2500

4k2k1k 512 256 128 64

La
te

nc
y

(u
s)

Number of Columns

new design (SGRS)
mvapich2-0.6.5

Figure 9. Non-contiguous communication la-
tency

 0

 100

 200

 300

 400

 500

 600

 700

 800

4k2k1k 512 256 128 64

T
hr

ou
gh

pu
t (

M
ill

io
nB

yt
es

/s
)

Number of Columns

new design (SGRS)
mvapich2-0.6.5

Figure 10. Non-contiguous communication
throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

32k16k8k4k2k1k

La
te

nc
y

(u
s)

Message Size (Bytes)

new design (small buffer)
new design (normal)

mvapich2-0.6.5 (small buffer)
mvapich2-0.6.5 (normal)

Figure 11. Effect of packetization on latency

7

 0

 200

 400

 600

 800

 1000

1M256k64K16k4k1k 256 64 16 4 1

T
hr

ou
gh

pu
t (

M
ill

io
nB

yt
es

/s
)

Message Size (Bytes)

new design (small buffer)
new design (normal)

mvapich2-0.6.5 (small buffer)
mvapich2-0.6.5 (normal)

Figure 12. Effect of packetization on throughput

Figure 13. NAS-CG execution time comparison

Figure 14. NAS-IS execution time comparison

Figure 15. NAS-MG execution time comparison

5.3 Effects of Packetization

In Section 4.3 we mentioned that with the increase in num-
ber of nodes in a MPI job, we need to reduce the size of the
communication buffers to keep the memory usage under a rea-
sonable amount. With smaller size communication buffer, the
role of packetization scheme is important. Figures 11 and
12 show the performance comparison with communication
buffer of normal and reduced size for both our new design
and mvapich2-0.6.5. We can clearly see that for the new
design where the packetization scheme is incorporated, the
performance only drops a little when we reduce communica-
tion buffer to 2KB. However for mvapich2-0.6.5 where the
message is forced to go through rendezvous, the performance
drops sharply.

5.4 NAS Parallel Benchmarks

Finally we evaluate the application level performance with
NAS Parallel Benchmarks. We show the comparison between
MVAPICH2-0.6.5 with our new design for NAS IS, CG and
MG with class B and class C in Figures 13, 14 and 15, respec-
tively. These experiments are done on two configurations: 4
dual processors and 8 dual processors. Due to the overall ef-
fect of intra-node communication device and the optimized
progress engine, the new design performs considerably better.
Especially for CG benchmark, we get up to 24% improvement
with respect to the execution time. For MG and IS bench-
marks, we get up to 5% and 14% improvement, respectively.

6 Related Work

There are several research studies on implementing MPI-2
on modern interconnects. MPICH2 [?] is a popular imple-
mentation from Argonne National Laboratory. Grabner et al.
at University Chemnitz have implemented MPI2 for Infini-
Band based on the MPICH2 CH3 layer[?]. Open MPI [?]

8

is another MPI-2 implementation based on component archi-
tecture. Our paper focuses on a new framework to design
high performance and scalable MPI-2 over InfiniBand based
on MPICH2 ADI3 layer.
There are several studies to improve different aspects of

a communication system and middleware like MPI with re-
spect to non-contiguous communication, intra-node commu-
nication, scalability, etc. Wang et al. [?] and Jin et al. [?] have
proposed novel approaches for extracting communication per-
formance on SMP based cluster. We believe that our design
allows to adopt these schemes as well.
Byna et al. have proposed techniques for improving the per-

formance of derived datatypes by automatically using pack-
ing algorithms that are optimized for memory-access cost [?].
Our SGRS design takes advantage of InfiniBand hardware
features and can be considered complementary to this scheme
in extracting better performance. Scalability issues related to
VIA-based technologies in supporting MPI has been analyzed
in detail by Brightwell et al. [?].

7 Conclusions and Future Work

In this paper we have presented a new MVAPICH2 design
based on extending the MPICH2’s ADI3 layer. We illustrate
the overall design and explain the advantages of our new de-
sign. Within the design we propose, most of the hardware-
related performance optimizations can be smoothly incorpo-
rated at the device layer, which brings high performance and
scalability, while keeping almost the same portability as deliv-
ered by the RDMA channel interface provided by MPICH2.
In future, we plan to incorporate additional techniques

and features, such as multi-rail, shared receive queue and
RDMA polling set, into our design. We will also explore
more intelligent device selection schemes, for instance, tak-
ing into account of the load balancing among the communi-
cation devices and simultaneously supporting multiple inter-
node/intra-node communication devices. We also plan to in-
corporate collective operations into this layered design, allow-
ing them to take advantage of hardware-specific features, such
as hardware multicast.

References

[1] R. Brightwell and A. B. Maccabe. Scalability limitations of via-based
technologies in supporting mpi. In Fourth MPI Developer’s and User’s
Conference, 2000.

[2] S. Byna, W. Gropp, X. H Sun, and R. Thakur. Improving the perfor-
mance of mpi derived datatypes by optimizing memory-access cost. In
Cluster’03, 2003.

[3] DAT Collaborative. http://www.datcollaborative.org/udapl.html.
[4] E. Gabriel et al. Open MPI: Goals, Concept, and Design of a Next

Generation MPI Implementation. In Proceedings of EuroPVM/MPI,
2004.

[5] R. Grabner, F. Mietke, and W. Rehm. An MPICH2 Channel Device
Implementation over VAPI on InfiniBand. In Proceedings of the Inter-
national Parallel and Distributed Processing Symposium, 2004.

[6] H. -W. Jin, S. Sur, L. Chai, and D. K. Panda. LiMIC: Support for
High-Performance MPI Intra-Node Communication on Linux Cluster.
In ICPP 05, June 2005.

[7] J. Liu, A. Vishnu and D. K. Panda. Building Multirail InfiniBand Clus-
ters: MPI-Level Design and Performance Evaluation. In SuperComput-
ing Conference, Nov. 2004.

[8] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas,
W. Gropp, and B. Toonen. Design and Implementation of MPICH2 over
InfiniBand with RDMA Support. In Proceedings of the International
Parallel and Distributed Processing Symposium, 2004.

[9] J. Liu, A. Mamidala, and D. K. Panda. Fast and scalable mpi-level
broadcast using infiniband’s hardware multicast support. In Proceed-
ings of IPDPS’04, 2004.

[10] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Perfor-
mance RDMA-Based MPI Implementation over InfiniBand. In Pro-
ceedings of 17th Annual ACM International Conference on Supercom-
puting (ICS ’03), June 2003.

[11] Mellanox Technologies. Mellanox IB-Verbs API (VAPI), Rev. 1.00.
[12] MPICH2 Homepage. http://www-unix.mcs.anl.gov/mpi/mpich2/.
[13] Open InfiniBand Alliance. http://www.openib.org.
[14] G. Santhanaraman, J. Wu, W. Huang, and D. K. Panda. Designing

Zero-copy MPI Derived Datatype Communication over InfiniBand: Al-
ternative Approaches and Performance Evaluation. In Special Issue
of International Journal of High Performance Computing Applications
(IJHPCA) , 2005.

[15] Top 500 Supercomputer Site. http://www.top500.com.
[16] Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and Jack

Dongarra. MPI–The Complete Reference. Volume 1 - The MPI-1 Core,
2nd edition. The MIT Press, 1998.

[17] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue
based scalable MPI Design for InfiniBand Clusters. Tech Report OSU-
CISRC-10/05-TR66.

[18] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache: A
virtual memory management technique for zero-copy communication.
In Proceedings of the 12th International Parallel Processing Sympo-
sium, 1998.

[19] W. Huang, G. Santhanaraman, H.-W. Jin, and D. K. Panda. Design
Alternatives and Performance Trade-offs for Implementing MPI-2 over
InfiniBand. In EuroPVM/MPI 05, Sept. 2005.

[20] W. Huang, G. Santhanaraman, H.-W. Jin, and D. K. Panda. Schedul-
ing of MPI-2 One Sided Operations over InfiniBand. In CAC 05 (in
conjunction with IPDPS 05), Apr. 2005.

[21] W. Jiang, J. Liu, H. -W. Jin, D. K. Panda, W. Gropp, and R. Thakur.
High Performance MPI-2 One-Sided Communication over InfiniBand.
In CCGrid 04, Apr. 2004.

[22] MVAPICH Project Website. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/index.html.

[23] Kwan-Po Wong and Cho-Li Wang. Push-pull messaging: A high-
performance communication mechanism for commodity smp clusters.
In ICPP, 1999.

9

