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Via Claudio 21, 80125 - Napoli, Italy
{cotroneo, gepaolil, sterusso}@unina.it

M. Lauria
Dept. of Computer Science and Engineering, The Ohio State University,

2015 Neil Ave., Columbus, OH 43210, USA,
lauria@cse.ohio-state.edu

Abstract

Modern cluster file systems such as PVFS that stripe files across multiple nodes have shown to provide high aggregate I/O
bandwidth but are prone to data loss since the failure of a single disk or server affects the whole file system. To address this
problem a number of distributed data redundancy schemes have been proposed that represent different trade-offs between
performance, storage efficiency and level of fault tolerance. However the actual level of dependability of an enhanced striped
file system is determined by more than just the redundancy scheme adopted, depending in general on other factors such as
the type of fault detection mechanism, the nature and the speed of the recovery. In this paper we address the question of
how to assess the dependability of CSAR, a version of PVFS augmented with a RAID5 distributed redundancy scheme we
described in a previous work. First, we address the issues encountered in adding fault detection and recovery mechanisms to
CSAR in order to produce CSAR-2. Second, we build a reliability model of the new system with parameters obtained from a
CSAR-2 prototype and from the literature. Finally, we assess the system and discuss some interesting observations thatcan
be made with the help of the model. According to our analysis,a representative configuration shows a four nine reliability;
the sensitivity analysis shows that a reduction of 15% of thesystem outage time can be obtained by increasing the speed of
the reconstruction by a faster network.

1 Introduction

Parallel scientific applications need a fast I/O subsystem to satisfy their demand of aggregate bandwidth. In particular in
clusters environment applications will benefit from a parallel file system (PFS) that can exploit the high-bandwidth andlow
latency of high performance interconnect such as Myrinet and Gbps Ethernet. PFS such as PVFS [1], can improve signifi-
cantly the performance of I/O operations in clusters by using striping across different cluster’s node. The main objective in
the construction of such architecture for data intensive applications continues to be the performance, but the currentdirection
is also toward systems that provide high availability and reliability level. Parallel file systems, and more generally distributed
file systems, are complex systems. As the number of entities participating in the system grows, so does the opportunity for
failures. One of the major problems with the striping is the reliability because the striping of data across multiple server
increases the likelihood of the data loss. Classical RAID approaches are usable locally to the server to provide tolerance

∗This work has been partially supported by the Consorzio Interuniversitario Nazionale per l’Informatica (CINI), by the Italian Ministry for Education,
University, and Research (MIUR) in the framework of the FIRB Project ”Middleware for advanced services over large-scale, wired-wireless distributed
systems (WEB-MINDS)”, by the National Partnership for Advanced Computational Infrastructure, by the Ohio Supercomputer Center through grants
PAS0036 and PAS0121, and by NSF grant CNS-0403342. M.L. is partially supported by NSF DBI-0317335. Support from Hewlett-Packard is also
gratefully acknowledged.

†G. Paolillo performed this work while visiting dr. M. Lauria’s group at the Ohio State University.



to the disk failure, but if a server crashes, all the data on that server will be inaccessible until the server is recovered. To
solve this problem many redundancy techniques across the servers have been proposed since 1990 [2]. In CEFT-PVFS [4]
and RAID-x [25] architectures the RAID1 strategy has been used, in xFS [18], SWARM [7] and Zebra [6] RAID5 has been
employed. RAID-like schemes specialized for PFS are being proposed [9] that explore the trade-off among performance,
storage efficiency and reliability. There are other schemesextensively used in large distributed storage systems which guar-
antee more resilience but they have the other drawback to inevitably entail an considerable computational complexity cost
both in the read and write operations due to the encode and decode phases respectively [3]. Otherwise, the RAID-like ap-
proaches, with the exception of RAID6, are based on parity information that are simply computed in the write operations,
while the read operations do not require any decoding phase.Although the disk failures on storage node or more generally
storage node failures are the most studied in such systems, simple data redundancy is not sufficient to protect the parallel file
system. Due to the concurrency of the client accesses and to the dependency among the storage nodes introduced with the
redundant schemes that was not present in the original striped file systems, end failure might damage the system by violating
the original semantic of file system. It is worth noting that one of the general guidelines for achieving high I/O performance in
parallel application consist in distributing the I/O accesses evenly among several processes. The failure of a processrunning
on a client node might happen during a write operation leaving the system in a inconsistent state (i.e., system error). An
error resulting from a client node failure might becomes a system failure (i.e., semantic violation) subsequently to a recovery
reconstruction based on corrupted data. So far, to the best of our knowledge, there are no works in the literature that address
the semantic issues of parallel file systems dealing with both client and server failures. This paper analyzes dependability
issues related to the striped file systems. We adopted the CSAR [9] parallel file system such as a case of study and improve
its dependability characteristics in spite of a new type of fault. Quantitative assessment shows the reliability and availability
improvements achieved from the enhanced CSAR.

1.1 Parallel and Distributed File Systems

Parallel and distributed file systems can be divided in threemain groups:

• Commercial parallel file systems;

• Distributed file systems;

• Research parallel file systems.

The first group comprise: PFS for the Intel Paragon [11]; PIOFS and GPFS for the IBM SP [12]; HFS for the HP Exemplar
[13]; XFS for the SGI Origin2000 [14]. These file systems provide the high performance and functionality desired for
I/O-intensive applications but are strictly tied to the specific platforms on which the vendor has implemented them. Although
they are very effective in providing high level of reliability, they are very expensive to develop and deploy and usually
cannot keep pace with the computing industry technology curve. Furthermore they often lack generality allowing only access
techniques specifically supported by the proprietary hardware. The second group is characterized by systems designed to
provide distributed access to files from multiple client machines, and their consistency semantics and caching behaviour are
designed accordingly. The types of workloads resulting from large parallel scientific applications usually do not meshwell
with file systems designed for distributed access; particularly, distributed file systems are not designed for high-bandwidth
concurrent writes that parallel applications typically require. Some of the best known distributed file systems are NFS[15],
AFS/Coda [16], InterMezzo [17], xFS [18], GFS [19]. The lastgroup comprises the research project in the areas of parallel
I/O and parallel file systems. PIOUS [8] is one of them and it focuses on viewing I/O from the viewpoint of transactions.
PPFS [20] research focuses on adaptive caching and prefetching. In the last few years, among the non-proprietary systems,
Galley [21] and PVFS [1] received attention in the context ofcluster architectures. Galley looks at disk-access optimization
and alternative file organizations. The goal of PVFS is to provide a high-performance file system for the Beowulf class of
parallel machines taking advantage of commodity hardware.PVFS is able to deliver very good performance and provides
different interfaces for applications, including VFS, MPI-IO and a native one. Though these file systems are freely available,
they are mostly research prototype. We have chosen PVFS as a platform to evaluate our approach for fault tolerant parallel file
systems because it was designed for performance but in its current form it does not provide any guarantee from the reliability
point of view.
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Figure 1. Characteristics of distributed RAID architectur es

1.2 Data consistency and semantic in parallel file systems

The semantics of file system are an important part of the service it provides. The semantics define what can be expected
from the different system calls provided for the interface to the file system, in presence of concurrent accesses and failures.
The consistency semantics that should be provided by PFSs isstill an open issue because the classical strong consistency [10]
seems too penalizing in the context of parallel I/O. Most distributed file system provide some form of POSIX semantics
which is very restrictive for performance and new relaxed consistency models are starting to be used. Among the non-
proprietary parallel file systems, we focused on PVFS [1] which is able to deliver very good performance and provides
different interfaces for applications, including VFS, MPI-IO and a native one. PVFS was developed thinking of a parallel
file system as a layer of the I/O software stack that is able to match the performance and scalability requirements of the
HPC applications. From this point of view, the role of parallel file systems is to: i) manage storage hardware (presentinga
single logical view and providing data redundancy); ii) scale to large number of clients (handling concurrent and independent
accesses and considering client failures to be a common case); iii) provide a API and semantics (able to preserve it in face of
the most common system component failure). Differently from the distributed file systems and most of the PFSs, PVFS does
not provide a POSIX-like consistency semantic because it isnot clear it can be implemented preserving high performance.
In particular, PVFS does not provide guarantee about the atomicity of read and write operation performed concurrently.The
responsibility of the consistency is split between the PFS and the I/O middleware running on top of it (i.e., MPI-IO over
PVFS). The I/O middleware layer is in charge of the management of concurrent accesses by group of processes while the
PFS layer provides only the simple atomic non overlapping write (i.e, it guarantees that all write operations involvingnon
overlapping regions are performed in an atomic way).

1.3 Data Replication for parallel file systems

In order to deal with the system failures in the context of parallel file systems different strategies can be adopted but
they all have to take in consideration the added overhead in terms of performance and architectural cost. The objective of
guaranteeing an high system availability is achieved through fault tolerance. The increasing number of storage nodes involved
exposes the system to failure resulting from a disk or node failure. The idea to extend the well known RAID techniques to
the distributed case was explored for the first time in the 1990 by Stonebraker and Schloss [2]. Based on this idea many
solutions have been proposed. All the mirroring strategieslike RAID-10, chained-declustering RAID [26] and orthogonal
striping and mirroring [25] in spite of an low space-efficiency, storage cost equal to 2, provides a good level of reliability
since the maximum number of disk/node failures tolerable isn/2. The RAID-5 technique provides a better space-efficiency,
variable storage cost of (n+1)/n, it can tolerate only a single disk/node failure. Differently from mirroring, RAID-5 uses a
redundant disk block per each stripe as the parity check for that stripe. Another possible approach is to use erasure coding,
such as LDPC [28] which has the properties necessary to add arbitrary levels of fault-tolerance by increasing the storage cost.
Unfortunately the computational cost of these approaches make impossible their use in parallel file systems since the read
and write operations require complex matrix multiplications respectively to decode and encode the data that are prohibitively
expensive in parallel file systems. Furthermore, the complexity of those operations, even for the last improved versionof
erasure codes [29], grows linearly with the size of data to process. For this reason they are extensively used only in wide
distributed systems [23] in which the communication times are long enough to justify the encoding and decoding times and
the reliability is more important than the performance. In Figure 1.3 is shown the performance of three common distributed
RAID architectures suitable for parallel file systems. The data in Figure 1.3 is relative to the parallel I/O of a file of m blocks
on RAID architectures with n nodes. The read and write latencies per block are denoted as R and W. For the read, all the
RAID architectures theoretically have the same performance even though practical experiments have shown that RAID-5 can
exhibit slightly higher performance [25]. Instead, for parallel writes, RAID-10 requires a double number of disk accesses



respect to the simple striping. In RAID-x, the large write isreduced respect to the mirroring to mW/n + mW/n(n-1), for
more details see the reference [25]. In RAID-5, the large write takes only mW/(n-1) time to be completed although for the
small write there is the well known problem [24] to pre-read the parity and the old data to compute the new parity and
execute finally the write. Furthermore, in a distributed striped file system, the lack of a centralized controller introduces a
new problem for RAID-5 not present in disk array: each stripewrite need to be executed atomically to avoid simultaneous
read or update of shared parity blocks. Each one of the above techniques represents a viable solution to tolerate the disk
failure that brings the system to a definitive loss of data (system failure). The optimal choice among the above techniques
depends on parallel read/write desired performance, the level of required fault tolerance, and the cost-effectiveness in specific
I/O processing applications. We concentrate on the RAID-5 technique rather than mirroring because it achieves single fault
tolerance with a much lower storage cost by using a fewer redundant disk space. Indeed, even though the storage cost is
decreasing rapidly, having the double number of storage nodes also doubles the system exposure to these type of failures.
Furthermore there is some previous work [30] that has proposed a solution to alleviate the shortcoming of the RAID-5 write
performance.

2 Related Work

PVFS is a RAID-0 style high performance file system providingparallel data access. While it addresses I/O issues for
the low-cost Linux clusters by aggregating the bandwidth ofthe existing disks on cluster nodes, PVFS does not provide,
in its current form, any fault tolerance and thus the failureof any single server node renders the entire file system service
unavailable. Several approaches have been proposed in the literature to provide some form of tolerance to the disk failure. In
[4] is proposed an extension to PVFS from a RAID-0 to a RAID-10style parallel file system to meet the critical demands on
reliability and to minimize the performance degradation due to the management of redundancy. To alleviate the degradation
of write performance due to the double data flow common for allthe schemes that make use of mirroring, the authors proposed
four protocols to optimize the tradeoff between write performance and reliability. Furthermore, they employ an centralized
byte-range two-phased locking mechanism to support the multi-reader single-writer semantics with a grant that expires after a
short lease period. This centralized mechanism limits the parallelism of I/O operations and adds a context-switching overhead
that increases with the number of client nodes. xFS [18], theBerkeley ”serverless” file system makes use of striping for
the parallel I/O and RAID-5 to tolerate the disk failure. xFSaddressed the problem of small write by buffering writes in
memory and then committing them to disk in large, contiguous, fixed-sized groups called log segments. As a result of use
of log-structured writes, xFS suffers from the garbage collection overhead. Furthermore, this technique is not suitable in the
context of concurrent accesses on the same file from different processes since in the general case a process could be interested
only in the write of a partial stripe and thus it could not commit it to disk as a full stripe. Pillai and Lauria address this issue
in [30] by implementing in PVFS an hybrid scheme that exploits both the advantage of mirroring on the small write and
RAID-5 for the large write. Although all these works addressthe disk failure problem on parallel I/O architectures, none of
them deal with client failure that also represents a potential source of system failure. This paper presents a strategy to achieve
tolerance with respect to both disk and client failure by using RAID-5 together with a distributed reservation mechanism to
make the system recoverable from those kind of faults.

3 Design of CSAR-2

3.1 Motivations

There are many results in the literature that deal with disk failure for distributed file system but only some of them focus
on high performance parallel file systems. The combination of the requirements of high performance and fault tolerance
in the context of PFS make the use of different optimized solution possible to accomplish a specific tradeoff. The aim of
this study is to preserve the good PVFS performance and its semantic in a cost-effective way while making it robust to the
following types of fault:i) disk failure; ii) storage node failure;iii) client failure. As stated in the Section 1.2 the semantic
provided by PVFS does not give guarantees on the overlappingI/O operations but assures only that I/O operations that not
access the same region will be sequentially consistent. Thechoice of not supporting POSIX-like semantics was taken to avoid
excessive communication needed to coordinate access amongall the clients. The necessity to explore new semantic in this
context has already been expressed in [25]. One way to deal with disk failure is to replicate the data across different nodes
of the architecture by extending the well known RAID techniques to the distributed case. However, assuming that one of
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Figure 2. Violation of File System Consistency

redundant techniques is applied to the parallel file system,a client failure could represent a failure for the whole system since
the file system semantic could be violated. Figure 2 shows an example of semantic violation due to a client failure in the case
of mirroring and RAID5. This violation consist of a not deterministic reconstruction of corrupted file during the recovery
procedure due to a client failure occurred in the middle of a write operation. Those situations become possible because
of the distributed nature of the file system components and because of the new dependencies introduced by the redundant
techniques. The I/O traces of scientific applications show that it is frequent to observe concurrent access from multiple clients
on the same files [22]. Actually, due to the large number of components involved the parallel file system should provide data
redundancy but also consider client failure to be a common case. To address this issue, the proposed solution aims to tolerate
the fault by recovering from them quickly when possible and guaranteeing the file system semantic at every instant.

3.2 Assumptions

One of the basic assumption made by PVFS is the splitting of the responsibility about the semantic between the overlay-
ing middleware (MPI-IO) and PVFS. This assumption allows tospeed up the file system I/O operations by avoiding locking
mechanisms or complex communications among the clients. Bymeans of the management of the conflicting accesses per-
formed by the MPI-IO, each client will have access to non-overlapping regions of the same file and thus the file system has
to care only about the correct execution of non-conflicting accesses as prescribed by its semantic.

3.3 Fault Model

Generally, distributed file systems should be prepared to handle several types of failures: a server’s disk can fail, a server
can fail, communication links can be broken, and clients canfail. Each type of failure can affect the system differently.
Usually server failures are assumed to be fail-stop in that the server does not show any degradation before the failure, and
when it fails, it fails by stopping all processing completely. Failure of a machine (server or client) cannot be distinguished
from the failure of a communication link, or from slow responses due to extreme overloading. Therefore, when a site does
not respond one cannot determine if the site has failed and stopped processing, or if a communication link has failed and
the site is still operational. For each one of those faults the file system should handle it in such a way that the consistency
and semantic guarantees of the system will not be violated and when possible activate automatic recovery without human
intervention. We are primarily concerned with three types of faults: i) storage node failure caused by hardware, operating
system (OS) or application software faults in the node or by fault on the communication link;ii) disk failure on storage node;
iii) client failure caused by hardware and software but the contribution of hardware errors to the client failure rate is fairly
small. Most of the client failures are likely to be due to software cause [32].



3.4 Fault Detection

Preliminary considerations. In RAID-5 the non-overlapping write operations that share one stripe need to be executed in
a mutually exclusive way because they could update simultaneously the parity block of the shared stripe. For this reasona
mechanism is needed to assure the sequential execution of the write operations that involve regions of the same file on the
same stripe. In PVFS different files cannot share the same stripe thus this event could occur only when different clients want
to access different portion of the same file which share a stripe. In this case only the first one of the two write operations
can be executed and the other one should wait for the completion of the previous one. The mechanism adopted in CSAR [9]
makes use of queues on the servers to store the pre-read requests of the parity block that precede every small write (i.e.,
write of partial stripe) on the same stripe. The pre-read of the parity block is an operation preceding every small write and
thus it can be used as a synchronization point: only after theupdate of the parity block from the current write is completed,
the first pre-read request in queue will be served and so on. Wemodify the CSAR file system so that it can tolerate the
client, server, and disk failure. For this purpose we need toput in place a mechanism to detect these failures, trigger the
appropriate recovery procedure as soon as possible to remedy the fault, and make the system available again. The client
failure represents a potential failure for the file system only during a write operation because it could modify partially the
data leaving the system in an inconsistent state. Thus, the client failure detection process need to be performed only during
the write operations. The only system component that is informed about each write operation is the storage node involvedin
the write. For this reason it is natural to think of a client failure detection performed by the storage nodes. Differently, the
storage node and the disk failures colud happen at any time and it should be detected as soon as possible in order to recover
the node or the disk. Failure of a server’s disk differs from failure of a server in that the same server can inform a specific
node, on which runs a pvfs client, that we called recovery agent, which performs the appropriate recovery procedure.

Server failure detection. The basic idea is to use a mutual fault detection between clients and servers by exploiting as
much as possible the already existent interactions betweenthem. This choice allows to contain the detection overhead during
the normal operation of the system preserving the performance but on the other hand could increase the detection time of
server node failure. In fact, if the server crashes when there is no client that is accessing the system, the detection will be
postponed to the first access. Instead, if the server crashesduring an access the involved client will detect suddenly the failure
and will inform the recovery agent about the failed server. In the case that the access is a write operation, the client will
send to the recovery agent also the information about the stripe under write, but it will also complete the write operation on
the remaining servers. In that way the recovery agent will beable to fix the corrupted stripe after the server recovery. Itis
worth noting that the delay in the detection of node failure does not change the resulting file system consistency in that no
operations will be performed in the while. Furthermore, assuming that those kind of systems are used for most of their life
time, we could state that there is always some process in progress which is accessing the system and thus the delay in the
detection could be not considered at all.

Client failure detection. We detect the client failure only when it is necessary, that is during a write operation. To enable
the server nodes to detect the client failure a timeout mechanisms is used in the write phases. The only timeout mechanism
is not sufficient in that each server can check out the only correct execution of the write operation in progress on itself.In
fact, a single client write involves at the same time more writes on different servers and the correct completion of a partof
them represents an undetectable system error from the single server point of view. For instance, when a client starts a write
operation that involves three servers but it crashes just after the completion of the writings on two of them but before itwas
initiating the writing on third one, each server node will beunable to detect the client failure because each one has completed
its operation correctly or does not perform it at all. For this reason we modified the protocol concerning the write operation
adding a reservation phase before each write. When a client wants to perform a write, it sends a short reservation message
with the information about the data to write (i.e., file, region in the file and write size) to each server involved in the operation
and starts a timer. Each server replies to the client by sending an acknowledgment message and starting a local timer. Only
if the client receives all the acknowledgments from the servers by the timeout, it concludes that no server is failed before the
write starts and it stops the timer and starts the write. During the write phase each client message exchanged with the servers
is acknowledged and thus eventually server failures can be detected by timeout. The server can also detect client failure
during the write phase in that the server knows the amount of data that it should receive before the timeout expires. With this
new phase each server knows that a write operation is in progress and only if every servers receive the complete data from the
client by a timeout then the write operation can be considered performed properly. Each server, on which the timeout expires,
will notify the client failure to the recovery agent. The reservation phase performed before each write operation should take



approximately the time of a round trip message but in the caseof small write it can be piggybacked along with the request
of read necessary to update properly the parity block in RAID-5. Furthermore, the reservation phase could solve also the
problem of guaranteeing the atomicity of the write operations on the shared stripe by blocking successive clients up to the
completion of the one in progress. Only the first client that receive all the reply messages by the servers can proceed withthe
write while the successive clients will have to wait for the completion of the first one in that they will receive a negativereply
from the server already busy on the same stripe.

3.5 Recovery Procedures

For each different type of system fault, there is an appropriate recovery procedure that should be activated to recover the
system. In the next subsections we describe the three recovery procedures that are thought to lead the system in a consistent
state and then recover the system automatically or wait for the human intervention to eventually replace the faulty component.

Recovery from Client Failure. When a client failure is detected by one of the server involvedin the write, it informs the
recovery agent about the region affected by the failed write. The recovery agent undertakes the following steps:i) read the
data written up to that moment from the failed client;ii) compute the parity blocks of the involved stripes;iii) write the new
parity blocks. This recovery procedure can be performed during the normal system working and thus the system availability
does not undergo modifications.

Recovery from Server Failure. Just after the node failure is detected, all the remaining servers are informed that the
recovery procedure is in progress and so they will reject allthe future requests and complete the ones in progress, already
acknowledged in the reservation phase, in order to reach as soon as possible a consistent state in which to block the system.
During the time interval between the server failure and the notification of failure to all the other servers no new write operation
will be accepted because the faulty server will not reply to any request. After the server is recovered all his stripe units
involved in write operations that were in progress at the failure time will be updated according the information of the other
servers. Different failures could affect the server, for software failures (e.g., operating system, application software) it is
sufficient the node reboot, while for hardware failures it isnecessary the substitution of faulty component. To distinguish
between the two faults usually it is performed node reboot and only if the problem persists the failure is considered hardware.
In both cases, when at least one node does not work properly the system become unavailable for the new requests and it
stays in this state until to the end of recovery procedure. The procedure leads the system exactly in the same state in which it
should be after the completion of the last request accepted before the failure.

Recovery from Disk Failure. The disk failure recovery procedure differs from the hardware server failure only because
after the substitution of the failed disk, requiring a humanintervention, it proceeds to the reconstruction of the dataon the
new disk. The reconstruction operation will take a time proportional to the amount of data that was present at the failure
instant. For each stripe the reconstruction consists of parallel block read operations on then-1 servers, computation of the
XOR function on these data and finally the write of the resulting block on the new disk. It is worth noting that these operations
will be performed with the system completely unloaded and thus the time to recover can be estimated deterministically once
the system architecture is chosen. As for the time to computethe XOR function, it increases proportionally to the numberof
servers but it represents a small contribution to the overall reconstruction time because it is a simple binary operation.

4 Dependability Evaluations

In this section, we show the dependability issues related toparallel file system. Quantitative measures have been performed
to show the reliability and availability enhancement provided by CSAR-2.

4.1 Experimental Setup

The parameters used to perform the dependability assessment of CSAR-2 have been measured using the prototype imple-
mentation deployed on the Ohio Supercomputer Center Itanium 2 cluster. The cluster is composed of compute nodes with
four gigabytes of RAM, two 900 MHz Intel Itanium 2 processors, 80 Gigabytes ultra-wide SCSI hard drive and one gigabit
Ethernet interface and one Myrinet interface. In particular, the reconstruction speed has been measured twice, using each one
of the two networks at a time.
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Table 1. Symbols, notations and values of dependability mod els

4.2 Dependability Model

In this paper we make the following assumptions in the dependability model:

• All component failure events are mutually independent;

• The failure and repair time are exponentially distributed;

• The metadata server is assumed more dependable than the other nodes in the cluster and for this reason we do not
consider the failure of this component in our model.

• The faults of network host interface are comprised in the host fault.

4.3 Reliability

In PVFS in the current form, with no data redundancy mechanisms, the single disk failure brings the system to the failure
because it involves the loss of data. Instead, the client failure does not represent a failure because PVFS does not have data
redundancy to keep consistent. Therefore, for PVFS the reliability is:

RPV FS(t) = e−(Nλdisk)t (1)

whereλdisk is the disk failure rate andN is the number of server nodes. As for PVFS with distributed RAID-5, two events
could lead the system to the failure. The first event is the second disk failure that entails the data loss and the second event is
the single disk failure after a client failure during write operation. The client failure during the write represents anerror for
the system in that the parity information of the involved stripes are not consistent. This error could become a system failure
for the system only after a recovery procedure from disk failure. This second event decreases the theoretical reliability of
RAID-5 scheme which is expressed in terms of MTTDL (Mean TimeTo Data Loss) as follow:

MTTDL =
(2N − 1)λdisk + µdisk

N(N − 1)λ2
disk

(2)

whereµdisk is the disk repair rate. To evaluate the reliability loss dueto client failure event we conducted some simple
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numerical examples by using the Markov model in Figure 3. Thenotations, symbols and values in the dependability models
are listed as in Table 1. The client failure rate during a write operation,λclient/write , is predicted as follow:

λclient/write = λclient ∗ α ∗ β (3)

whereλclient is the failure rate of a processing node in a cluster environment,α is the fraction of total execution time
spent performing I/O operations andβ is the fraction of time spent for write operations with respect to the whole I/O time.
It is worth noting that it is hard to extract generic values that can represent scientific application workload. The time spent
on I/O operations depends on many factors such as for instance the type of application (CPU intensive vs. I/O intensive)
or the level of parallel I/O provided by the architecture. Figure 4 shows the reliability values related to the three different
schemes spread over a period of 2 years:i) PVFS in the current implementation;ii) PVFS with distributed RAID-5 without
client failure treatment;iii) PVFS with distributed RAID-5 and client failure treatment.The reliability values concerning the
schemes with client failure treatment have been obtained solving the model in Figure 3 by using the SHARPE package [31].
As for the scheme without client failure treatment, it has been solved by means the same model without the transition from
Client Failure to Start Statethat represents the recovery action. The system configuration is composed by 6 server nodes
and 8 clients. Each server disks has 80 GB and a mean time to failure (MTTF) of 105 hours. The disk repair rateµdisk

has been obtained adding the time to replace the failed disk,estimated around 4 hours according to the mean time to repair
for hardware in [34], and the time to reconstruct the entire disk on the basis of the information on the remaining disks at
a reconstruction speed of 5 MB/second. The time to recover from the client failure1/µclient, instead, is composed by two
terms, the time to detect the fault and the time to fix the parity. The detection time is the sum of the timeout that the server
nodes use to determine the client failure plus the time to inform the recovery agent about the client failure. The time to fix
the parity depends on the number of stripes involved in the failed write. All these times are measured on a prototype in which
this scheme is implemented. In particular, theλclient value has been chosen according the prediction of software failure rate
for processing node in [32], whileα andβ have been extracted as mean values from the work [33] focusedon the workload
characterization of I/O intensive parallel applications.The numerical example, summarized in Figure 4, shows the remarkable
improvements that can be obtained in terms of reliability byusing the client failure treatment respect to the RAID-5 only
technique. These improvements become more pronounced whenthe number of clients and server nodes increase in that the
rate of the two transitions on the upper branch of the Markov model in Figure 3 increases correspondingly. The comparison
with PVFS is simply resumed by the fact that, with a configuration of 6 servers, after two years it provides a probability of
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data loss equal to 0.19 respect to 0.000017 of the proposed strategy. In Figure 5, have been resumed the reliability values
for PVFS with RAID-5 scheme and client failure treatment fordifferent system configurations. In particular, it is possible to
appreciate the dependence between the reliability and the number of server nodes. This dependence is due to the fact thata
greater number of disks in the system increases the probability to incur in the second disk failure during the reconstruction
of the previous failed one.

4.4 Availability

To evaluate the system availability for the improved PVFS weuse the Markov model in Figure 6 that represents an
extension of the one in Figure 3 in that there are also the states in which the system is unavailable during the recovery
procedures. Also this Markov model, like the one used for thereliability study, presents an absorbing state that corresponds to
the system failure due to the data loss. For that reason we cannot study the steady state availability but only the instantaneous
availability of the system that represents the probabilitythat the system is properly functioning at timet. The system become
unavailable during the recovery procedures from server andclient failures. In the distributed RAID-5 scheme, in fact,the
absence of one server, even though does not force necessarily the system to go down, exposes the system to the second disk
failure that means system failure. A way to reduce the systemvulnerability is to recover it as soon as possible in spite of
the system availability. We decide to stop the service just after the server failure detection to speedup the recovery action
and preserve the system consistency. The server failure have been divided in hardware and software on the basis of the
different recovery actions. Furthermore, another distinction has been done for the disk failure that represents a particular
case of hardware failure in that it needs the component replacement but also the reconstruction of the data. We assume that
the software failure should be recovered with a system reboot, while the hardware failures need the human intervention for
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replacement. This characterization and the relative values used in the Markov model of Figure 6, has been taken from the
work [34]. As for the client failure, it entails a temporary unavailability of the file portion involved in the failed write operation
during the recovery procedure although all the other clients can access the remaining files. Furthermore, the client failure
influences the availability also bacause it expose the system to the failure under single disk failure for the short time necessary
for his recovery. In Figure 7, instead, is shown the dependence of system availability from the number of server nodes over a
period of three years. This dependence can be summarized by an availability decrease of 0.001 for each increment of 2 nodes
for the first year that will increase over the time. The availability provided by PVFS can be estimated through his reliability
in that in the absence of a repair, availabilityA(t) is simple equal to the reliabilityR(t). If we consider as system fault the only
disk failure ignoring the server failure we can use the reliability values, related to 6 server nodes on Figure 4, as an upper
bound of his availability and compare it with the availability of the enhanced PVFS for the same configuration on Figure 7.
So, with the proposed strategy the availability is always greater than 0.99685 over a period of five years while PVFS just after
six months provides an availability under 0.94880.

4.5 Sensitivity Analysis

The time to recover from the disk failure is composed by the time to replace the disk and the time to reconstruct the
whole data. It represents a crucial parameter for the dependability characteristic of the system. In fact, the shorter this
interval of vulnerability, the lower is the probability of asecond concurrent disk failure. The reconstruction time isstrongly
dependent on the particular system architecture (i.e., disk access time, network bandwidth) and on the possible optimizations
in the reconstruction procedure. We present a sensitivity analysis in which we vary the reconstruction speed and observe the
relative changes in the corresponding dependability. The values of reconstruction speed have been chosen on the basis of the
measurements performed on the prototype of CSAR-2 for a system configuration of 6 servers and 8 clients. In particular,
0.5, and 5 MB/sec are the reconstruction speed relative to the Gigabit Ethernet and Myrinet network, respectively, while
10 MB/sec is the speed of an hypothetical system with higher disk and network performance. Figure 8 shows that the
instantaneous availability of CSAR-2 relatively to 5 and 10MB/sec are quite similar and both are substantially better than the



one relative to 0.5 MB/sec. The reason is that when the reconstruction is very fast, the mean time for a human intervention,
fixed to 4 hours in our experiments, become the predominant factor. Only with the reconstruction speed of 0.5 MB/sec,
the bottleneck is represented by the network bandwidth and most of the recovery time is spent in the data reconstruction.
This observation suggests that, in order to improve the availability, the network speed is as important as the time to replace
the hardware of the cluster. Furthermore, the amount of availability improvement achieved over one year by increasing the
reconstruction speed from 0.5 to 5 MB/sec is equal to 0.00053(from 0,99634 to 0,99688) which entails a reduction of the
combined system outages in a year of 15 percent. The reliability graph is not reported because it is qualitatively similar to
the availability one.

5 Conclusions and Future Work

This paper analyzes the dependability issues related to thestriped file systems. We enhance CSAR, a PVFS version aug-
mented with a distributed RAID5 scheme, by adding fault detection and recovery mechanisms and evaluate the reliabilityand
availability improvements by means of dependability models using the parameter of CSAR-2 prototype. The dependability
analysis of the system shows a 4 nine reliability while the sensitivity analysis based on the data reconstruction speed shows a
reduction of the combined system outage time up to 15 percent. Future work will aim to:i) extend the dependability results
with more system configurations;ii) assess the performance cost of CSAR-2 by means of standard benchmark.
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