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Abstract

Modern cluster file systems such as PVFS that stripe filesacrultiple nodes have shown to provide high aggregate 1/0
bandwidth but are prone to data loss since the failure of gleimlisk or server affects the whole file system. To addréss th
problem a number of distributed data redundancy schemes hagn proposed that represent different trade-offs betwee
performance, storage efficiency and level of fault toleeartdowever the actual level of dependability of an enhantrguksi
file system is determined by more than just the redundan@nsetadopted, depending in general on other factors such as
the type of fault detection mechanism, the nature and thedspéthe recovery. In this paper we address the question of
how to assess the dependability of CSAR, a version of PVR8entgd with a RAIDS5 distributed redundancy scheme we
described in a previous work. First, we address the issueswartered in adding fault detection and recovery mechastem
CSAR in order to produce CSAR-2. Second, we build a relighiiodel of the new system with parameters obtained from a
CSAR-2 prototype and from the literature. Finally, we asgbe system and discuss some interesting observationsahat
be made with the help of the model. According to our analgsispresentative configuration shows a four nine reliapilit
the sensitivity analysis shows that a reduction of 15% ofifstem outage time can be obtained by increasing the speed of
the reconstruction by a faster network.

1 Introduction

Parallel scientific applications need a fast I/0 subsystesatisfy their demand of aggregate bandwidth. In partidala
clusters environment applications will benefit from a platdile system (PFS) that can exploit the high-bandwidth fand
latency of high performance interconnect such as Myrindt@hps Ethernet. PFS such as PVFS [1], can improve signifi-
cantly the performance of I/O operations in clusters by gisitniping across different cluster’s node. The main olbjedn
the construction of such architecture for data intensiy@iegtions continues to be the performance, but the cudieattion
is also toward systems that provide high availability anbdity level. Parallel file systems, and more generailtidbuted
file systems, are complex systems. As the number of entitiggjpating in the system grows, so does the opportunity fo
failures. One of the major problems with the striping is th&ability because the striping of data across multipleseser
increases the likelihood of the data loss. Classical RAIPpraaches are usable locally to the server to provide toberan
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to the disk failure, but if a server crashes, all the data @ slerver will be inaccessible until the server is recovertul
solve this problem many redundancy techniques across thersénave been proposed since 1990 [2]. In CEFT-PVFS [4]
and RAID-x [25] architectures the RAID1 strategy has beedus xFS [18], SWARM [7] and Zebra [6] RAID5 has been
employed. RAID-like schemes specialized for PFS are beinggsed [9] that explore the trade-off among performance,
storage efficiency and reliability. There are other scheax¢ésnsively used in large distributed storage systemshipiar-
antee more resilience but they have the other drawback witamdy entail an considerable computational complexitgtc
both in the read and write operations due to the encode aratldgahases respectively [3]. Otherwise, the RAID-like ap-
proaches, with the exception of RAID6, are based on pariyrination that are simply computed in the write operations,
while the read operations do not require any decoding phafeough the disk failures on storage node or more generally
storage node failures are the most studied in such systénmesdata redundancy is not sufficient to protect the pairéile
system. Due to the concurrency of the client accesses ame tefpendency among the storage nodes introduced with the
redundant schemes that was not present in the originagdtfile systems, end failure might damage the system by inglat
the original semantic of file system. Itis worth noting thaé®f the general guidelines for achieving high 1/O perfanoein
parallel application consist in distributing the 1/0 acgesevenly among several processes. The failure of a pmgessg

on a client node might happen during a write operation leatire system in a inconsistent state (i.e., system error). An
error resulting from a client node failure might becomesstey failure (i.e., semantic violation) subsequently tecwvery
reconstruction based on corrupted data. So far, to the best &nowledge, there are no works in the literature thatreskl

the semantic issues of parallel file systems dealing with bbént and server failures. This paper analyzes depeligabi
issues related to the striped file systems. We adopted thérQ9)fparallel file system such as a case of study and improve
its dependability characteristics in spite of a new typeanitf Quantitative assessment shows the reliability aadatility
improvements achieved from the enhanced CSAR.

1.1 Parallel and Distributed File Systems

Parallel and distributed file systems can be divided in thma& groups:
e Commercial parallel file systems;

e Distributed file systems;

e Research parallel file systems.

The first group comprise: PFS for the Intel Paragon [11]; B@Rd GPFS for the IBM SP [12]; HFS for the HP Exemplar
[13]; XFS for the SGI Origin2000 [14]. These file systems pdevthe high performance and functionality desired for
I/O-intensive applications but are strictly tied to thedafie platforms on which the vendor has implemented themha@ulgh
they are very effective in providing high level of reliabyli they are very expensive to develop and deploy and usually
cannot keep pace with the computing industry technologyecUfurthermore they often lack generality allowing onlgess
techniques specifically supported by the proprietary hardw The second group is characterized by systems designed t
provide distributed access to files from multiple client imaes, and their consistency semantics and caching behaatie
designed accordingly. The types of workloads resultingnftarge parallel scientific applications usually do not mesfi

with file systems designed for distributed access; pagityldistributed file systems are not designed for highdwdadth
concurrent writes that parallel applications typicallguege. Some of the best known distributed file systems are INFS$
AFS/Coda [16], InterMezzo [17], xFS [18], GFS [19]. The Igsbup comprises the research project in the areas of paralle
I/O and parallel file systems. PIOUS [8] is one of them and ¢ues on viewing 1/O from the viewpoint of transactions.
PPFS [20] research focuses on adaptive caching and priefgtdh the last few years, among the non-proprietary system
Galley [21]and PVFS [1] received attention in the contextlaster architectures. Galley looks at disk-access optitiun

and alternative file organizations. The goal of PVFS is tosjgl® a high-performance file system for the Beowulf class of
parallel machines taking advantage of commodity hardwBkFES is able to deliver very good performance and provides
different interfaces for applications, including VFS, MI&I and a native one. Though these file systems are freeliabl@j
they are mostly research prototype. We have chosen PVFSatfaim to evaluate our approach for fault tolerant patdile
systems because it was designed for performance but inrisntdorm it does not provide any guarantee from the rdiigbi
point of view.



Performance Indicators RAID-10 RAID-5 RAID-Xx

parallel Large Read mR/n mR/n mR/n
Re:c;;/\/erite Small Read R R R
Time Large Write 2mW/n mwW/(n-1) mW/n + mW/n(n-1
Small Write 2W R+W w
Max. Fault Coverage n/? disk Sing.le Disk Singl.e Disk
failures failure Failure

Figure 1. Characteristics of distributed RAID architectur es

1.2 Data consistency and semantic in parallel file systems

The semantics of file system are an important part of the @eivprovides. The semantics define what can be expected
from the different system calls provided for the interfagdtte file system, in presence of concurrent accesses anceil
The consistency semantics that should be provided by PIE8E &0 open issue because the classical strong consjgtedic
seems too penalizing in the context of parallel /0. Mostritisted file system provide some form of POSIX semantics
which is very restrictive for performance and new relaxedststency models are starting to be used. Among the non-
proprietary parallel file systems, we focused on PVFS [1]chhis able to deliver very good performance and provides
different interfaces for applications, including VFS, MIEI and a native one. PVFS was developed thinking of a paralle
file system as a layer of the 1/0 software stack that is able decmthe performance and scalability requirements of the
HPC applications. From this point of view, the role of paghflle systems is to: i) manage storage hardware (preseating
single logical view and providing data redundancy); ii)leda large number of clients (handling concurrent and iraelent
accesses and considering client failures to be a commoiy dggerovide a APl and semantics (able to preserve it irefat
the most common system component failure). Differentlyfithe distributed file systems and most of the PFSs, PVFS does
not provide a POSIX-like consistency semantic becausenitilear it can be implemented preserving high performance
In particular, PVFS does not provide guarantee about theiatty of read and write operation performed concurreriflye
responsibility of the consistency is split between the PR& the 1/O middleware running on top of it (i.e., MPI-IO over
PVFS). The 1/0 middleware layer is in charge of the managémEooncurrent accesses by group of processes while the
PFS layer provides only the simple atomic non overlappinigewr.e, it guarantees that all write operations involviman
overlapping regions are performed in an atomic way).

1.3 Data Replication for parallel file systems

In order to deal with the system failures in the context ofafiat file systems different strategies can be adopted but
they all have to take in consideration the added overheaering of performance and architectural cost. The objecfive o
guaranteeing an high system availability is achieved tindault tolerance. The increasing number of storage natedied
exposes the system to failure resulting from a disk or noiligréa The idea to extend the well known RAID techniques to
the distributed case was explored for the first time in theOl99 Stonebraker and Schloss [2]. Based on this idea many
solutions have been proposed. All the mirroring strateliiesRAID-10, chained-declustering RAID [26] and orthogbn
striping and mirroring [25] in spite of an low space-effiaignstorage cost equal to 2, provides a good level of reltgbil
since the maximum number of disk/node failures tolerablg2s The RAID-5 technique provides a better space-effigienc
variable storage cost of (n+1)/n, it can tolerate only alsimfisk/node failure. Differently from mirroring, RAID-5sgs a
redundant disk block per each stripe as the parity checkhfirdtripe. Another possible approach is to use erasuragodi
such as LDPC [28] which has the properties necessary to aitcaay levels of fault-tolerance by increasing the steragst.
Unfortunately the computational cost of these approacheernmpossible their use in parallel file systems since thd re
and write operations require complex matrix multiplicaBaespectively to decode and encode the data that are raib
expensive in parallel file systems. Furthermore, the coxitylef those operations, even for the last improved versibn
erasure codes [29], grows linearly with the size of data tw@ss. For this reason they are extensively used only in wide
distributed systems [23] in which the communication timesslang enough to justify the encoding and decoding times and
the reliability is more important than the performance. igufe 1.3 is shown the performance of three common diseibut
RAID architectures suitable for parallel file systems. Th&adn Figure 1.3 is relative to the parallel I/O of a file of nodits
on RAID architectures with n nodes. The read and write latenper block are denoted as R and W. For the read, all the
RAID architectures theoretically have the same perforra@ven though practical experiments have shown that RAIBR5 ¢
exhibit slightly higher performance [25]. Instead, for aléel writes, RAID-10 requires a double number of disk asess



respect to the simple striping. In RAID-x, the large writerésluced respect to the mirroring to mW/n + mwW/n(n-1), for
more details see the reference [25]. In RAID-5, the largeendkes only mW/(n-1) time to be completed although for the
small write there is the well known problem [24] to pre-re&é parity and the old data to compute the new parity and
execute finally the write. Furthermore, in a distributedpsid file system, the lack of a centralized controller introes a
new problem for RAID-5 not present in disk array: each stripie need to be executed atomically to avoid simultaneous
read or update of shared parity blocks. Each one of the alsmimigues represents a viable solution to tolerate the disk
failure that brings the system to a definitive loss of datat@y failure). The optimal choice among the above techsique
depends on parallel read/write desired performance, teédé required fault tolerance, and the cost-effectiveriespecific

I/O processing applications. We concentrate on the RAIBehnique rather than mirroring because it achieves siagik f
tolerance with a much lower storage cost by using a fewerngalot disk space. Indeed, even though the storage cost is
decreasing rapidly, having the double number of storagesiatso doubles the system exposure to these type of failures
Furthermore there is some previous work [30] that has prgbassolution to alleviate the shortcoming of the RAID-5 errit
performance.

2 Related Work

PVFS is a RAID-0 style high performance file system providiagallel data access. While it addresses 1/O issues for
the low-cost Linux clusters by aggregating the bandwidtlthef existing disks on cluster nodes, PVFS does not provide,
in its current form, any fault tolerance and thus the failaf@ny single server node renders the entire file systemcservi
unavailable. Several approaches have been proposed itetla¢ure to provide some form of tolerance to the disk failun
[4] is proposed an extension to PVFS from a RAID-0 to a RAIDsfye parallel file system to meet the critical demands on
reliability and to minimize the performance degradatioe tmthe management of redundancy. To alleviate the degoadat
of write performance due to the double data flow common fahalkchemes that make use of mirroring, the authors proposed
four protocols to optimize the tradeoff between write perfance and reliability. Furthermore, they employ an cdizte
byte-range two-phased locking mechanism to support thé-nealder single-writer semantics with a grant that expater a
short lease period. This centralized mechanism limits #ralfelism of I/O operations and adds a context-switchiveyloead
that increases with the number of client nodes. xFS [18]Bbkkeley "serverless” file system makes use of striping for
the parallel I/O and RAID-5 to tolerate the disk failure. x&&dressed the problem of small write by buffering writes in
memory and then committing them to disk in large, contigudiied-sized groups called log segments. As a result of use
of log-structured writes, xFS suffers from the garbageemibn overhead. Furthermore, this technique is not deitalthe
context of concurrent accesses on the same file from differecesses since in the general case a process could lesteter
only in the write of a partial stripe and thus it could not coihitrto disk as a full stripe. Pillai and Lauria address thasue
in [30] by implementing in PVFS an hybrid scheme that exgldibth the advantage of mirroring on the small write and
RAID-5 for the large write. Although all these works addréss disk failure problem on parallel I/O architectures, eof
them deal with client failure that also represents a paéatiurce of system failure. This paper presents a strateggttieve
tolerance with respect to both disk and client failure byhngdRAID-5 together with a distributed reservation mechanis
make the system recoverable from those kind of faults.

3 Design of CSAR-2
3.1 Motivations

There are many results in the literature that deal with dagliaffe for distributed file system but only some of them focus
on high performance parallel file systems. The combinatiothe requirements of high performance and fault tolerance
in the context of PFS make the use of different optimized tamiupossible to accomplish a specific tradeoff. The aim of
this study is to preserve the good PVFS performance andritarsic in a cost-effective way while making it robust to the
following types of fault:i) disk failure;ii) storage node failurdii) client failure. As stated in the Section 1.2 the semantic
provided by PVFS does not give guarantees on the overlapfiingperations but assures only that I/0O operations that not
access the same region will be sequentially consistentciiiee of not supporting POSIX-like semantics was takewaoica
excessive communication needed to coordinate access aaidhg clients. The necessity to explore new semantic & thi
context has already been expressed in [25]. One way to déaligk failure is to replicate the data across differentesd
of the architecture by extending the well known RAID techu@g to the distributed case. However, assuming that one of
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Figure 2. Violation of File System Consistency

redundant techniques is applied to the parallel file systechient failure could represent a failure for the whole sgssince

the file system semantic could be violated. Figure 2 showsampgle of semantic violation due to a client failure in theea

of mirroring and RAID5. This violation consist of a not detenistic reconstruction of corrupted file during the reagve
procedure due to a client failure occurred in the middle ofrdenoperation. Those situations become possible because
of the distributed nature of the file system components awdulse of the new dependencies introduced by the redundant
techniques. The I/O traces of scientific applications sh@atit is frequent to observe concurrent access from maltijiénts

on the same files [22]. Actually, due to the large number of ponents involved the parallel file system should providadat
redundancy but also consider client failure to be a commea.cBo address this issue, the proposed solution aims tatele
the fault by recovering from them quickly when possible andrgnteeing the file system semantic at every instant.

3.2 Assumptions

One of the basic assumption made by PVFS is the splittingeofélponsibility about the semantic between the overlay-
ing middleware (MPI-10) and PVFS. This assumption allowspeed up the file system 1/O operations by avoiding locking
mechanisms or complex communications among the clientan&ns of the management of the conflicting accesses per-
formed by the MPI-IO, each client will have access to nonrlaygping regions of the same file and thus the file system has
to care only about the correct execution of non-conflictiogesses as prescribed by its semantic.

3.3 Fault Model

Generally, distributed file systems should be preparedndlesseveral types of failures: a server’s disk can fail,raese
can fail, communication links can be broken, and clients feéln Each type of failure can affect the system differently
Usually server failures are assumed to be fail-stop in thatserver does not show any degradation before the failace, a
when it fails, it fails by stopping all processing complgtefFailure of a machine (server or client) cannot be distisiged
from the failure of a communication link, or from slow resges due to extreme overloading. Therefore, when a site does
not respond one cannot determine if the site has failed ampst processing, or if a communication link has failed and
the site is still operational. For each one of those faultsfile system should handle it in such a way that the consigtenc
and semantic guarantees of the system will not be violatedadren possible activate automatic recovery without human
intervention. We are primarily concerned with three typ&aalts: i) storage node failure caused by hardware, operating
system (OS) or application software faults in the node oroytfon the communication linki) disk failure on storage node;

iii) client failure caused by hardware and software but the itmnion of hardware errors to the client failure rate islfair
small. Most of the client failures are likely to be due to s@fte cause [32].



3.4 Fault Detection

Preliminary considerations. In RAID-5 the non-overlapping write operations that shame stripe need to be executed in

a mutually exclusive way because they could update simedtasly the parity block of the shared stripe. For this reason
mechanism is needed to assure the sequential executior wfrife operations that involve regions of the same file on the
same stripe. In PVFS different files cannot share the sairipe shrus this event could occur only when different cliengntv

to access different portion of the same file which share pestrin this case only the first one of the two write operations
can be executed and the other one should wait for the coroplefithe previous one. The mechanism adopted in CSAR [9]
makes use of queues on the servers to store the pre-reactegfiehe parity block that precede every small write (i.e.,
write of partial stripe) on the same stripe. The pre-readefgarity block is an operation preceding every small wnitd a
thus it can be used as a synchronization point: only afteufitate of the parity block from the current write is complete
the first pre-read request in queue will be served and so onmadify the CSAR file system so that it can tolerate the
client, server, and disk failure. For this purpose we neeplutoin place a mechanism to detect these failures, trigger th
appropriate recovery procedure as soon as possible to yethedault, and make the system available again. The client
failure represents a potential failure for the file systerty @luring a write operation because it could modify parjidhe
data leaving the system in an inconsistent state. Thus ligg &ilure detection process need to be performed onhindu

the write operations. The only system component that igtinéal about each write operation is the storage node invaived
the write. For this reason it is natural to think of a clientuiee detection performed by the storage nodes. Diffeyetitle
storage node and the disk failures colud happen at any tiché& ahould be detected as soon as possible in order to recover
the node or the disk. Failure of a server’s disk differs fraituire of a server in that the same server can inform a specific
node, on which runs a pvfs client, that we called recovernggehich performs the appropriate recovery procedure.

Server failure detection. The basic idea is to use a mutual fault detection betweentslignd servers by exploiting as
much as possible the already existent interactions bettheen. This choice allows to contain the detection overhesithd

the normal operation of the system preserving the perfoceadt on the other hand could increase the detection time of
server node failure. In fact, if the server crashes wheretigeno client that is accessing the system, the detectidrbeil
postponed to the first access. Instead, if the server crasinieg an access the involved client will detect suddendyf#ilure

and will inform the recovery agent about the failed serverthle case that the access is a write operation, the clieht wil
send to the recovery agent also the information about tigestinder write, but it will also complete the write operation

the remaining servers. In that way the recovery agent withlble to fix the corrupted stripe after the server recoveris It
worth noting that the delay in the detection of node failuoesinot change the resulting file system consistency in that n
operations will be performed in the while. Furthermore uasisig that those kind of systems are used for most of their [if
time, we could state that there is always some process irrggssgvhich is accessing the system and thus the delay in the
detection could be not considered at all.

Client failure detection. We detect the client failure only when it is necessary, thaluring a write operation. To enable
the server nodes to detect the client failure a timeout nrastres is used in the write phases. The only timeout mechanism
is not sufficient in that each server can check out the onlyecbexecution of the write operation in progress on itskif.
fact, a single client write involves at the same time mordegron different servers and the correct completion of agfart
them represents an undetectable system error from theesiegler point of view. For instance, when a client startsitewr
operation that involves three servers but it crashes just tife completion of the writings on two of them but beforevéts
initiating the writing on third one, each server node willleable to detect the client failure because each one hadetmup

its operation correctly or does not perform it at all. Fostteason we modified the protocol concerning the write ofmerat
adding a reservation phase before each write. When a clientsvia perform a write, it sends a short reservation message
with the information about the data to write (i.e., file, i@gin the file and write size) to each server involved in therafien

and starts a timer. Each server replies to the client by sgrath acknowledgment message and starting a local timey. Onl
if the client receives all the acknowledgments from the sexrby the timeout, it concludes that no server is failed tteetloe
write starts and it stops the timer and starts the write. Mytihe write phase each client message exchanged with trerser

is acknowledged and thus eventually server failures canebectéd by timeout. The server can also detect client &ilur
during the write phase in that the server knows the amounataf that it should receive before the timeout expires. Wit t
new phase each server knows that a write operation is in@segmnd only if every servers receive the complete data frem t
client by a timeout then the write operation can be consitipegformed properly. Each server, on which the timeoutrespi

will notify the client failure to the recovery agent. The eegtion phase performed before each write operation ditaké



approximately the time of a round trip message but in the o&senall write it can be piggybacked along with the request
of read necessary to update properly the parity block in RBIOFurthermore, the reservation phase could solve also the
problem of guaranteeing the atomicity of the write operaion the shared stripe by blocking successive clients ufpeto t
completion of the one in progress. Only the first client tleaeive all the reply messages by the servers can proceetheith
write while the successive clients will have to wait for tteempletion of the first one in that they will receive a negatiwply

from the server already busy on the same stripe.

3.5 Recovery Procedures

For each different type of system fault, there is an appadgniecovery procedure that should be activated to recheer t
system. In the next subsections we describe the three mgcpracedures that are thought to lead the system in a censist
state and then recover the system automatically or waibBhtiman intervention to eventually replace the faulty conemt.

Recovery from Client Failure. When a client failure is detected by one of the server involuetie write, it informs the
recovery agent about the region affected by the failed wiiitee recovery agent undertakes the following stépsead the
data written up to that moment from the failed clieifjt;compute the parity blocks of the involved stripég; write the new
parity blocks. This recovery procedure can be performedhduthe normal system working and thus the system avaitgbili
does not undergo modifications.

Recovery from Server Failure. Just after the node failure is detected, all the remainimgesg are informed that the
recovery procedure is in progress and so they will rejecthallfuture requests and complete the ones in progressdglrea
acknowledged in the reservation phase, in order to reacbasas possible a consistent state in which to block the syste
During the time interval between the server failure and ttdination of failure to all the other servers no new writeacgtion
will be accepted because the faulty server will not replyng eequest. After the server is recovered all his stripesunit
involved in write operations that were in progress at theifaitime will be updated according the information of thkest
servers. Different failures could affect the server, foitware failures (e.g., operating system, applicationvgafe) it is
sufficient the node reboot, while for hardware failures ihécessary the substitution of faulty component. To disiisty
between the two faults usually it is performed node rebodtanly if the problem persists the failure is considered hare.

In both cases, when at least one node does not work properlgyitem become unavailable for the new requests and it
stays in this state until to the end of recovery procedure. grocedure leads the system exactly in the same state it vthic
should be after the completion of the last request accemimtdthe failure.

Recovery from Disk Failure. The disk failure recovery procedure differs from the handaserver failure only because
after the substitution of the failed disk, requiring a hunr@ervention, it proceeds to the reconstruction of the datdhe
new disk. The reconstruction operation will take a time prtipnal to the amount of data that was present at the failure
instant. For each stripe the reconstruction consists d@llgablock read operations on timel servers, computation of the
XOR function on these data and finally the write of the resgltlock on the new disk. Itis worth noting that these operei

will be performed with the system completely unloaded and tine time to recover can be estimated deterministicaltgon
the system architecture is chosen. As for the time to comietXOR function, it increases proportionally to the numdbier
servers but it represents a small contribution to the oveabnstruction time because it is a simple binary opemnatio

4 Dependability Evaluations

In this section, we show the dependability issues relatedtallel file system. Quantitative measures have beennoeefd
to show the reliability and availability enhancement pdad by CSAR-2.

4.1 Experimental Setup

The parameters used to perform the dependability assesefMe8AR-2 have been measured using the prototype imple-
mentation deployed on the Ohio Supercomputer Center haicluster. The cluster is composed of compute nodes with
four gigabytes of RAM, two 900 MHz Intel Itanium 2 process@8 Gigabytes ultra-wide SCSI hard drive and one gigabit
Ethernet interface and one Myrinet interface. In partigutse reconstruction speed has been measured twice, ushgae
of the two networks at a time.



Symbol Meaning Value
N Number of storage nodes variable
M Number of clients variable
Wgisk Mean time to disk failure 500,000 hours
Alient Client failure rate 0.00094 per hour
Menvwite | Client failure rate during write operation 0.06278 per year
Asnode Software server node failure rate 0.00094 per hour
Minode Hardware server node failure rate 1 per year
Wgjient Mean time to client repair 0.5 seconds
Uik Mean time to disk repair 8 hours
Hreboot Software server repair rate 20 per hour
Hreplace Hardware server repair rate 6 per day
o Fraction of total execution time spent| 0.3177
performing I/O operations
B Fraction of whole I/O time spent for 0.024
write operations

Table 1. Symbols, notations and values of dependability mod els

4.2 Dependability Model

In this paper we make the following assumptions in the degbitity model:
e All component failure events are mutually independent;
e The failure and repair time are exponentially distributed;

e The metadata server is assumed more dependable than thenottes in the cluster and for this reason we do not
consider the failure of this component in our model.

e The faults of network host interface are comprised in the fzast.
4.3 Reliability

In PVFS in the current form, with no data redundancy mectmasishe single disk failure brings the system to the failure
because it involves the loss of data. Instead, the cliehiréadoes not represent a failure because PVFS does not btave d
redundancy to keep consistent. Therefore, for PVFS thality is:

RPVFS(t) = e_(N)‘disk)t (1)

wherel ;.. is the disk failure rate and is the number of server nodes. As for PVFS with distributedRA, two events
could lead the system to the failure. The first event is thersetdisk failure that entails the data loss and the secomt &ve
the single disk failure after a client failure during writpayation. The client failure during the write representeaor for
the system in that the parity information of the involvedpss are not consistent. This error could become a systéundai
for the system only after a recovery procedure from diskufail This second event decreases the theoretical retjabfli
RAID-5 scheme which is expressed in terms of MTTDL (Mean TifoeData Loss) as follow:

(2N — 1) Adisk + Kdisk

MTTDL =
N(N = 1)AZ

)

where 1451 1S the disk repair rate. To evaluate the reliability loss tluelient failure event we conducted some simple
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Figure 4. Reliability comparison for 6 server nodes and 8 cli ents

numerical examples by using the Markov model in Figure 3. fidtations, symbols and values in the dependability models
are listed as in Table 1. The client failure rate during aevoberation jic,t /write » IS predicted as follow:

Aclie’nt/w’rite = Aclient * O * ﬂ (3)

where ) ;en: 1S the failure rate of a processing node in a cluster enviemtpa is the fraction of total execution time
spent performing 1/0O operations agds the fraction of time spent for write operations with resfe the whole 1/0 time.
It is worth noting that it is hard to extract generic valueattban represent scientific application workload. The tipens
on I/O operations depends on many factors such as for irestidnectype of application (CPU intensive vs. I/O intensive)
or the level of parallel I/O provided by the architectureguiitie 4 shows the reliability values related to the threeedsffit
schemes spread over a period of 2 yedr®VFS in the current implementatioii; PVFS with distributed RAID-5 without
client failure treatmentji) PVFS with distributed RAID-5 and client failure treatmefhe reliability values concerning the
schemes with client failure treatment have been obtainktihgathe model in Figure 3 by using the SHARPE package [31].
As for the scheme without client failure treatment, it hasrbsolved by means the same model without the transition from
Client Failure to Start Statethat represents the recovery action. The system configar&icomposed by 6 server nodes
and 8 clients. Each server disks has 80 GB and a mean timelucefdMTTF) of 13 hours. The disk repair ratey;s
has been obtained adding the time to replace the failed éstkmated around 4 hours according to the mean time to repair
for hardware in [34], and the time to reconstruct the entisk @dn the basis of the information on the remaining disks at
a reconstruction speed of 5 MB/second. The time to recoeen the client failurel/ i ;..¢, instead, is composed by two
terms, the time to detect the fault and the time to fix the paifihe detection time is the sum of the timeout that the server
nodes use to determine the client failure plus the time torinfthe recovery agent about the client failure. The timexo fi
the parity depends on the number of stripes involved in tiedavrite. All these times are measured on a prototype irctvhi
this scheme is implemented. In particular, the.,.; value has been chosen according the prediction of softwited rate
for processing node in [32], while and 3 have been extracted as mean values from the work [33] foauséoke workload
characterization of I/0O intensive parallel applicatiofke numerical example, summarized in Figure 4, shows thankable
improvements that can be obtained in terms of reliabilityusing the client failure treatment respect to the RAID-5yonl
technique. These improvements become more pronouncedtivd@&imber of clients and server nodes increase in that the
rate of the two transitions on the upper branch of the Markodehin Figure 3 increases correspondingly. The comparison
with PVFS is simply resumed by the fact that, with a configorabf 6 servers, after two years it provides a probability of
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data loss equal to 0.19 respect to 0.000017 of the propossegt. In Figure 5, have been resumed the reliability &alue
for PVFS with RAID-5 scheme and client failure treatmentddferent system configurations. In particular, it is pbsito
appreciate the dependence between the reliability anduimber of server nodes. This dependence is due to the faa that
greater number of disks in the system increases the prdtyabilincur in the second disk failure during the reconstiarc

of the previous failed one.

4.4  Availability

To evaluate the system availability for the improved PVFSuse the Markov model in Figure 6 that represents an
extension of the one in Figure 3 in that there are also thestatwhich the system is unavailable during the recovery
procedures. Also this Markov model, like the one used forétiability study, presents an absorbing state that cpomeds to
the system failure due to the data loss. For that reason wetatudy the steady state availability but only the ingtaabus
availability of the system that represents the probahilist the system is properly functioning at timé& he system become
unavailable during the recovery procedures from servercéiedt failures. In the distributed RAID-5 scheme, in fatte
absence of one server, even though does not force necgsbardystem to go down, exposes the system to the second disk
failure that means system failure. A way to reduce the systeimerability is to recover it as soon as possible in spite of
the system availability. We decide to stop the service jtsr @¢he server failure detection to speedup the recovetiprac
and preserve the system consistency. The server failure l@en divided in hardware and software on the basis of the
different recovery actions. Furthermore, another disibmchas been done for the disk failure that represents &pkat
case of hardware failure in that it needs the componenteepiant but also the reconstruction of the data. We assurhe tha
the software failure should be recovered with a system rehdtle the hardware failures need the human intervention f
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replacement. This characterization and the relative galised in the Markov model of Figure 6, has been taken from the
work [34]. As for the client failure, it entails a temporanmyavailability of the file portion involved in the failed weibperation
during the recovery procedure although all the other di@atn access the remaining files. Furthermore, the clidntéai
influences the availability also bacause it expose the sy&ighe failure under single disk failure for the short tirezassary

for his recovery. In Figure 7, instead, is shown the depecelefisystem availability from the number of server nodes ave
period of three years. This dependence can be summarizeddwadability decrease of 0.001 for each increment of 2 sode
for the first year that will increase over the time. The avality provided by PVFS can be estimated through his religbi

in that in the absence of a repair, availabilft) is simple equal to the reliabilitR(t). If we consider as system fault the only
disk failure ignoring the server failure we can use the bdliiy values, related to 6 server nodes on Figure 4, as aemupp
bound of his availability and compare it with the availalyilof the enhanced PVFS for the same configuration on Figure 7.
So, with the proposed strategy the availability is alwaysatgr than 0.99685 over a period of five years while PVFS jtet a
six months provides an availability under 0.94880.

4.5 Sensitivity Analysis

The time to recover from the disk failure is composed by theetto replace the disk and the time to reconstruct the
whole data. It represents a crucial parameter for the degiglity characteristic of the system. In fact, the shortés t
interval of vulnerability, the lower is the probability ofsscond concurrent disk failure. The reconstruction tinsgrisngly
dependent on the particular system architecture (i.&k,atisess time, network bandwidth) and on the possible opditions
in the reconstruction procedure. We present a sensitini&yais in which we vary the reconstruction speed and obstbe
relative changes in the corresponding dependability. Ehges of reconstruction speed have been chosen on the btsis o
measurements performed on the prototype of CSAR-2 for @&sysbnfiguration of 6 servers and 8 clients. In particular,
0.5, and 5 MB/sec are the reconstruction speed relativeedsilgabit Ethernet and Myrinet network, respectively, whil
10 MBY/sec is the speed of an hypothetical system with higlek dnd network performance. Figure 8 shows that the
instantaneous availability of CSAR-2 relatively to 5 andB/sec are quite similar and both are substantially beltign the



one relative to 0.5 MB/sec. The reason is that when the récati®on is very fast, the mean time for a human intervention
fixed to 4 hours in our experiments, become the predominatdrfa Only with the reconstruction speed of 0.5 MB/sec,
the bottleneck is represented by the network bandwidth aost of the recovery time is spent in the data reconstruction.
This observation suggests that, in order to improve thdahitity, the network speed is as important as the time tdaep
the hardware of the cluster. Furthermore, the amount ofahifify improvement achieved over one year by increashey t
reconstruction speed from 0.5 to 5 MB/sec is equal to 0.0¢06& 0,99634 to 0,99688) which entails a reduction of the
combined system outages in a year of 15 percent. The réjapibph is not reported because it is qualitatively simita

the availability one.

5 Conclusions and Future Work

This paper analyzes the dependability issues related tstiped file systems. We enhance CSAR, a PVFS version aug-
mented with a distributed RAID5 scheme, by adding fault ckde and recovery mechanisms and evaluate the reliahitity
availability improvements by means of dependability mededing the parameter of CSAR-2 prototype. The dependabilit
analysis of the system shows a 4 nine reliability while thesg&/ity analysis based on the data reconstruction speedsa
reduction of the combined system outage time up to 15 per€entire work will aim to:i) extend the dependability results
with more system configurationis} assess the performance cost of CSAR-2 by means of standzstrbark.
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