
Department of Computer Science
and Engineering

Modifying the Quake II Engine for ‘Civilian’ Use

Timothy Weale, Brad Mellen and Donna K. Byron
email:{weale,mellen,dbyron}@cse.ohio-state.edu

The Ohio State University
Department of Computer Science and Engineering

Columbus, Ohio 43210

Technical Report: OSU-CISRC-11/05-TR74

April 11, 2006

Abstract

This report describes our modifications to the Quake II source code in order to ‘sanitize’ the content
for a general audience, so that it can be used for spoken dialog corpus collection in an academic
setting. Our changes include eliminating all weapons, disabling player damage, hiding specific
elements of the GUI and removing the player stats from the screen. These modifications create a
more immersive experience for the end user, which is expected to lead to a more natural dialog
corpus.

This material is based on work supported by the OSU Computer Science and Engineering department.

c©2006, The Ohio State University Department of Computer Science

Contents

1 Quake II Engine for Situated Collaboration 2

1.1 Quake II Installation . 5

2 Disabling Damage 6

3 Removing Weapons 7

4 Changing Weapon and Item Names 8

4.1 Changing the Blaster Name . 8

4.2 Changing the Blaster Initialization . 9

4.3 Changing Additional Item Names . 10

4.4 Configuration File . 11

5 Changing the Heads-Up Display 12

5.1 Removing the User Stats . 12

5.1.1 Removing all HUD Output . 13

5.1.2 Retaining Special HUD Output . 14

5.2 Removing the Crosshair . 15

6 Changing Item Interaction 16

6.1 Disabling Automatic Item Pickup . 16

6.2 Disabling Item Activation . 17

6.3 Dropping Items . 18

7 Summary 19

8 Appendices 21

A-1 game/g combat.c . 22

A-2 game/p weapon.c . 22

A-3 client/cl view.c . 22

A-4 client/cl scrn.c (Version 1) . 22

A-5 client/cl scrn.c (Version 2) . 23

A-6 game/g items.c . 25

A-7 game/p client.c . 28

1 Quake II Engine for Situated Collaboration

Researchers in Artificial Intelligence, Human-Computer Interaction, Human-Robot Interaction, and
Discourse Analysis are increasingly interested in studying collaboration strategies for situated tasks.
Situated tasks are those in which the activity and language of the task partners are influenced by
their physical environment. Whether the end goal of their research is to develop intelligent agents
that will be deployed as partners in such tasks, or whether the goal is to study human-to-human
communication and collaboration behaviors, the starting point for many researchers is to record
human partners working together on a task in a controlled, experimental setting that can be
instrumented to provide precise recordings of experimentally-relevant aspects of their interaction.
For spoken dialog systems development, the ideal experimental setting is one that can be inhabited
by either teams of human partners or heterogeneous teams of human-intelligent agent partners
to solve the identical task. The experimental setting described in this report, which fits this
requirement, is a computer game engine called Quake II. Quake II can be used as a virtual world
setting for collaborative tasks. The game engine has certain benefits and limitations that may
make it useful as an experimental tool by researchers with a variety of experimental goals. The
purpose of this report is to document changes that we found to be necessary in the game engine
code in order to make the look-and-feel of the interface more appropriate for academic research on
collaborative interaction.

Our initial use for the Quake II software has been to record the discourse produced by pairs
of human partners solving situated tasks [Byr05]. These collected dialogs will be used as attested
language examples to motivate the development of spoken dialog agents for situated tasks. A variety
of other task-based dialog corpora exist, for example TRAINS [HA95], Maptask [HGD+93], ATIS
[ATI93], and COMMUNICATOR [WRP+02]. Although these corpora have provided the spoken
dialog systems research community with a valuable resource to investigate dialog phenomena such
as grounding, speech act sequencing, disfluencies and spoken language parsing, etc, the corpora
were collected in experimental conditions that prevented the partners from sharing extra-linguistic
context. In situated language, a speaker is located at a specific position in a three-dimensional
environment; therefore, the influence of the extra-linguistic context on discourse is crucial. Although
spatial properties such as ‘on the left’, ‘to the right’, ‘there’ or ‘here’ are widely studied in fields
such as cognitive science, linguistics and psychology, the systematic investigation of non-linguistic
context for intelligent conversational agents is in its infancy. In order to develop agents which
can successfully function within a physical space, we must first understand how the environmental
context changes the interpretation and production of linguistic acts. Quake II provides a low-cost
environment that can be utilized by researchers for a range of situated collaboration experiments.

Other simulation environments have been used in dialog research before. For example, the game
Neverwinter Nights has been used to create an immersive Intelligent Tutoring System that under-
stands and responds to natural language [LDHS03] and for a conversational agent that collaborates
with the user to complete a simple task [GR05a, GR05b]. Although the Neverwinter Nights engine
places each player at a particular position in the world, their view of the task world is a top-down
view rather than a true first-person view. So, while solving a task within the game, the user expe-
riences a god’s-eye-view of his avatar moving about in the world, which does not produce a strong
sense of immersion. Another game engine, Unreal Tournament, has been used in several immersive
training simulations created at USC. The virtual world rendered by the game engine is populated
with animated characters that speak to each other and the trainee [SHG+01, JT05, QJ05]. In some
implementations, [TR02] the user is not allow to move about within the scene. Also, the source

2

code for this simulation engine is not open source and is quite expensive to acquire.

The virtual world rendering engine described in this report, Quake II, has certain properties
that we believe to be advantages over these other computer game engines. In terms of cost, the
game is open source software that is available on the web and freely distributed under the GNU
General Public License. Unlike true VR systems or high-end graphical world software engines
such as Maya, Quake II runs on commodity hardware and under several commonly-used operating
systems – Windows, Linux or OS X. Additionally, Quake II was developed in the early 1990’s for
use on consumer hardware of the time (Pentium 90 with 16 MB of RAM) and therefore requires
little in terms of computing resources. These factors together mean that a researcher can use Quake
II on desktop computers he already owns, with minimal expense to acquire the software. Because
the software is open source, it is simple to make customizations such as changing the behavior of
items in the virtual world, adding interaction with other software such as dialog engines, planning,
or reasoning software, or adding instrumentation and logging functions necessary for experiments.
Also, Quake II provides a built-in mechanism for recording sessions for playback. This mechanism
includes logging of the user’s spatial position, orientation and gaze direction at each instant of
the game. Using this information, each subject’s situational context variables can be precisely
calculated and time-aligned with data from other modalities, such as recorded speech. Finally,
map creation for Quake II is simple. There are many free and commercial software packages for
map creation, which will allow researchers to easily create new environments for their studies.

In terms of the user’s experience, Quake II renders the user’s view of the world from the more
immersive first-person perspective (see Figure 1 for an example). Navigation is also intuitive. For
example, “Turning to the right” is accomplished by pressing the right-arrow key, which results in
the scene depicted on the computer monitor moving as it would if the user turned his head to the
right while standing in the scene. Additionally, Quake II does not allow for fine-grained movements
that could be used as communicative gestures. This eliminates arm gestures and body language
from the communication pathway. However, large-scale pointing gestures such as moving towards
an object of interest are available. Depending the research objectives of a particular study, this
may or may not be a desirable trait.

3

Despite these advantages, the default configuration for Quake II is inappropriate for most
academic studies involving human subjects. As a first-person shooter video game, the behavior
of the world and default graphical content delivered with the game is oriented around violence
(see Figure 1a). The default interaction in the game world assumes a model in which a player
attempts to avoid injury to himself in order to stay alive. This introduces stress, time-pressure,
and fear of harm into the subject’s experience, which a researcher may wish to remove unless they
are important to his study. In addition, the computer display includes game-relevant statistics that
detract from the user’s feeling of immersion. The underlying source code can be customized to
remove these elements. Figure 1b shows the resulting user view after all the changes in this report
are applied to the Quake II engine.

a. Default Engine b. Revised Engine

Figure 1: Changes to the Quake II environment for embodied dialog collection.

This Technical Report documents the modifications made by our research team to the Quake II
engine to prepare it for use as a data collection environment. Other research teams who wish to use
Quake II as a data collection tool may wish to make these same modifications to the distributed
source code. Section 2 describes how to disable the world’s ability to inflict harm on players. Section
3 shows how to eliminate any reference to weapons from the user’s interface. Section 5 describes
changes to remove unwanted heads-up-display output, which increases the user’s immersion in the
virtual world. Finally, Sections 4 and 6 describe additional modifications we made to the behavior
of particular items in the world to make them more compatible with the collaborative task that we
designed for our first dialog collection experiment [Byr05]. These item modifications are described
merely as examples of additional changes that can be made to the game.

4

1.1 Quake II Installation

After downloading and unpacking the Quake II source, available from www.idsoftware.com, there
will be several directories in the source tree:

client/
ctf/
game/
irix/
linux/
null/
q_common/
ref_gl/
ref_soft/
rhapsody/
server/
solaris/
win32/

In the following section, we will refer to files based on this directory structure. For example,
the file game/g combat.c is the file g combat.c located in the game directory.

Installation instructions can be found in the source tree and online. This source tree has been
compiled by the authors under both Windows XP and Red Hat Linux. A separate source tree can
be found for OS X1. Please note that you will need a copy of the Quake II retail disk for textures
and models before you can run the game.

1http://www.fruitz-of-dojo.de/php/download.php4?dlnr=6

5

2 Disabling Damage

An essential part of every first-person shooter is the notion of ‘health’. The threat of death drives the
drama of the game events forward. However, for human-subject studies in an academic environment,
health should not even be a factor in the dialog. People should just be able to move and talk
normally.

Removing monsters and weapons from our maps won’t solve the problem. Even in what seems
like a completely harmless map, players can still get hurt by, e.g., falling from a height, getting
caught in a door, etc.). It’s desirable to avoid ‘hurting’ or ‘killing’ subjects participating in a study.
Therefore, we must disable the game’s ability to deal damage. The simplest way to do this is to
eliminate damage calculations.

Steps to Remove Damage Calculation (See A-1)

1. Open game/g combat.c

2. Find the function T Damage

3. Place a return statement on the first line of the function2

4. Comment out or eliminate the original code for T Damage

By doing this, the damage calculations are “short circuited”. When the engine tries to apply dam-
age calculations the function has no effects – the method simply returns and gameplay continues
as expected.

a. Default b. Modified

Figure 2: By removing damage, the user is no longer dealt damage by getting caught in a closing
door.

2Note that this will disable damage calculations and effects for all entities. This includes not only the players, but
also any monsters, boxes, doors, buttons or walls which have health attributes. For the purposes of this research, we
do not believe that this is a problem.

6

3 Removing Weapons

In the game Quake II, there is considerable emphasis placed on weaponry. This is to be expected,
as it is built upon a kill-or-be-killed model of gameplay. However, for our data collection purposes,
we don’t want the subjects to feel like they are in a war situation. To do this, we remove the
engine’s ability to both display and also shoot weaponry. By doing this, the subjects can avoid
accidentally attacking each other and focus completely upon the given task.

Steps to Remove Weapons (See A-2)

1. Open game/p weapon.c

2. Find the function Think Weapon

3. Place a return statement on the first line of the function

4. Comment out or eliminate the original code for Think Weapon

Through these modifications, we eliminate the engine’s ability to utilize the Think Weapon func-
tion, which controls both the firing and displaying of weapons. Weapons are never displayed and
cannot be fired, effectively removing them from the environment.

a. Default b. Modified

Figure 3: Removing the prominent visual positioning of weapons aids in environment immersion.

7

4 Changing Weapon and Item Names

Section 3 describes how to disable weapons. However, the Blaster will still show up in the user’s
inventory (see Figure 4 for an example inventory display). The engine seems designed to provide
each player with a Blaster by default, and we can’t seem to remove the item from the user’s
inventory without crashing the game. This is potentially confusing. Our solution is to rename the
item – the Blaster is still in the inventory, but it now looks like something else.

4.1 Changing the Blaster Name

Renaming the Blaster (See A-6)

1. Open game/g items.c

2. Look for the following comment:

/* weapon_blaster (.3 .3 1) (-16 -16 -16) (16 16 16)
always owned, never in the world
*/

This is the area of the code which declares the properties of the blaster,
including what Quake 2 names the item.

3. Going down a few lines, you should see the comment /* pickup*/. Right after it, there
should be a string (default is ‘‘Blaster’’).

4. Change this to whatever you like, although we recommend ‘‘player’’

By doing this, the name of the item is changed in the Quake II environment. Thus, the inventory
will display “player”, removing all traces of the Blaster.

8

4.2 Changing the Blaster Initialization

Quake II gives the Blaster to the player at the beginning of the game and seems to always assume
that the user is in possession of it. Removing this code causes the environment to crash. Therefore,
we must give the item to the player.

However, we renamed it in the previous section and Quake II will not find a “Blaster” item.
So, we change the name of the default item to match our changes.

Initializing the New ‘‘Blaster’’ (See A-7)

1. Open game/p client.c

2. Find the function InitClientPersistant

3. Near the beginning, there should be a call to FindItem
with the parameter being the string ‘‘Blaster’’.

4. Change this to whatever you renamed the blaster to be
(in the example case, ‘‘player’’).

5. *** NOTE: New names must match exactly. ***

a. Default b. Modified

Figure 4: The user’s inventory display with ‘blaster’ renamed to ‘player’.

9

4.3 Changing Additional Item Names

The Blaster isn’t the only item which can be renamed. Items such as the default names used by
the Quake II community aren’t lexical items known to the general public. Such items (Quad Dam-
age, Rebreather, Silencer) can have their names changed in order to facilitate more natural dialog.

Changing Item Names (See A-6)

1. Open game/g items.c

2. Find the following comments to change the given items

Quad Damage /*QUAKED item quad (.3 .3 1) (-16 -16 -16) (16 16 16)

Rebreather /*QUAKED item breather (.3 .3 1) (-16 -16 -16) (16 16 16)

Silencer /*QUAKED item silencer (.3 .3 1) (-16 -16 -16) (16 16 16)

3. Change the name on the line which contains the comment ‘‘/* pickup */’’.

a. Default b. Modified

Figure 5: Using common terminology to label inventory items.

10

4.4 Configuration File

Quake II includes a default config file for keyboard layout(baseq2/config.cfg). However, the config-
uration is explicitly coded for the default names of items. The changes we made to the item names
breaks these hotkey bindings. If we want to be able to use these items, we have to make changes
to the configuration file for each renamed item.

Previous Bindings

bind b "use rebreather"

bind q "use quad damage"

bind s "use silencer"

Example Configuration Modifications

bind b "use helmet"

bind q "use quake logo"

bind s "use rectangle box"

These changes re-map the items to their hotkey bindings. They do not seem to be case sensitive.

a. Default b. Modified

Figure 6: Remapping gives us hotkey options.

11

5 Changing the Heads-Up Display

This section describes modifications to the portion of the Quake II engine responsible for displaying
information about the current state of the user to the screen. This information is also known as
the Heads-Up Display (HUD). By removing the HUD, we will get a more immersive experience,
without losing any information.

5.1 Removing the User Stats

User stats are the final visual reminder to the user that they are not actually embodied within the
world. Without the following modifications, the environment will still show the user’s health and
weapon selection. Since we have disabled both elements, neither really needs to be shown. We can
therefore remove these from the screen. By removing the stats, we get a surprising increase in the
immersive effect of the engine.

5.1.1 details how to remove all HUD output, regardless of source. 5.1.2 removes the health,
ammo and weapon displays, but allows additional information to be displayed (such as when an
item is picked up). Both are essentially equal in the traditional immersion, but one allows for a bit
more information to be given to the user.

12

5.1.1 Removing all HUD Output

Steps to Completely Remove HUD Output (See A-4)

1. Open client/cl scrn.c

2. Find the function SCR DrawStats

3. Remove the line containing SCR ExecuteLayoutString
(the only line in the function)

This completely eliminates all functionality of the HUD, because the method call is never executed.
Therefore, nothing will be displayed on the screen.

a. Default b. Modified

Figure 7: Removing all HUD output gives us the most immersive view possible.

13

5.1.2 Retaining Special HUD Output

Steps to Retain Item HUD Output (See A-5)

1. Open client/cl scrn.c

2. Find the function SCR ExecuteLayoutString

3. Remove or comment out the following ‘if’ blocks:

• (!strcmp(token, "pic"))

• (!strcmp(token, "client"))

• (!strcmp(token, "ctf"))

• (!strcmp(token, "picn"))

• (!strcmp(token, "num"))

• (!strcmp(token, "hnum"))

• (!strcmp(token, "anum"))

• (!strcmp(token, "rnum"))

*** NOTE: These ‘if’ blocks should be consecutive within the code. ***

Most traditional HUD output is suppressed in this modification in that all armor, weapon and
health-related displays will not be shown. However, if the user picks up an item, this will be
displayed to the screen. This provides immediate feedback for the user, and might be useful for
subjects inexperienced with the Quake II environment.

Figure 8: HUD notification of item pickup.

14

5.2 Removing the Crosshair

A minor annoyance, the crosshair is a constant reminder to the user that they are not truly in the
environment. By removing it, the subject is given a slightly better feeling of immersion. While it
can be removed as a command-line option, removing the crosshair in the code allows us to fully
ensure that it will not be displayed.

Steps to Remove the Crosshair (See A-3)

1. Open client/cl view.c

2. Find the function V RenderView

3. Remove the line containing SCR DrawCrosshair

a. Default b. Modified

Figure 9: Removing the crosshair.

15

6 Changing Item Interaction

Since we’re using Quake II as an environment only and not playing the game, we can do non-
traditional things with the given items. For example, the task assigned to subjects of the Quake2004
corpus [Byr05], was a scavenger hunt. This required the subjects to pick up, carry and drop off the
items in different locations of the map. In order to accomplish this, several modifications to the
source code were required.

6.1 Disabling Automatic Item Pickup

Quake II automatically picks up an item once you position yourself over it. By explicitly forcing the
user to take some kind of action (push a button) before the item is added to their inventory, they
could feel comfortable using the term “pick up” to describe their actions, rather than automatically
just acquiring the item whenever it was touched.

Disabling Auto Pickup (See A-6)

1. Open game/g items.c

2. Find the function Touch Item

3. Find the lines:
if(!other->client)
return;

4. Add the following after the previous lines:
if(!(other->client->buttons & BUTTON ATTACK))
return;

Touch Item is the function that is called when another entity is positioned over an item (weaponry,
ammo, armor, quad damage, etc.). Usually, the item is automatically acquired when touched. This
modification requires the user to not only be positioned on top of the item, but also push the
key assigned to the ‘Attack’ button (in our case, Ctrl). Only then will the item be added to the
inventory.

16

6.2 Disabling Item Activation

When an item is acquired, it is typically used automatically. For example, picking up a Quad Dam-
age will give the player increased strength for a period of time, after which the item goes away. In
a scavenger hunt environment, we don’t want our items to be used up and disappear! So, we made
modifications to the code which allow the user to carry items without activating the item functions.

Disabling Item Activation (See A-6)

1. Open game/g items.c

2. Find the following functions:

• Use Quad

• Use Envirosuit

• Use Invulnerability

• Use Silencer

• Use Breather

• Use PowerArmor

3. Comment everything out except for the following lines:
ent->client->pers.inventory[ITEM INDEX(item)]-- --;
ValidateSelectedItem (ent);

4. If both lines aren’t in the function already, add them (as in Use PowerArmor)

17

6.3 Dropping Items

The Quake2004 scavenger hunt task required picking up and dropping items, but the default engine
does not have a ‘drop’ command. Therefore, the Quake II engine had to be modified so that an
item could be ‘dropped’.

Adding Item (See A-6)

1. Open game/g items.c

2. Find the following functions:

• Use Quad

• Use Envirosuit

• Use Invulnerability

• Use Silencer

• Use Breather

• Use PowerArmor

3. Find the following line: ‘‘ValidateSelectedItem (ent);’’

4. Add the following line after the ValidateSelectedItem call: ‘‘Drop Item(ent, item);’’

Now, instead of using an item automatically, you throw the item if you hit its hotkey (shown in
the inventory display popup).

Figure 10: Key bindings to ‘throw’ the items.

18

7 Summary

In this technical report, we have detailed our changes to the Quake II engine. These modifications
sanitize the content of the game, taking it away from its roots as a violent first-person shooter
game. Ultimately, we believe these changes allow us to use the Quake II engine as an immersive
environment for embodied dialog research.

First, we disabled damage to the player, removing the threat of accidental ‘injury’ and ‘death’
for the subjects. Then, all weapons are removed from the field of view and the firing mechanism
cannot be executed. Then, the HUD is removed, allowing for an optimal immersion within the
environment. Additional modifications such as item/weapon name changes and item pickup/drop-
off are discussed. Finally, changes to the engine configuration file are discussed.

The Quake 2004 Corpus [Byr05] contains an initial discussion of our human/human dialog
recording environment, including a description of the equipment involved and the client/server
setup for the Quake II environment. Future work in this domain include detailing our final recording
environment. This will allow for a complete system for corpus collection, including not only the
words spoken by the subjects, but also a listing of the subject’s positions and actions during their
time in the environment. Additionally, we plan to extend the Quake II domain to include an
automated agent capable of understanding and generating embodied dialog.

19

References

[ATI93] ATIS. The ATIS corpus
http://www.ldc.upenn.edu/catalog/
catalogentry.jsp?catalogid=ldc93s4a, 1993.

[Byr05] Donna K. Byron. The OSU Quake 2004 corpus of two-party situated problem-solving
dialogs. Technical report, The Ohio State University, 2005.

[GR05a] Peter Gorniak and Deb Roy. Probabilistic grounding of situated speech using plan
recognition and reference resolution. In Proceedings of the 7th international conference
on Multimodal Interfaces, pages 138–143, Torento, Italy, 2005. ACM Press.

[GR05b] Peter Gorniak and Deb Roy. Speaking with your sidekick: Understanding situated
speech in computer role playing games. In Proceedings of Artificial Intelligence and
Digital Entertainment, 2005.

[HA95] P. Heeman and J. Allen. The Trains spoken dialog corpus. CD-ROM, Linguistics Data
Consortium, 1995.

[HGD+93] Charles T. Hemphill, John J. Godfrey, George R. Doddington, John Garofolo, Jonathan
Fiscus, Nancy Dahlgren William Fisher, Brett Tjaden, and David Pallett. Hcrc map
task corpus: Linguistics data consortium catalog no. ldc93s12, 1993.

[JT05] Dusan Jan and David Traum. Dialog simulation for background characters. 5th Inter-
national Working Conference on Intelligent Virtual Agents, 2005.

[LDHS03] Susann Luperfoy, Eric Domeshek, Elias Holman, and David Struck. An architecture
for incorporating spoken dialog interaction with complex simulations. In Interser-
vice/Industry Training, Simulation, and Education Conference (I/ITSEC 2003), 2003.

[QJ05] Lei Qu and Lewis Johnson. Detecting the learner’s motivational states in an interactive
learning environment. In Proceedings of the 12th International Conference on Artificial
Intelligence in Education (AIED 2005), 2005.

[SHG+01] W. Swartout, R. Hill, J. Gratch, W.L. Johnson, C. Kyriakakis, C. LaBore, R. Lindheim,
S. Marsella, D. Miraglia, B. Moore, J. Morie, J. Rickel, M. Thibaux, L. Tuch, R. Whit-
ney, and J. Douglas. Toward the holodeck: Integrating graphics, sound, character and
story. Proceedings of the fifth international conference on Autonomous agents, 2001.

[TR02] David Traum and Jeff Rickel. Embodied agents for multi-party dialogue in immersive
virtual worlds. In Proceedings of first International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS ’02), pages 766–773, Bologna, Italy, 2002.

[WRP+02] M.A. Walker, A. Rudnicky, R. Prasad, J. Aberdeen, E. Owen Bratt, J. Garofolo,
H. Hastie, A. Le, B. Pellom, A. Potamianos, R. Passonneau, S. Roukos, G. Sanders,
S. Seneff, and D. Stallard. DARPA communicator: Cross-system results for the 2001
evaluation. In ICSLP-2002:Inter. Conf. on Spoken Language Processing, volume 1,
pages 273–276, Denver, CO USA, Sept. 2002.

20

8 Appendices

The following pages include sections of our modified code. This is intended to show more context
for the source code changes, and may be used for reference. All modifications are done in the game
and client directories of the original source tree.

See 1.1 for more information about the Quake II source tree.

21

A-1 game/g combat.c

void T_Damage (edict_t *targ, edict_t *inflictor, edict_t *attacker, vec3_t dir, vec3_t point,
vec3_t normal, int damage, int knockback, int dflags, int mod)

{
return;

}

A-2 game/p weapon.c

void Think_Weapon (edict_t *ent)
{
return;

}

A-3 client/cl view.c

void V_RenderView(float stereo_separation)
{
extern int entitycmpfnc(const entity_t *, const entity_t *);

if (cls.state != ca_active)
return;

...

SCR_AddDirtyPoint (scr_vrect.x, scr_vrect.y);
SCR_AddDirtyPoint (scr_vrect.x+scr_vrect.width-1,
scr_vrect.y+scr_vrect.height-1);

//SCR_DrawCrosshair ();
}

A-4 client/cl scrn.c (Version 1)

void SCR_DrawStats (void)
{
//SCR_ExecuteLayoutString (cl.configstrings[CS_STATUSBAR]);

}

22

A-5 client/cl scrn.c (Version 2)

void SCR_ExecuteLayoutString (char *s)
{
...

while (s)
{
token = COM_Parse (&s);
if (!strcmp(token, "xl"))
{
token = COM_Parse (&s);
x = atoi(token);
continue;

}

...

if (!strcmp(token, "yv"))
{
token = COM_Parse (&s);
y = viddef.height/2 - 120 + atoi(token);
continue;

}

/*if (!strcmp(token, "pic"))
{ // draw a pic from a stat number
token = COM_Parse (&s);
value = cl.frame.playerstate.stats[atoi(token)];
if (value >= MAX_IMAGES)
Com_Error (ERR_DROP, "Pic >= MAX_IMAGES");

if (cl.configstrings[CS_IMAGES+value])
{
SCR_AddDirtyPoint (x, y);
SCR_AddDirtyPoint (x+23, y+23);
re.DrawPic (x, y, cl.configstrings[CS_IMAGES+value]);

}
continue;

}

...

if (!strcmp(token, "rnum"))
{ // armor number
int color;

width = 3;
value = cl.frame.playerstate.stats[STAT_ARMOR];
if (value < 1)
continue;

color = 0; // green

23

if (cl.frame.playerstate.stats[STAT_FLASHES] & 2)
re.DrawPic (x, y, "field_3");

SCR_DrawField (x, y, color, width, value);
continue;

}*/

if (!strcmp(token, "stat_string"))
{
token = COM_Parse (&s);
index = atoi(token);
if (index < 0 || index >= MAX_CONFIGSTRINGS)
Com_Error (ERR_DROP, "Bad stat_string index");

index = cl.frame.playerstate.stats[index];
if (index < 0 || index >= MAX_CONFIGSTRINGS)
Com_Error (ERR_DROP, "Bad stat_string index");

DrawString (x, y, cl.configstrings[index]);
continue;

}

...

if (!strcmp(token, "if"))
{ // draw a number
token = COM_Parse (&s);
value = cl.frame.playerstate.stats[atoi(token)];
if (!value)
{ // skip to endif
while (s && strcmp(token, "endif"))
{
token = COM_Parse (&s);

}
}

continue;
}

}
}

24

A-6 game/g items.c

void Use_Quad (edict_t *ent, gitem_t *item)
{
ent->client->pers.inventory[ITEM_INDEX(item)]--;
ValidateSelectedItem (ent);
Drop_Item(ent, item);

}

void Use_Breather (edict_t *ent, gitem_t *item)
{
ent->client->pers.inventory[ITEM_INDEX(item)]--;
ValidateSelectedItem (ent);
Drop_Item(ent, item);

}

void Use_Envirosuit (edict_t *ent, gitem_t *item)
{
ent->client->pers.inventory[ITEM_INDEX(item)]--;
ValidateSelectedItem (ent);
Drop_Item(ent, item);

}

void Use_Invulnerability (edict_t *ent, gitem_t *item)
{
ent->client->pers.inventory[ITEM_INDEX(item)]--;
ValidateSelectedItem (ent);
Drop_Item(ent, item);

}

void Use_Silencer (edict_t *ent, gitem_t *item)
{
ent->client->pers.inventory[ITEM_INDEX(item)]--;
ValidateSelectedItem (ent);
Drop_Item(ent, item);

}

void Use_PowerArmor (edict_t *ent, gitem_t *item)
{
ent->client->pers.inventory[ITEM_INDEX(item)]--;
ValidateSelectedItem (ent);
Drop_Item(ent, item);

}

void Touch_Item (edict_t *ent, edict_t *other, cplane_t *plane, csurface_t *surf)
{
qboolean taken;

if (!other->client)
return;

if(!(other->client->buttons & BUTTON_ATTACK))
return;

//REST OF CODE...

25

}

/* weapon_blaster (.3 .3 1) (-16 -16 -16) (16 16 16)
always owned, never in the world
*/
{
\"weapon$_$blaster\",
NULL,
Use_Weapon,
NULL,
Weapon_Blaster,
\"misc/w_pkup.wav\",
NULL, 0,
\"models/weapons/v$_$blast/tris.md2\",

/* icon */ \"w_blaster\",
/* pickup */ \"player\",

0,
0,
NULL,
IT_WEAPON|IT_STAY_COOP,
WEAP_BLASTER,
NULL,
0,

/* precache */ \"weapons/blastf1a.wav misc/lasfly.wav"
},

/*QUAKED item_quad (.3 .3 1) (-16 -16 -16) (16 16 16)
*/
{
"item_quad",
Pickup_Powerup,
Use_Quad,
Drop_General,
NULL,
"items/pkup.wav",
"models/items/quaddama/tris.md2", EF_ROTATE,
NULL,

/* icon */ "p_quad",
/* pickup */ "Quake Logo",
/* width */ 2,

60,
NULL,
IT_POWERUP,
0,
NULL,
0,

/* precache */ "items/damage.wav items/damage2.wav items/damage3.wav"
},

/*QUAKED item_silencer (.3 .3 1) (-16 -16 -16) (16 16 16)
*/
{
"item_silencer",

26

Pickup_Powerup,
Use_Silencer,
Drop_General,
NULL,
"items/pkup.wav",
"models/items/silencer/tris.md2", EF_ROTATE,
NULL,

/* icon */ "p_silencer",
/* pickup */ "Rectangle Box",
/* width */ 2,

60,
NULL,
IT_POWERUP,
0,
NULL,
0,

/* precache */ ""
},

/*QUAKED item_breather (.3 .3 1) (-16 -16 -16) (16 16 16)
*/
{
"item_breather",
Pickup_Powerup,
Use_Breather,
Drop_General,
NULL,
"items/pkup.wav",
"models/items/breather/tris.md2", EF_ROTATE,
NULL,

/* icon */ "p_rebreather",
/* pickup */ "Helmet",
/* width */ 2,

60,
NULL,
IT_STAY_COOP|IT_POWERUP,
0,
NULL,
0,

/* precache */ "items/airout.wav"
},

/*QUAKED item_enviro (.3 .3 1) (-16 -16 -16) (16 16 16)
*/
{
"item_enviro",
Pickup_Powerup,
Use_Envirosuit,
Drop_General,
NULL,
"items/pkup.wav",
"models/items/enviro/tris.md2", EF_ROTATE,
NULL,

27

/* icon */ "p_envirosuit",
/* pickup */ "Suit",
/* width */ 2,

60,
NULL,
IT_STAY_COOP|IT_POWERUP,
0,
NULL,
0,

/* precache */ "items/airout.wav"
},

A-7 game/p client.c

void InitClientPersistant (gclient_t *client)
{
gitem_t *item;

memset (&client->pers, 0, sizeof(client->pers));

item = FindItem("player");
client->pers.selected_item = ITEM_INDEX(item);
client->pers.inventory[client->pers.selected_item] = 1;

client->pers.weapon = item;

client->pers.health = 100;
client->pers.max_health = 100;

client->pers.max_bullets = 200;
client->pers.max_shells = 100;
client->pers.max_rockets = 50;
client->pers.max_grenades = 50;
client->pers.max_cells = 200;
client->pers.max_slugs = 50;

client->pers.connected = true;
}

28

