
Trunk and Trail: Wireless Sensor Network Services For

Distributed Object Tracking

Vinodkrishnan Kulathumani1, Mukundan Sridharan1, Murat Demirbas2,

Hui Cao1, Emre Ertin3, and Anish Arora1

1Dept. of Computer Science and Engineering, The Ohio State University
2Dept. of Computer Science, State University of NewYork at Buffalo

3Dept. of Electrical and Computer Engineering, The Ohio State University

Abstract

In this paper we design two wireless sensor network services Trunk and Trail, for distributed, mobile
object tracking applications. Both these services are designed to be reliable and energy efficient while
satisfying their specification. The specification for Trunk is to return a consistent global snapshot of
the state of all objects in the system to all subscribed applications at regular intervals of time. Because
the queries are specified apriori and are periodic Trunk operates in a synchronous model, and therefore
the nodes in the network listen on radio and transmit only when scheduled, thus being energy efficient.
The specification for Trail is to return the location of a particular mobile object to any application
issuing the query. Trail maintains a tracking data structure for all objects and this structure is updated
locally upon object moves and using this structure Trail offers a find time that increases linearly with
the distance from an object. However Trail operates in an asynchronous model where the different
application queries are not synchronized and nodes in the network are always awake to listen queries.
Since this is an energy consuming, we design a Synchronous Trail service in which the algorithms for
maintaining the tracking data structure and the find operations are like in Trail, but the nodes in the
network operate synchronously and thereby gaining energy efficiency at the cost of latency. We then
consider an example mobile object tracking system, called an intruder-interceptor game and describe how
the interceptor application uses our network services Trunk and Trail. We also provide an experimental
analysis of the performance of these two services in terms of their reliability and latency in a network
of 105 XSMs (eXtreme Scale Motes) using Kansei, a wireless sensor network testbed.

1 Introduction

Tracking of mobile objects has recently received significant attention in the context of military

applications, mobile computing and cellular telephony. Mobile object tracking can be done either by

forming an ad-hoc network of the mobile objects themselves or a network of static devices could provide

the sensing and communication infrastructure for tracking of the mobile objects. In this paper we focus

on mobile object tracking using a wireless network of static sensors. Some examples of object tracking

systems in the context of military requirements using sensor networks are Line in the sand [2, 12] and

Exscal [1,11]. These and other tracking systems using sensor networks thus far have focused mainly on

applications that monitor the tracks of objects. In this paper we design services that allow closing the

1



loop and enable control based tracking applications. Examples of control based tracking applications

are pursuer-evader tracking and intruder-interceptor tracking.

Control based tracking applications could be centralized or distributed in nature. By tracking ap-

plication, we mean the component of the system which based on the tracks of the various objects in

the system, computes the control strategy. There have been demonstrations of pursuer evader tracking

systems using sensor networks. However, the architecture for these systems have been such that the

tracking applications are centralized or semi-centralized in nature. However, object tracking systems

especially with control based applications face extreme scale issues in terms of the size of the network

and speed of objects being tracked. Hence it is desired that these applications are distributed in nature.

Different application scenarios arise in multi object tracking systems. For example, in a pursuer

evader tracking system, pursuers are interested in tracking evaders such that some optimization criteria

is met such as minimizing the average catch of time of all evaders or maximizing the distance of

evaders from a valuable asset. The latter application is also called an intruder-interceptor game. One

common application scenario that arises in these system is to make an optimal assignment of intruders

to interceptors. This applications uses global knowledge of the system to make the optimal assignments

and therefore these applications require consistent snapshot of the system at regular intervals. These

queries by way of being periodic and specified upfront suggest a push model for the underlying network

tracking service. Another application scenario in this system arises when an object is being tracked by

an interceptor. Nash equilibrium conditions for satisfying the optimality constraints imply that in such

cases, the rate at which the application requires information about the trackee is not constant. The

frequency at which information is needed depends on the relative location of the objects. This suggests

a pull model for the underlying network tracking service.

While sensor networks provide opportunities for tracking of objects, they also use energy-constrained

devices. Communication is a significant source of energy drain in these devices. Transmitting on the

radio or simply listening on the radio decreases the battery life of these devices. These requirements

motivate the need for network services that support the applications to be energy efficient. Algorithms

that require extensive communication are not desirable. Sensor networks are also prone to node failures

and message losses and thereby can lead the programs to arbitrary states. The objective of this paper

is to design network services for object tracking systems, that are reliable and energy efficient.

Contributions: In this paper we first describe an architecture for distributed, mobile object tracking

systems using sensor networks. We then design two network services Trunk and Trail for tracking mobile

objects. Both these services are designed to be energy efficient while satisfying their specification. The

specification for Trunk is to return consistent global snapshot of the state of all objects in the system to

all subscribers at regular intervals. Since the queries are specified upfront and they are periodic, Trunk

follows a push model and also operates synchronously. By being synchronous, nodes in the network

2



listen on the radio or transmit only when scheduled thus giving energy efficiency. The specification for

Trail is to return the location of a particular object to the client issuing the query. Trail maintains a

tracking data structure by propagating mobile object information. Trail also offers a distance sensitive

property. The time taken to complete the find operations is proportional to the distance between the

objects. Also the time and work to update the tracking structure is proportional to the distance moved.

By operating in a local manner, Trail is energy efficient. However, Trail is an asynchronous protocol and

nodes are always awake to listen on the radio. Since this is energy consuming, we design a Synchronous

Trail service in which maintaining the tracking data structure and the find operations are exactly like

Trail, but the nodes in the network operate synchronously. In all these services, the client application

itself could be a mobile object in which case the replies are returned to the object at its current location.

We then consider an example distributed multi object tracking application called an intruder-

interceptor game. The application works in two phases, assignment and tracking. During assignment,

the applications use global knowledge of the system and during tracking applications use local knowledge

to intercept the intruders. We show how our network services Trunk and Trail can be used to satisfy

the requirements imposed by these phases respectively in order to succesfully intercept the intruders.

We also provide an experimental analysis of the performance of these two services in a network of 105

XSMs using Kansei, a wireless sensor network testbed [6].

Organization of the paper: The rest of the paper is organized as follows. In Section 2, we describe

the system architecture. In Section 3, we describe the network and fault model and formally state the

specification of the network services, Trunk and Trail. In Sections 4 and 5, we describe our services

Trunk and Trail respectively and present the results of experimental evaluation of their performance in

a wireless sensor network testbed. In Section 6, we describe Synchronous Trail and in Section 7, we

describe how Trunk and Trail can be extended to 2-dimensional network topologies. We conclude in

Section 8.

2 System Architecture

In this section we describe an architecture for distributed mobile object tracking systems. The

system comprises mobile objects, and a network of static sensors. Tracking applications (which could

be running on a subset of the mobile objects themselves) use the sensor network to track desired objects.

The Fig. 1 shows the overall architecture of the system and how the components are interconnected.

Each node in the network consists of a sensing component and a radio component. Each node also

participates in three distributed network services namely, object detection and association, network

tracking and time synchronization.

The object detection and association service uses the sensing and radio components to locate an

3



Figure 1. Fig. 1: Architecture of Mobile Object Tracking System

object and also corroborate object detections with previous detections for the same object. This service

also assign a unique id in the range 1..n, where n is the number of objects in the system, when they are

first detected. We now define an Object agent.

Definition .1 (Object Agent) Among all the nodes that sense a mobile object, the agent for an object

agent at any instant is the node that is closest to the object at that instant.

The object agent stores the state of the object which includes variables such as the location of the

object. Note that the location of an object could be in a different space and more fine grained than the

location of the sensor nodes themselves.When an object moves, the state of the object is transferred

to the new agent. In this paper, we assume the existence of such an object detection and association

service.

The network tracking service is responsible for tracking the mobile objects across the network. In-

formally, the specification for this service could be where is object i or find the nearest object or find all

objects in the system. In this paper we focus on network tracking services for multiple mobile objects.

We design two such services Trunk and Trail that have different specifications. The objective of both

these services is to minimize the energy used while satisfying their specifications.

The time synchronization service across the network may be needed for certain tracking services.

4



For example, Trunk uses a time synchronization service but Trail does not. Time synchronization could

be implemented in a number of ways. The nodes could be GPS enabled or the nodes could run a

periodic distributed beaconing protocol. Time synchronization could also be implemented using an

explicit initialization process and assuming that clocks at all processes move at the same rate and new

nodes that add into the network overhear messages to synchronize with the network. For simplicity,

Trunk assumes that a time synchronization service exists in the network.

Both Trunk and Trail use a network clustering service that forms a backbone for the network such

that all nodes in the network are within communication range of their nearest backbone node. Moreover

we assume that nodes within a cluster are in radio range of the neighboring cluster but not beyond that.

An example of such an object tracking system is that of intruder-interceptor tracking. The mobile

objects are interceptors and intruders. The clients to the network services are the tracking applications

running on the interceptor objects. In this paper, we consider two example interceptor applications,

GlobalOne and LocalOne and show how our tracking services Trunk and Trail are used by these appli-

cations respectively. GlobalOne is used to make optimal assignment of interceptors to intruders and all

the interceptors decide their next step based on this global information. In LocalOne, the interceptors

track a particular evader and they require information about a subset of objects.

The object detection and association service enables the formation of pursuer and evader agents. The

pursuer agent acts as the communication interface for the pursuer with the network. In the following

section, we describe the system model and formally describe the specification for the above services.

3 Model and Specification

In this section, we describe the system setting and fault model and formally state the specifications

for each of the network services described in the previous section including the tracking services, Trunk

and Trail.

3.1 System Setting

In this subsection, we describe the network model, state the notations that we use in the paper and

provide an abstraction for the underlying message passing.

Network Model: We consider a sensor network with multiple sensor locations. The sensor locations

are partitioned into L clusters with a cluster-head for each cluster. These cluster-heads form the

backbone of the network. We assume in this paper that the backbone nodes are arranged in a linear

topology. All nodes within a cluster are assumed to be within communication range of each other and

their respective clusterhead. There are upto n mobile objects in the network.

Notations: As a convention, j.r refers to a variable r at sensor node j. j.bbid refers to the id of the

5



Figure 2. Network of Sensor Nodes and Mobile Objects

cluster in which node j belongs to. We denote one cluster in the network as a central cluster and its

cluster-head is denoted as C. Note that C need not be physically at the center of the network. Every

node has an in-neighbor that refers to the neighbor towards the center (j.unbr) and an out-neighbor that

refers to the path away from the center (j.dnbr). For all non-backbone nodes and backbones farthest

from the center, j.dnbr is set to ⊥. Also C.unbr = ⊥. Note that dist(x, y) returns the hop distance

between x and y. Two non-backbone nodes within a cluster have hop distance 2 and two node in clusters

r apart have hop distance 2 + r. Variables specific to the network services, Trunk and Trail are defined

in the respective sections. Objects are denoted by their ids objp. Location of an object p is given by

< objp.x, objp.y >. Also, objp.r refers to a variable r at object objp.

Communication Abstraction: Communication between nodes i and j are achieved by using send(m)i,j

and receive(m)i,j. Nodes i and j could be multi-hop. send(m)i is used by node i to send a message

within to any node within 1-hop of i. Similarly receive(m)j can be used to receive messages sent within

1 hop of j. δ is assumed to be the 1-hop message transmission time.

3.2 Network Services Specification

We now state the formal specifications for each of the network services in the previous section. In

this paper we focus on the design of network services for tracking.

Object Detection and Association Service: Each mobile object is detected by all sensor nodes

within the sensing range. The object detection service returns an event detectedp at the node that is

closest to the object p. The signal contains the state of all variables associated with object p. This node

is called as the agent for object p. The service also returns an event movedp at the previous agent for

object p unless p has been detected for the first time in the network. The object detection service also

assigns a unique id p in the range 1..n to every object in the network.

Time Synchronization Service: This service ensures that all the sensor nodes are synchronized to

a global time. A node can get the current global time using GetGlobalTime().

Trunk Service: The trunk service returns a consistent global snapshot of the state of all mobile

objects. Trunk answers client queries of the form get(GlobalSnapshot,T) where T is the period at

6



which the snapshots are needed. Ecah client gets an identical snapshot of the system.

Trail Service: Trail offers the following function: where(objecti,objectp). where(objecti,objectp)

returns the state of the object i, including its location at the current location of the object p issuing

the query. Trail offers a distance sensitive property. The time taken to complete the find operations

and the amount of work for these operations is proportional to the distance between the objects. Also

the time and work to update the tracking structure is proportional to the distance moved.

The objective of both these services is to be energy efficient while satisfying their specifications. We

now describe the two services and in each case describe how pursuer evader tracking applications use

the service.

3.3 Fault Model:

The network can corrupt or lose a message if it interferes with any other message sent at the same

time. Therefore nodes can suffer arbitrary state corruption. A system is said to be self stabilizing iff

starting from an arbitrary state the system eventually recovers to a consistent state, a state from where

its specification is satisfied. We characterize consistent states for our services in the following sections.

4 Related Work

Tracking of mobile objects has recently received significant attention in the research community. In

this paper we focus on mobile object tracking where the sensing and communication infrastructure is

provided by a network of static sensors and we design network services for tracking.

There exist network tracking services such as [5] that suffer from nonlocal update problems, where

updates to a tracking structure may take work dependent on the network size rather than distance

moved. There are also hierarchical solutions such as [3] for mobile object tracking, in which a hierarchy

of regional directories is constructed and the communication cost of a find for an object d away is

O(d ∗ log2N) and that of a move of distance d is O(d ∗ logD ∗ logN + log2D ∗ logN) (where N is the

number of nodes and D is network diameter). But a topology change, such as a node failure, necessitates

a global reset of the system since the regional directories depend on a non-local clustering program that

constructs sparse covers. Stalk is a Self-Stabilizing Hierarchical Tracking Service for Sensor Networks

that supports find of a mobile object in time and work proportional to the distance from the object.

Trail uses a tracking structure similar to Stalk. In Trail we have only one level of hierarchy in clustering

and we maintain tracks for multiple objects with all tracks are rooted at one point. In this paper, we

also discuss how Trail can be made more energy efficient by having a synchronous schedule along the

backbones. The applications that request the find operation themselves could be mobile objects being

tracked in which case the results are returned to the current location of the objects.

7



Our network tracking services assume the existence of an object detection and association service

that detects the presence of an object, associates it with the previous detections for the same object

and assigns an id. This is an orthogonal problem to object tracking and could be done in a centralized

manner [15] or in a distributed manner using handoff mechanisms [14].

Querying and Storage in Sensor Networks: There has been significant research on querying for

event of interest in sensor network [7, 9, 10,13]. In directed diffusion, a tree of paths is created from all

objects of interest to the tracker. These paths have to be updated when any of the objects move. A

change in assignment would require creation of new paths. On the other hand, in Trail we impose a

fixed structure on the network and tracks to all objects are maintained on this structure rooted at a

point. Updates to the structure are local and any object can find the state of any other object following

the same tracking structure.

There has also been considerable work on data centric storage where the focus is on efficiently placing

data at precise location providing easy access. In Trunk and Trail, we maintain the state of an object

ony at the node closest to the object. In Trail, we maintain pointers to the current location that is

updated in cost and time proportional to the distance moved. By doing this, we get a latency for find

operations that decreases as the object being tracked is closer. In Trunk, the state of mobile objects is

pushed to all subscribers at the requested frequency.

This leads to the discussion of push vs pull model [8] for object tracking applications. In case of

trunk, since the queries are periodic in nature, we follow a push model and also make it energy efficient

by being synchronous. In case of Trail since the query frequency is varying, we adopt a pull model, but

by maintaining the tracking structure we ensure that finds are not global operations. We also discuss

how to implement this asynchronous query model using an underlying synchronous schedule for the

nodes.

The idea of scheduling nodes to transmit and listen in order to get energy effciency during data

gather operations has been explored before in the context of sensor database systems [16]. However,

in this paper we impose the schedules at the middleware level and not at the MAC layer. Moreover,

by scheduling based on the number of objects that send an update and are within an interference

range rather than the number of nodes within interference range, we are able to decrease the latency

introduced by scheduling.

5 Trunk

Trunk is a network service that executes a synchronous protocol for disseminating a global snapshot

of the system to all subscribers. The specification for trunk is of the form GetGlobalSnapshot(T,n),

where T is the interval at which the snapshots are required and n is the number of objects in the system.

8



Since the snapshot is required at a prespecified constant rate, the implementation for Trunk follows a

push model. Trunk exploits the knowledge of the period T and schedules the collection of individual

object snapshots and distribution of the global snapshot. By being synchronous, sensor nodes can sleep

unless they sense an object or it is their turn to listen or transmit object snapshots and thus is energy

efficient.

5.1 Description

Trunk assumes the existence of a time synchronization service and the notion of a global time. Recall

that the specification for the time synchronization service is of the form GetGlobalTime(). Each node

j stores the global time as j.t, that is continuously updated. For simplicity of explanation, let us assume

that the network has L = 2l + 1 clusters with l clusters on either side of the central clusterhead C.

This is shown in the following figure. Let j.pos denote the relative position of node j’s cluster with

respect to C. The value of pos ranges from −1 to −l one one side of C and 1 to l on the other side.

For nodes on the central cluster j.pos = 0. Let j.unbr denote the neighboring backbone node towards

the center and j.dnbr denote the neighboring backbone node away from the center. For non-backbone

nodes, j.upnbr in the nearest backbone node, the cluster head. If and only if a node j is an agent for

object i, a detectedi event is raised, and j.detectedi is atomically set.

The state of object i at any time t is denoted as statei(t). Node j’s view of the state of all objects

is given by j.snapshot. j.snapshot is the union of individual object snapshots. j’s view of snapshot

for object i is denoted as j.snapshoti. The timestamp of the snapshot is given by j.snapshoti(ts). An

object i’s view of the global snapshot is given by k.globalsnapshot. This is again the union of the

state of all objects in the system. Every subscribed object gets the global snapshot once at interval

boundaries sT where s is an integer, from its agent node at that instant.

The period T for the snapshot should be atleast long enough to accomodate an update period and

a wave period. During the update period, individual object updates are sent from the non backbone

nodes to the nearest backbone node. During the wave period, the backbone nodes gather their individual

snapshots and disperse to the subscribers.

We first describe the actions during an update period. When global time equals the start of the

update period, for all objects i for which j.detectedi is set, node j records the state of i in j.snapshoti.

During the update period, the non-backbone nodes within a cluster gather the snapshots within the

cluster and send to the backbone nodes. Since Trunk has knowledge that there are atmost n objects

in the system, n slots are reserved for the updates to be gathered among the non-backbone nodes and

sent to the backbone node. A non backbone node sets j.maxi as the highest id of the object for which

j.snapshoti is not null and sets itself as the leader. A node with j.maxi = p, sends j.snapshot to all

nodes in the cluster in the pth slot. Nodes in the cluster with j.maxi higher than p append this to their

9



snapshot and send it during their slot. Node with update for object with highest id in the cluster is

responsible for sending the snapshot to the nearest backbone node. We call this node the leader for the

cluster for that interval. Thus we ensure that in every period T , there is atmost one update message

to a backbone node. Note that the update period could be as small as a function of n′ where n′ is

the number of objects within a cluster at any time. This can be done with communication from the

application or with motion models for the objects. In Trunk we assume that all objects could be in the

same cluster at any time.

The gathered snapshots are sent to the backbone nodes in two slots. Since nodes within a cluster can

be heard at most one cluster away, there is no message interference during this process. Each backbone

node is thus awake for just one slot during the update period. The duration of each slot equals the

per-hop transmission period δ.

The wave period consists of two phases, a snapshot gathering phase and a snapshot dispersing

phase. Each backbone node has one slot to transmit in each of these phases. During the gathering

phase, snapshots from individual backbones are gathered starting from the nodes farthest from the

center and going towards the center. In any slot during this phase, two backbone nodes are scheduled

except the nodes one hop from C. Thus l + 1 slots are reserved for the gathering phase. C aggregates

all snapshots and initiates a dispersion phase. This message contains the global snapshot for the period.

l + 1 slots are reserved for this phase as well. Each backbone node is awake for atleast 2 slots and at

most 4 slots during the wave period.

All nodes that are agents for subscribed objects, listen to the dispersion message and communicate

it to the objects. Note that backbone nodes send a message during the snapshot gathering phase only

if they hear an update during that period from a non-backbone node or if they receive a snapshot from

the previous backbone node. Thus no messages are transmitted if there are no objects in the system.

Schedules within a period T are shown in the following figure. We now make the following definitions.

Figure 3. Schedule for nodes within an interval

Definition .2 (UpdateTime) UpdateTime is the time during an interval when the update gather-

ing process starts for the current interval. All nodes that are agents for objects, record the snapshot

atomically at this time. UpdateTime is same across all nodes.

10



Definition .4 (UpdateSendTime) j.UpdateSendT ime is the time during an interval in which the

leader for the cluster can send the aggregated snapshot to its clusterhead. Nodes in alternate clusters

have the same UpdateSendT ime.

Definition .5 (UpWaveTime) j.UpWaveT ime is the time during an interval in which a backbone

node j can send its local snapshot to its Up neighbor

Definition .6 (DownWaveTime) j.DownWaveT ime is the time during an interval in which a back-

bone node j can send the global snapshot to its Down neighbor

Definition .7 (LastUpdateTime) LastUpdateTime(t) at any time t, is the most recent UpdateTime.

It is calculated as follows: (t/T ) × T + UpdateT ime.

Based on the values of T , n, l, δ and j.pos, each node j calculates j.UpdateT ime, j.UpdateT imei,

j.UpdateSendT ime, j.UpwaveT ime and j.DownWaveT ime. Resetting the network with changes to

any of these parameters is a global operation and there exist self-stabilizing solutions for the same. The

Trunk protocol at node j is shown in Appendix 1.

5.2 Correctness

All nodes satisfy their local invariant I at all times t. I comprises the following conditions:

• I0: j.detecti is set iff node j is agent for object i.

• I1: If (j.snapshoti 6= ⊥) then

((j.snapshoti(ts) = LastUpdateT ime(t)) ∧ (j.snapshoti = statei(LastUpdateT ime(t))))

• I2: If (¬j.bb ∧ (((j.t%T ) < j.UpdateT ime) ∨ ((j.t%T ) > j.UpdateSendT ime)))

then j.snapshoti = ⊥

• I2bb: If (j.bb
∧

(((j.t%T ) < j.UpdateT ime) ∨ ((j.t%T ) > j.UpWaveT ime)))

then j.snapshoti = ⊥

We now state the global correctness properties for Trunk in terms of the following lemmas. These

are established from the program actions and the above local invariants.

Lemma 5.1 At any time t such that t%T = UpdateT ime, for every object i there exists only one node

j such that j.snapshoti = statei(t).

Proof: Only node is an agent for an object at any time and the node which is an agent at UpdateTime

records the state of that object.

11



Lemma 5.2 At any time t, for all objects i and all nodes j, (j.snapshoti = ⊥) Or (j.snapshoti(ts) =

LastUpdateT ime(t))

Proof: Since nodes record the snapshot for the interval at the same time, snapshot for all objects

are timestamped with LastUpdateTime(t).

Lemma 5.3 At any time, if there exist nodes j and k, such that for any object i, j.snapshoti 6= ⊥ and

k.snapshoti 6= ⊥, then it must be that j.snapshoti = k.snapshoti.

Proof: Only one node records the state for any object in a given interval. This is the state that is

passed through actions NBB1, NBB2 and BB1 among the different nodes. It is also seen from the

invariants that before the state of an object i is recorded in any interval in any node j, it must be that

j.snapshoti = ⊥.

From the above lemmas, local invariants and actions of the backbone nodes, we state the following

theorem.

Theorem 5.1 For any two objects k and p, at times sT where s is an integer, k.globalsnapshot is

equal to p.globalsnapshot and for all i in the range 1..n, k.snapshoti equals statei(LastUpdateT ime)

Proof: Since the global snapshot is sent from one single node, all nodes get the same global snapshot.

In a global snapshot, the snapshots for individual objects correspond to the same timestamp and each

snapshot is recorded by only node. Hence all subscribers get the same snapshot and the snapshot

corresponds to the state of the system at LastUpdateTime.

5.3 Performance

In this subsection, we characterize the performance of Trunk in terms of energy, latency and reliability.

Latency depends on the round trip time across the backbone of the network and the time required to

send the updates to the backbone nodes. Latency determines the staleness of the state of every object

in the global snapshot that is received by the objects in every interval.

Theorem 5.2 The state of every object i in the global snapshot k.snapshot received by object k in every

period T is stale by (L + n + 3)δ time.

In each slot in the wave period, two backbone nodes transmit except one hop away from the center.

the wave period takes (2l + 2) slots. Updates for n objects are gathered in n slots and sent to the

backbone in 2 slots. Hence the state of every object i in the global snapshot k.snapshot received by

object k in every period T is stale by (L + n + 3)δ time.

12



We now characterize the energy efficiency of Trunk in terms of the number of messages transmitted

by the nodes and the amount of time nodes have to be awake listening on the radio. Studies show that

listening on the radio is an energy consuming operation. Trunk exploits synchronicity to be energy

efficient.

Theorem 5.3 Backbone nodes listen on radio for (2δ/T )% of and transmit at most 2 messages in every

period T .

Theorem 5.4 All non backbone nodes j that have j.detecti set when j.t = UpdateT ime, listen on radio

for atmost (nδ/T )% of time.

5.4 Fault Tolerance

We now show that Trunk is self stabilizing to its invariant conditions starting from an arbitrary

state. I0 can be unsured by periodically checking if object i exists at j and by resetting j.detecti if not.

For stabilizing to I2 from an arbitrary state for j.snapshoti, a stabilizing action can be added that sets

j.snapshoti to zero befor UpdateTime in every interval. Once this action is implemented, then using

S1 and the above action, I1 is satisfied.

For message reliability in the network, Trunk schedules the transmissions in such a way that there is

no interference. Additional reliability for the messages can be implemented in one of the folowing ways.

An explicit acknowledgement scheme could be used with retransmission. Another scheme would be to

use an alternate backbone that supervises the regular backbone. An alternate backbone node on any

cluster overhears any message for the backbone node on the same cluster. If the regular backbone node

does not transmit at the scheduled time, the alternate backbone node transmits in the next slot. Both

these scheme result in increasing the width of a slot to 2δ. The latter scheme also handles permanent

failure of a backbone node.

Nodes can be added or removed maintaining the cluster properties. However changes in parameters

T , n or l have to be communicated to the entire network. The existing backbone itself can be used to

disseminate the new query.

5.5 Experimental Evaluation

In this section, we describe how we evaluate the performance of Trunk using kansei, a wireless sensor

network testbed.

Experimental Setup We use a network of 105 XSM-Stargate pairs in a 15x7 grid topology with 3ft

spacing in the Kansei testbed. The XSMs are attached to the stargate via serial port. The XSMs also

have a Chipcon radio. XSMs have a communication range of up to 40 ft and can interfere up to 60 ft

13



under full power. The communication range can be decreased to up to 9 ft but the interference range

could be higher. The statgates have a 802.11 wireless card and they are also connected via ethernet in

a star toplogy to a central PC. For convinience, let us number the rows 1..7 and columns 1..15 in the

testbed.

Implementation Details We let nodes on row 4 to be the backbone. We evaluate Trunk in two

different cluster settings. In the first setting, the 105 nodes are divided into five 3x7 clusters of 21

nodes each. In this setting, we can test trunk upto a scale of 5 clusters. Further, in order to test the

performance of Trunk over larger number of clusters, we vary the number of clusters up to 15 and in

all configurations with more than 5 clusters, there are 6 nodes per cluster.

In order to minimize interference, the nodes use varying power levels as described below. During the

update gathering phase, the non-backbone nodes use a power level high enough so that all nodes within

a cluster can hear each other. In this phase, since the nodes transmit based on the ids of the objects,

there is no interference. When sending the updates to the backbone, the non-backbone nodes switch

to a lower power level so that they can reach the backbone node. The backbone nodes operate at the

lowest power level while transmitting, since they need to reach the adjacent backbone nodes which are

9 feet away in 3x7 cluater setting and 3 feet in the 6 node cluster setting. Even under these reduced

power levels it is likely that there is interference during the update from non-backbone nodes to the

backbone or when the waves along the backbone approach the center.

We supply the object detection data to the network using an injector framework in the testbed. Using

this framwork, we emulate an underlying object detection and association layer in order to evaluate our

network services. We first describe how the object traces are obtained. 105 nodes were deployed in a

15x7 grid topology with 10m spacing at RichMond field station. Sensor traces were collected for objects

moving through this network at different orientations. Based on these traces, tracks for the objects are

formed using a technique described in [?]. These tracks are of the form ¡timestamp, location¿ on

a 140m × 60m network. These object tracks are then converted to tuples of the form ¡id, timestamp,

location, grid position¿ where grid position is the node closest to the actual location on the 15x7 network

and id is a unique identifier for each object. These detections are injected into the XSM in the testbed

corresponding to the grid position via the stargate at the appropriate time. This message corresponds

to the detectedi event for any object i. Similarly, a clear message is injected at the XSM corresponding

to the previous grid position, emulating the movedi message. Trunk is implemented in tinyOS and

downloaded on the XSMs using a programming interface provided by Kansei. Trunk accepts the length

of the network, the snapshot period and the number of objects as parameters. These parameters can

be injected using the trace injector framework, thus enabling the evaluation of Trunk under different

parameters. The location of a node in terms of its grid position is also injected using the same injector

framework. Based on the parameters injected and the per-hop transmission time, Trunk calculates

14



the schedules for transmitting, listening and taking a local snapshot. The per-hop transmission time

is conservatively chosen to be 30 mS based on packet transmission experiments. Using the locations

injected, a node also determines its in-neighbor and out-neighbor.

Performance: We now describe the experimental evaluation of Trunk in terms of its reliability and

latency. The round trip time along the backbone for Trunk depends only on the length of the backbone

network and not on the number of objects. The round trip time is measured at the farthest backbone

node for clusters of different length. Since the nodes schedule their transmissions based on the per-hop

transmission time, as shown in the Fig. ??, the round-trip time increases linearly with the number of

clusters and there is little variance.

The staleness of a global snapshot received by an object depends on the length and the number of

objects in the network. This is shown in Fig. ??. This is measured by injecting object detection traces

obtained from richMond Field station and recording the global snapshots received at nodes in different

clusters along the backbone.

We characterize the reliability of Trunk in the following way. Consider an object farthest from the

center. Either the snapshot for a particular object or set of objects could be lost or the entire global

snapshot could be lost in the network and not received at the farthest cluster from the center. Both

these loss ratios are shown in Fig. ??, as the length of the network increases. The loss ratios are over

500 snapshot intervals and 6 objects in the network. These losses could occur due to interference in

the following ways. Either the updates sent from non-backbone nodes to the backbone nodes interfere

because 2 hop seperated backbone nodes are within interference range or the messages interfere with

low frequency time synchronization beacon messages. The former is reduced by increasing the number

of slots for sending updates from non-backbone to backbone nodes to 3. The reduced loss rates are

shown in Fig. ??.

Figure 4. Average Round Trip Time and Staleness in Trunk

15



(a) 2 Update Slots to backbone (b) 3 Update Slots to Backbone

Figure 5. % of Snapshots Lost in Trunk

5.6 Using Trunk for Pursuer Evader Tracking Applications

In a multiple pursuer multiple evader tracking system, often pursuer applications require a consistent

global snapshot of all objects, pursuers and evaders, in order to make an optimal assignment of pursuers

and evaders. Trunk can be used to deliver consistent snapshot at regular intervals with bounded staleness

in the states of all objects. Nodes in the network that are agents for a pursuer listen to the global

snapshot message at the appropriate slot depending upon their location, and send the message to the

objects.

6 Trail

In this section, we describe Trail, a network service for tracking mobile objects, in a local and

distance sensitive manner. Trail offers the following interface: where(objecti,objectp), that returns

the location of object i at the current location of the object p, issuing the query. By local we mean

that communication region is bounded by the location of the application isuing the query and the

object being tracked. Trail answers the where queries in time proportional to the distance between the

objects. To implement the function, Trail maintains a tracking data structure by propogating mobile

object information obtained through detectedp and movedp. We first describe how the tracking data

structure is maintained when the objects move.

6.1 Tracking Data Structure:

There exists a trail or a path for every object in the system from its current location to the center.

Each process j in the system maintains pointers ci and pi for every object i in the system. Initially

16



j.pi and j.ci equals ⊥ for all i and j. The trails are established and maintained by means of grow and

clear messages.

When a detectedi event is raised at any process j, if a path to object i exists at j, then a clear

message is sent along that path and j sets ci to point to itself. If a path to object i does not exist at j,

then j sets pi to point to itself and sends a grow message towards the center and sets j.pi to its parent

along the path. When a movedi event is raised at any process j, j simply sets ci and pi to ⊥.

The grow message propogates setting ci towards the object until it either reaches the center or

reaches a process k at which k.ci is not . When it reaches a process k at which k.ci is not ⊥, a clear

message is sent to k.ci and k.ci is set to the source of the grow message.

The clear message removes the old path to the object by following ci and setting pi and ci to ⊥

along all processes in the path. We assume that the mobile object does not relocate until an update is

completed. The algorithm for maintaining the tracking data structure is shown in guarded command

notation in appendix 2.

Correctness: In the absence of faults, every node j satisfies invariant I comprising the following

conditions at all times:

• I1: Iff j is agent for object i, j.ci = i

• I2: If j.ci! = NULL, then j.pi! = NULL or j will send a grow towards center and set j.pi

• I3: If j.pi! = NULL, then (j.pi).ci = j or j.pi has sent a clear message to j

• I4: If j.ci = NULL, then j.pi = NULL

A tracking path for an object i is a sequence of nodes (j1, .., jx, ..., C), such that j1.ci = i and j1 is

the agent for object i at that instant and every other node ci points to a node that is closer to object i.

A consistent state for the system with respect to an object i is one in which a tracking path exists and

j.pi = NULL for every process j not in the sequence.

Following the program actions and invariant condition I1, I2 and I4, we can derive the following

lemmas.

Lemma 6.1 Starting from an initial state, if detectedi occurs at any node j, then the system reaches

a consistent state.

Lemma 6.2 If movedi occurs at any node j then j.ci = NULL and eventually there exists no process

k such that j = k.ci.

17



Proof: Without loss of generality, let p be the node where detectedi occurs, when movedi occurs at

node j. Node p will send a grow message. In dist(p, j) × δ time, a clear message will be received at

node j. At this time, there will be no process k such that j = k.ci.

Lemma 6.3 Starting from a consistent state, when an object i moves distance d, a consistent state is

reached in dist(p, j) × δ time where p and j are the new and old agents for object i respectively.

Lemma 6.4 Starting from a consistent state, when an object i moves distance d, the number of mes-

sages exchanged to update the tracking structure to a consistent state is dist(p, j, where p and j are the

new and old agents for object i respectively.

Stabilization: Trail is an asynchronous protocol and the nodes are not scheduled to transmit such

that collisons are avoided. Update operations for multiple objects could happen in parallel. Therefore

the network can drop messages and lead the system to an arbitrary state despite reliability imposed at

the communication layer. Arbitrary states are also possible when some processes restart. We now state

stabilization actions for re-establishing the invariant conditions starting from an arbitrary state.

I1 is established trivially by detectedi event. Conditions I2 and I4 can be re-stablished by local

correction. For condition I3 we use periodic heartbeat messages. Every node that has a valid pi sends

out a heartbeat message. If a node j has a valid pi, but j.pi does not point to j, then this situation

is corrected. Thus broken paths are re-established. The periodic heartbeat messages also serve to

remove dead paths as shown in the following figure. If a process does not hear a grow message although

j.ci is valid, j sends a delete message towards the center. The stabilizing actions are s1, s2 and s3 as

shown in the figure.

6.2 Locating an object

We now describe how Trail responds to queries of the form where(objecti,p), where p is the client

object that initiated the query. When a node receives a where message, if j.ci! = NULL, j sends the

message to j.ci or else the message is sent towards the center. We now state the following lemmas:

Lemma 6.5 If the object i exists in the network, the trail of object i is met in at most dist (k.agent, C)

hops.

The object i is said to be located when the where(objecti,p) message reaches process r such that

r.ci = i. By virtue of the tracking data structure we can show the following theorem:

Theorem 6.1 When there are no object updates in the system and the system is in a consistent state,

the object i is located in d hops where d = dist(k.agent, i.agent)

18



In case object data structure is being updated, the where(objecti,p) message can reach a process

r such that r.ci = NULL, which reflects a previous location of the object i. In this case, the return

value can be the earlier location or NULL depending upon the application requirement.

Once the object is located, the reply to where(objecti,p) message is propogated through the

here(i,p) message along the path to object k.

For any two objects i and j, recall that dist(j.agent, p.agent) is propotional to the physical distance

d between the two objects. Thus we have the following theorem.

Theorem 6.2 The latency between an object k issuing a where(objectk,p) to Trail and receiving a

here(k,p) from Trail is proportional to the distance between objects k and p.

Stabilization Action Stabilizing actions for locating object i is implemented using a timeout at

k.agent, the agent of the object sending the query. After the timeout, the agent re-issues the query.

The timeout is chosen according to the network diameter and δ, the per hop transmission time. Note

that if object k moves, the state of k is transferred to the new agent and hence the timeout value as

well.

6.3 Experimental Evaluation

In this section, we describe the performance of Trail using experiments conducted in Kansei. The

experimental setup in the testbed is as described in the section on Trunk. We evaluate the performance

of Trail udnder different scaling factors such as increasing number of objects, higher speed of objects

and higher query frequency in terms of the reliability and latency offered to the application.

The clusters are of size 7. The backbone nodes operate at a power level by which they can reach

3 feet reliably while the non-backbone nodes operate at a power level sufficient to reach the backbone

node. Note that at these power levels, there can be interference with other messages, and Trail operates

asynchronously with no scheduling to prevent collisions. Hence, we implement an implicit acknowledge-

ment mechanism at the communication layer for per hop reliability. The forwarding of a message acts as

acknowledgment for the sender. If an acknowledgment is not received, then messages are retransmitted

for upto 3 times.

We evaluate Trail with 2, 4, 6 and 10 objects, always in pairs. One object in each pair is the object

issuing where query (say tracker) and the other object is the object being found (say trackee). In each

of this scenario, we consider query frequency of 1 Hz, 0.5 Hz, 0.33hz and 0.25Hz. The object speed

affects the operation of Trail in terms of the rate at which grow and clear messages are generated. We

consider 2 different object update rates, one in which objects generate an update every 1 second and

other in which they generate update every 2 seconds. Considering that the object traces were collected

19



Figure 6. Latency and Reliability of Trail (2 Objects, Query frequency 1 Hz)

Figure 7. Latency and Reliability of Trail (2 Objects, Object Update Frequency 0.5 Hz)

with humans walking across the network acting as objects with average speed of aout 1m/s, object

update rates of 1Hz and 0.5Hz enable a tracking accuracy of 1m and 2m respectively. Note that each

update can generate multiple grow and clear messages.

In the 4, 6 anfd 10 objects scenario, we consider a likely worst case distribution of the objects where

all trackers are in the same cluster and all objects being found are also in the same cluster. Moreover,

as PEG application requirmeents suggest [4], the query frequencies depend on relative locations and are

lesser when objects are far apart, but we consider all objects issuing queries at the same frequency.

The following figure shows the latency and loss for find operations when the objects are generating

one update per second and one update per two seconds. The query frequency is 1 Hz. The latencies

are measured at the node issuing the where and is the time elapsed between a where message being sent

and a here message received. If the replies are not received before the query period elapsed, then the

message is considered lost. The loss percentages are based on 100 where queries at every distance and

the latencies are averaged over that many readings.

In the following figures, we show the reliability and latency of Trail with 4, 6 and 10 objects under

different query frequencies with object update rate of 0.5 hz.

6.4 Using Trail for Pursuer Evader Tracking Application

In this subsection, we describe how trail is used by a multiple pursuer, multiple evader tracking

application. In this case, the mobile objects are pursuers and evaders. We use Trail to support a pursuer

evader tracking application called Intruder-Interceptor game [4]. In this application the objective of the

20



interceptors is to maximize the distance of intruders from a valuable asset and the objective of intruders

is vice-versa. One possible solution for this game is described in [4] where each interceptor is assigned

to one intruder and there are critical requirements for the rate at which interceptors get data about

their assigned intruders in order to meet the objective. The assignment of pursuers to evaders can be

done optimally using a network service like trunk or trail could be used to assign intruders to nearest

free interceptors. The design of the function in Trail to find nearest objects that satisfy certain criteria

can be found ina related technical report and is not discussed here.

Once the interceptors have been assigned to intruders, the tracking can be done using where(object

i, object p) function of Trail. Interceptors request information about intrusers at different frequencies

depending upon their relative location and require information at higher frequency as they get closer.

As seen in the evaluation section, the latency and reliability improves as objects get closer even at

higher frequencies of queries.

7 Synchronous Trail

Although Trail can find the location of mobile objects in time and work proportional to distance

from the object, it follows an asynchronous model for the queries for which the radios of nodes in the

network have to be always awake to support the queries. This is an energy consuming operation. In

this section we describe Synchronous Trail, a network service in which the find and move operations

are exactly like in Trail, but the network operates synchronously. We thus gain energy efficiency. We

evaluate how the latency of where operations is affected.

Description: The network of length L is divided into smaller segments of l clusters each. In

alternate segments, message waves are schduled along the backbone in both the directions. In those

segments where the backbone waves are not scheduled, messages are aggregated from the non-backbone

nodes and sent to the backbone nodes in a procedure similar to Trunk. At the end of the backbone wave

time in a given segment, the aggregation is performed in the segment and the backbone wave moves to

the neighboring segments. This is illustrated in Fig. 8.

We now analyze what is the minimum required l so that the backbone waves can proceed to the

neighboring segments without incurring a delay at segment boundaries and still not interfere with the

aggragation in the neighboring segment. Recall from our analysis in Trunk that the time required for

a wave to traverse a segment of length l in both directions is l + 4 slots. This is taking into account

the staggering required at the center of the segment. We require that the updates in the neighboring

segment be completed before the wave enters the comunication range of the neighboring segment so

that the waves do not incur a wait at the boundary of the segments. If there are n objects in the system,

the time required to send the aggregate for n objects from non-backbone nodes to the backbone is n+2

slots. Thus we require that l+2 > n+2 or l > n in order for the waves to not incur a wait at boundary

21



segments.

Figure 8. Synchronous Trail Operation

However, it is a conservative choice for the segment size to depend on the total number of objects

in the system. Instead, if we assume an upper bound on the number of objects within a region, we can

decrease the required segment size l.

Lemma 7.1 The minumum required segment size for the backbone waves to not incur a wait at the

segment boundaries is the smallest number l such that there are at most n′ objects in l clusters and

n′ < l.

For example, if it is known that there can be at most 2 objects within one cluster, it is not suficient

to satisfy the condition stated in the above lemma. However, if it is known that there can be atmost

3 objects within any region of 4 consecutive clusters, then we can satisfy the condition stated in the

above lemma and l can be 4 or more.

We also note that in general, if f(n′) is the number of slots required to aggregate messages for n′

objects from a non-backbone node to a backbone node, then l + 2 > f(n′).

We now analyze the energy and latency aspects of Synchronous Trail. The analysis for energy is

similar to Trunk. Each backbone node is awake for 1 slot in the backbone wave time to listen to

aggregated message from non-backbone node, 2 slots for listening to wave message from neighboring

backbone and at most 2 slots to transmit to neighboring backbone node. The central backbone node

in every segment is awake for 4 slots per wave time to listen and at most 2 slots for transmitting.

We now analyze the latency. The messages that are being transmitted are the messages for Trail

including where, here, grow, and clear. In trail, the latency is equal to the transmission time from source

to destination and is proportional to the number of hops. In Synchronous Trail, the proportionality is

maintained but due to the synchronous operation, each message incurs three additonal types of delay,

aggregation delay, pickup delay and center delay. The aggregation delay is the time required to send a

message from non-backbone to a backbone node. This is a fixed delay of l + 2 time slots. The pickup

22



delay is illustrated in the following figure. Depending on the position of a node within a segment, this

delay is between 1 and l. The center delay is the delay introdced due to staggering of the messages at

the center. This delay is 2 hops for every segment that the message passes through. Hence we can state

the following lemma.

Figure 9. Pickup Delay after Aggregation to the Backbone

Lemma 7.2 The latency for a query where(objecti,objectp) is given by Eq. 1, where l is the number

of clusters per segment, s is the number of segments that the the find query passes through and dist(x,y)

is the hop distance between nodes x and y.

Latency = 2 × (dist(i.agent, p.agent) − 2 + (l + 2) + l + 2s) (1)

= 2 × (dist(i.agent, p.agent) + 2l + 2s) (2)

Thus, we see that there are energy latency tradeoffs involved with the choice of the length of each

segment. As the length of each segment increases, the latency increases but we also get increased energy

efficiency as each backbone node can sleep for longer.

We leave the experimental evaluation of the latency and reliability of Synchronous Trail for future

work.

8 Conclusions and Future Work

References

[1] A. Arora, R. Ramnath, E.Ertin, S. Bapat, V. Naik, and V. Kulathumani et al. Exscal: Elements of an extreme
wireless sensor network”. In The 11th International Conference on Embedded and Real-Time Computing
Systems and Applications, 2004.

[2] Anish Arora, Prabal Dutta, Sandip Bapat, and Vinodkrishnan Kulathumani et al. A line in the sand: A
wireless sensor network for target detection, classification, and tracking. Computer Networks, Special Issue
on Military Communications Systems and Technologies, 46(5):605–634, July 2004.

[3] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the Associsation for Computing
Machinery, 42:1021–1058, 1995.

[4] H. Cao, E. Ertin, V. Kulathumani, M. Sridharan, and A. Arora. Differential games in large scale sensor
actuator networks. Technical report, The Ohio State University, 2005.

23



[5] S. Dolev, D. Pradhan, and J. Welch. Modified tree structure for location management in mobile environments.
In INFOCOM, pages 530–537, 1995.

[6] E.Ertin, A.Arora, V.Kulathumani, and S.Bapat. Hybrid sensor network experiment with osu kansei testbed.
In Fourth International Conference on Information Processing in Sensor Networks, 2005.

[7] C. Intanogonwiwat, R. Govindan, D. Estrn, J. Heidamann, and F. Silva. Directed diffusion for wireless
sensor networking. IEEE Transactions on Networking, 11(1):2–16, 2003.

[8] Xin Liu, Qingfeng Huang, and Ying Zhang. Combs, needles, haystacks: Balancing push and pull for discovery
in large-scale sensor networks. In ACM Sensys, 2004.

[9] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The design of an acquisitional query processor
for sensor networks. In SIGMOD, 2003.

[10] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.Shenker. Ght: A geographic hash
table for data-centric storage. In Wireless Sensor Networks and Applications (WSNA), 2002.

[11] S.Bapat, V. Kulathumani, and A.Arora. Analyzing the yield of exscal, a large scale wireless sensor network
experiment. In 13th IEEE International Conference on Network Protocols, 2005.

[12] S.Bapat, V. Kulathumani, and A.Arora. Reliable estimation of influence fields for classification and tracking
in an unreliable sensor network. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS), 2005.

[13] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric storage in sensornets. In First
ACM SIGCOMM Workshop on Hot Topics in Networks, 2002.

[14] J. Shin, L. Guibas, and F. Zhao. A distributed algorithm for managing multi-target indentities in wireless
ad hoc networks. In Second International Conference on Information Processing in Sensor Networks, 2003.

[15] B. Sinopoli, C. Sharp, L. Schenato, and S. Sastry. Distributed control applications within sensor networks.
In Proceedings of the IEEE, volume 91, pages 1235–46, Aug 2003.

[16] A. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Wavescheduling: Energy efficient data
dissemination for sensor networks. In International Workshop for Data Management in Sensor Networks,
2004.

24



Protocol Trunk at node j
Constant n : number of objects
Var j.snapshoti : state of object i at node j

j.globalSnapshoti : state of object i at node j in global snapshot
j.leader : boolean
j.detecti : boolean

Actions

〈S1〉 :: j.detecti ∧ ((j.t%T ) = UpdateT ime) −→
j.snapshoti = statei(j.t);
if (¬j.bb)

j.leader = true;
j.maxi = maxi(j.snapshoti 6= ⊥)

fi;
[]
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Actions at non-backbone nodes

〈NBB1〉 :: (j.leader) ∧ ((j.t%T ) = UpdateT imej.maxi) −→
sendj (j.snapshot);

[]
〈NBB2〉 :: (j.leader = true) ∧ recvk(m) ∧ (j.clid = k.clid) ∧ ((j.t%T ) = UpdateT imep) −→

if (j.maxi > p)
Update j.snapshot

[]
(j.maxi < p)

j.leader = false;
∀isetj.snapshoti = ⊥)

fi;
[]
〈NBB3〉 :: (j.leader) ∧ ((j.t%T ) = j.UpdateSendT ime) −→

sendj,j.unbr (j.snapshot);

leader = false;
[]
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Actions at backbone nodes

〈BB1〉 :: recvj.dnbr,j(m) −→
Update j.snapshot

[]
〈BB2〉 :: (∃i : (j.snapshoti 6= ⊥)) ∧ ((j.t%T ) = UpWaveT ime) −→

sendj,j.unbr (j.snapshot)
∀i : setj.snapshoti = ⊥;

[]
〈BB3〉 :: recvj.unbr,j(m) −→

Update j.GlobalSnapshot
[]
〈BB4〉 :: (∃i : (j.GlobalSnapshoti 6= ⊥)) ∧ ((j.t%T ) = DownWaveT ime) −→

sendj,j.dnbr (j.GlobalSnapshot);
[]
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Reset Global Snapshot

〈RS1〉 :: ((j.t%T ) = 0) −→
∀i : (j.detecti) sendj,i (j.GlobalSnapshot)
∀i : setj.GlobalSnapshoti = ⊥

Figure 10. Trunk: Network Service for Global Snapshots to Mobile Objects

25



Protocol Trail at node j
Var

j.ci : pointer to object i
j.pi : pointer away from object i
j.detecti : boolean

Actions

Track Update Actions

〈U1〉 :: j.detecti −→
j.ci = i;
if (¬j.center)

sendj,j.unbr (grow(i);
j.pi = j.unbr

fi;
[]
〈U2〉 :: recvk,j(grow(i)) −→

if (¬j.ci)
send(j, j.ci) (clear(i);
j.ci = k;

[]
(j.ci = ⊥)
j.ci = k;
sendj,j.unbr (grow(i);
j.pi = j.unbr

[]
〈U3〉 :: recvk,j(clear(i)) −→

if (6 j.ci)
send(j, j.ci) (clear(i);
j.ci = ⊥;
j.pi = ⊥;

fi;
[]
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Stabilizing Actions for Track Updates

〈S1〉 :: (j.pi 6= ⊥) ∧ (j.time − j.SendHbT imeouti = HeartBeatT ime) −→
sendj,j.p (hearbeati);
j.SendHbT imeouti = HeartBeatT ime

[]
〈S2〉 :: recvk,j(heartbeati) −→

j.ci = k;
j.pi = j.unbr;
j.ReceiveHbT imeouti = HeartBeatT ime

[]
〈S3〉 :: (j.ci 6= i) ∧ (j.ci 6= ⊥) ∧ (j.time − j.ReceiveHbT imeouti = HeartBeatT ime) −→

j.ci = ⊥; []
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Actions for Finding Object

〈F1〉 :: recvk,j(where(i, p)) −→
if (j.ci 6= ⊥∧ j.ci 6= i))

sendj,j.ci
(where(i,p))

[]
(j.ci = i) ∧ (j.cp 6= ⊥)
sendj,j.cp

(here(state(p),i))
[]

(j.ci = i) ∧ (j.cp = ⊥)
sendj,j.unbr (here(state(p),i))

[]
(j.ci = ⊥)
sendj,j.unbr (where(i,p))

fi;
〈F1〉 :: recvk,j(here(state(i), p)) −→

if (j.cp 6= ⊥ ∧ j.cp 6= p))
sendj,j.cp

(here(state(i),p)
[]

(j.cp = p)
sendj,p (here(state(i),p))

[]
(j.cp = ⊥)
sendj,j.unbr (here(state(i),p))

fi;

Figure 11. Trail: Network Service for Tracking Mobile Objects

26


