
Fast Mining of Distance-Based Outliers in High Dimensional Datasets∗

Amol Ghoting, Srinivasan Parthasarathy, and Matthew Eric Otey

Department of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210, USA.

Contact email: srini@cse.ohio-state.edu

November 9, 2005

Abstract

Defining outliers by their distance to neighboring data
points has been shown to be an effective non-parametric
approach to outlier detection. In recent years, many re-
search efforts have looked at developing fast distance-
based outlier detection algorithms. Several of these ef-
forts report log-linear time performance as a function
of the number of data points on many real life low di-
mensional datasets. However, these same algorithms
are unable to obtain the same level of performance on
high dimensional data sets since the scaling behavior is
exponential in the number of dimensions. In this paper
we present RBRP, a fast algorithm for mining distance-
based outliers, particularly targeted at high dimensional
data sets. RBRP is expected to scale log-linearly, as a
function of the number of data points and scales linearly
as a function of the number of dimensions. Our empiri-
cal evaluation verifies this expectancy and furthermore
we demonstrate that our approach consistently outper-
forms the state-of-the-art, sometimes by an order of
magnitude, on several real and synthetic datasets.

Keywords: Outlier detection, high dimensional
datasets, approximate k-nearest neighbors, clustering.

1 Introduction

A common problem in data mining is that of automati-
cally finding outliers or anomalies in a data set. Outliers
are those points that are highly unlikely to occur given
a model of the data. Since outliers and anomalies are
rare, they can be indicative of bad data, faulty collec-
tion, or malicious content. Recently, researchers have
applied outlier detection to tasks such as data cleaning
[9], fraud detection [7], and intrusion detection [16].

There are several approaches to outlier detection.
One approach is that of model-based outlier detection,
where the data is assumed to follow a parametric (typi-

∗This work is supported in part by NSF grants CAREER-
IIS-0347662 and NGS-CNS-0406386.

cally univariate) distribution [2]. Such approaches do
not work well in even moderately high dimensional
spaces and finding the right model is often a difficult
task in its own right. To overcome these limitations,
researchers have turned to various non-parametric ap-
proaches that use a point’s distance to its nearest neigh-
bor as a measure of unusualness [1, 13, 14].

Distance-based outlier detection has proven to be
an effective non-parametric approach. However, the
process is time consuming. The nested loop (NL)
algorithm [13] typically requires O(N 2) time, where N is
the numbers of data points. This quadratic dependency
in the number of data points (N) restricts the use of the
NL algorithm on large data sets with millions of points.

To overcome this problem, in the past few years,
researchers have proposed several algorithms to effi-
ciently find distance-based outliers. Solutions range
from the use of spatial index structures for fast nearest

neighbor computation to partitioning the feature space
with clustering [14]. Unfortunately, these approaches
do not scale well with the number of dimensions [4, 13].
Consequently, for high dimensional data sets, solutions
based on the simple NL algorithm are known to provide
the best performance. Bay and Schwabacher [4] have
shown that coupled with data randomization and a sim-
ple pruning rule, the NL algorithm provides the best
known performance on large, high-dimensional data
sets. While the worst case complexity of the NL algo-
rithm continues to be O(N2), on several real and syn-
thetic data sets, their approach achieves a complexity
that is sub-quadratic (often well below quadratic but
not quite log-linear), in the number of data points. Al-
though their strategies do result in a significant reduc-
tion in computation, execution time does not scale lin-
early with the data set size, and the process can still be
very time consuming.

In this paper, we further improve the scaling be-
havior of distance-based outlier detection on large high
dimensional data sets. Specifically, we make the follow-

ing contributions:

• We study the conditions under which the state-of-
the-art distance-based outlier detection algorithm
(due to Bay and Schwabacher [4]) is unable to
provide near-linear time performance.

• We present a two phase algorithm for fast mining
of distance-based outliers. In the first phase, the
data set is pre-processed into bins such that points
that are close to each other in space are likely to be
placed in the same bin. This facilitates fast conver-
gence to a point’s approximate nearest neighbors.
As we shall see, improving the performance of the
NL algorithm only requires fast determination of a
point’s approximate nearest neighbors, and not its
nearest neighbors. In the second phase, an exten-
sion of NL algorithm that operates over bins is used
for fast determination of outliers.

• We demonstrate that our algorithm scales well
to high dimensional data sets with millions of
data points. Furthermore, we show that our al-
gorithm outperforms the state-of-the-art distance-
based outlier detection algorithm, sometimes by
over an order of magnitude.

The rest of this paper is organized as follows. In
Section 2, we present a background on state-of-the-
art distance-based outlier detection. In Section 3,
we present the shortcomings of the state-of-the-art,
which is followed by RBRP, our two-phase outlier
detection algorithm. We evaluate the performance of
our algorithm in Section 4. Finally, we conclude in
Section 5.

2 Distance-Based Outlier Detection

In distance-based outlier detection, one typically looks
at the local neighborhood of a data point to find its
nearest neighbors. If the nearest neighbors are relatively
close, then the data point is considered to be normal,
otherwise it is considered to be an outlier. The key
benefit of defining outliers based on their neighborhood
is that no parametric distribution needs to be defined to
measure unusualness. The following are three popular
definitions of distance-based outliers:

• Outliers are the data points for which there are
fewer that p other data points within distance d

[13].

• Outliers are the top n data points whose distance
to the kth nearest neighbor is greatest [14].

• Outliers are the top n data points whose average
distance to the k nearest neighbors is greatest [1].

While there are several minor differences between
these definitions, all these definitions use the nearest
neighbor density estimate to determine if a point is
an outlier. Researchers have developed a variety of
approaches to find these outliers efficiently. Some
approaches make use of KD-trees [5], R-trees [10], or X-
trees [6] to find the nearest neighbors of each candidate
point. These index structures are extremely efficient in
finding the k nearest neighbors of a data point. Outlier
detection algorithms that make use of these index
structures can potentially scale as O(NlogN), if one can
find the k nearest neighbors of a data point in O(logN)
time. However, the time required to search through
these index structures scales exponentially with the
number of dimensions. Consequently, their usefulness
is constrained to low dimensional spaces. Similarly,
researchers have proposed partitioning the space into
regions [13, 14], which allows for fast determination of
nearest neighbors. These approaches are also affected
by the curse of dimensionality and do not scale to high
dimensional data [4].

The simple nested loop (NL) algorithm is known to
give the best performance in high dimensional spaces
[13]. The algorithm, in its simplest form, is presented
in Table 1. The main idea in the NL algorithm is that
for each data point in D, we keep track of its k closest
neighbors as we scan the data set. When a data point’s
kth closest neighbor has a distance that is less than
the cutoff threshold, c, the data point is no longer an
outlier, and we can proceed with the next data point.
As we process more data points, the algorithm finds
more extreme outliers, and the cutoff increases giving
us improved pruning efficiency.

The state-of-the-art distance-based outlier detec-
tion algorithm, ORCA [4], uses the NL algorithm with
a preprocessed data set. ORCA randomizes the data
set (D) in linear time with constant amount of memory
using a disk-based shuffling algorithm. This random-
ization allows the NL algorithm to process non-outlier
points, which are the large majority, relatively quickly.
The authors report sub-quadratic time performance (of-
ten well below quadratic but not quite log-linear) on
several real and synthetic data sets.

3 Outlier Detection Algorithm

Before we present our outlier detection algorithm,
we first attempt to characterize the shortcomings of
ORCA.

3.1 Shortcomings of ORCA For expository sim-
plicity, let us assume that we are interested in finding
the top n outliers in a data set, where an outlier’s score
is equal to its distance from its nearest neighbor. Let

Procedure: Find Outliers
Input: k, the number of nearest neighbors; n, the number of outliers to be returned; D, the set of data points.
Output: O, the set of outliers.
begin

c = 0 (c is the cutoff threshold)
O = {}
for each d in D

Neighbors(d) = {}
for each b in D such that b 6= d

if |Neighbors(d)| < k or Distance(b, d) < Maxdist(d, Neighbors(d))
Neighbors(d) = Closest(d, Neighbors(d) ∪ b, k)

endif
if |Neighbors(d)| ≥ k and c > Distance(b, d))

break
end if

end for
O = TopOutliers(O ∪ b, n)
c = MaxThreshold(O)

end for
end
Note:

Maxdist(d, S) returns the maximum distance between d and an element in set S

Closest(d, S, k) returns the k nearest elements in S to d

TopOutlier(S, n) returns the top n outliers in S based on the distance to their kth nearest neighbor
MaxThreshold(S) returns the distance between the weakest outlier in S and its kth nearest neighbor

Table 1: The Simple Nested Loop Algorithm

us examine the number of distance computations that
are required to process a data point (say x) that is not
an outlier. One can think of this problem as a set of
independent Bernoulli trials where one keeps drawing
instances until one has a single success (one data point
within the cutoff threshold). Let Π(x) be the probabil-
ity that a randomly selected data point lies within the
cutoff threshold. Let Y be a random variable represent-
ing the number of trials required until we have a single
success. The probability of obtaining a success on trial
y, P (Y = y), is given by:

P (Y = y) = Π(x) × (1 − Π(x))(y−1)(3.1)

Therefore, the expected number of distance computa-
tion for the data point (x) that is not an outlier is given
by:

E[Y] =

N∑

y=1

P (Y = y) × y =
1

Π(x)
(3.2)

In order to achieve near-linear time scaling behavior,
the expected number of distance computation for a data
point, E[Y], must be a constant. While the cutoff
threshold, c, is expected to increase as more data points
are processed, on average Π(x) must be constant. This
is the central premise behind ORCA’s near-linear time

performance. However, as we shall see next, this does
not always hold.

Again, for simplicity of explanation, let us assume
that we have N uniformly distributed data points in an
area of size

√
N ×

√
N . We seek to answer the following

question: If we pick a point x randomly in this area,

what is the expected value of the cutoff threshold, c, such

that Π(x) will be constant? Intuitively, for Π(x) to be
constant, the area of the circle with radius = c and
center = x, πc2, should scale as O(N). In other words,
c should scale as O(

√
N). Thus, when N data points

are uniformly distributed in a
√

N×
√

N , for near-linear
time performance, ORCA requires the cutoff threshold
to scale as O(

√
N). It is hard to expect the cutoff

threshold to converge to such a large value quickly,
not just for a uniformly distributed data set, but for
any arbitrary data set. In summary, the limitations of
ORCA are:

• It delivers near-linear scaling behavior only when
the cutoff distance can quickly converge to a large
value such that Π(x) is a constant. This can occur
only when the data set has a large number of
outlying points, not just a few, such that the cutoff
is raised high, relatively quickly. When the data
sets consist of a mixture of a few distributions, with

not so many outlying points, ORCA’s complexity
is near quadratic [4].

• The number of comparisons needed per data point
is still dependent on N , and is not a constant factor.
Empirically, the authors show that the number
of comparisons needed per data point shows sub-
linear growth, and in some cases near-constant
growth, in the number of data points, depending
on the data set.

3.2 RBRP As pointed out in Section 2, in order to
find distance-based outliers using the NL algorithm, one
needs to find k data points that are within the cutoff
threshold, c. We call these k data points approximate

nearest neighbors. The key to fast outlier detection is
to find the k approximate nearest neighbors of a data
point in the shortest amount of time possible. This goal
is different from most existing approaches that attempt
to find the k nearest neighbors efficiently, which is more
expensive. To tackle the shortcomings of ORCA and
other existing approaches, we now present RBRP (Re-
cursive Binning and Re-Projection), an algorithm for
fast mining of distance-based outliers in high dimen-
sional data sets. RBRP, like ORCA, finds the top n

outliers in the data set whose distance to the kth nearest

neighbor is the greatest.

RBRP leverages the fact that one can determine
the k approximate nearest neighbors of a data point
in time that scales as O(NlogN × d), where d is the
dimensionality of the data. RBRP is a two-phase
algorithm. Figure 1 depicts the two phases of the
algorithm. In the first phase, we recursively partition
the data set into groups that are less than some user-
defined size. We call these groups bins. Furthermore,
within each bin, data points are reordered according to
their projection along the principal component of the
points in the bin. Phase 1 scales as O(NlogN × d)
and allows us to efficiently find approximate nearest
neighbors. In the second phase, we use an extension of
the NL algorithm that finds outliers in a data set that
is partitioned into bins. Phase 2 scales as O(N × d)
in the average case, as we expect to find approximate
nearest neighbors of a data point in constant time.
Consequently, RBRP scales as O(NlogN × d). We will
describe the two phases of RBRP next.

3.2.1 Phase 1 The goal of the first phase of RBRP

is to partition the data set into bins such that points
that are close to each other in space are likely to
be assigned to the same bin. One natural candidate
to generate such bins is to cluster the data using an
algorithm such as K-means [11] to find a large number
of small clusters. Each of the clusters can constitute

a bin. However, this process requires us to specify
the number of clusters, and does not guarantee equal-
frequency binning, making it ineffective for our uses.
Another possibility is to use a clustering algorithm such
as BIRCH [17]. This is in some senses similar to the
approach proposed by Ramaswamy et al. [14]. However,
this approach will not scale to high dimensional data.

Our approach to partitioning the data set into bins
is shown in Table 2. It is a recursive procedure known
as divisive hierarchical clustering. At each stage in
the recursion, we iteratively partition the data into
k partitions. This iterative partitioning is akin to
the partitioning step employed in the k-means [11]
algorithm. Essentially, we start with k random centers,
and assign each point to its closest center, creating k

partitions. Next, we find k centers for these k partitions,
and continue iteratively for a fixed number of iterations.
Once we have finished with the iterations for each of
these partitions, we proceed recursively if the size of
the partition is greater than a user-defined threshold
(Binsize). Such a binning strategy ensures that points
that are close to each other in space are likely to be
collocated in the same bin. In other words, approximate
nearest neighbors are likely to be collocated in the
same bin. As we are only concerned with finding the
approximate nearest neighbors of a data point, and
not its nearest neighbors, such a strategy works well
in practice.

In Phase 2 of RBRP, we will sequentially scan
through each bin to find the approximate nearest neigh-
bors of a data point. To facilitate fast convergence to
the approximate nearest neighbors during a sequential
scan, we reorganize the data points in each bin as per
their order in the projection along the principal com-
ponent [12] of the bin. The principal component of a
bin represents the axis of maximal variance. Such a re-
organization within bins allows for fast convergence to
approximate nearest neighbors when scanning sequen-
tially through a bin. This is because we expect to find
the approximate nearest neighbors of a data point in
its neighborhood when data points are ordered as per
their projection along their principal component. We
also note that principal component analysis scales as
O(N × d3)
Complexity analysis: Assuming a two-way partition-
ing at each step in the recursion, the recurrence relation
for Phase 1 is given by:

T (N) = T (N − m) + T (m) + θ(N)(3.3)

In the worst case, if m is constant, then Phase 1 scales
as O(N2). However, on average we expect m to have an
O(N) scaling behavior. Consequently, Phase 1 scales
as O(NlogN × d) on average. Note, this argument is

LEVEL 3LEVEL 2LEVEL 1

43127685

4

PHASE 1 (INSTANCE OF TWO−WAY PARTITIONING)

SEARCH SPACE TRAVERSAL FOR A POINT IN BIN 5

PHASE 2

OF BINS
FINAL SET

COMPONENT
PROJECTION ONTO PRINCIPAL

LEVEL 4

8

5

6

7

3

2

1

BIN 3

Figure 1: Phase1 and Phase2 of RBRP

akin to the average-case and worst-case complexity of
the quick sort algorithm [8]. When employing a k-way
partitioning at each step in the recursion, we expect
similar scalability.

3.2.2 Phase 2 In Phase 2, we use an extension of
the NL algorithm to find outliers in the data set that
is organized into bins. For each data point, we start
searching for approximate nearest neighbors beginning
at the next consecutive location in the bin. Once the
end of the bin has been reached, we wrap around to the
start of the bin, and continue searching in the remainder
of the bin. If the entire bin has been searched and k

approximate nearest neighbors have not been discovered
within this bin, we switch to the next closest bin, and
continue searching for approximate nearest neighbors.
This search continues iteratively until k approximate
nearest neighbors are discovered.
Complexity analysis: The worst case time complex-
ity of Phase 2 is O(N2). However, we expect to find
the approximate nearest neighbors of a normal point in
the very same bin. For outliers, we need to scan all
of the bins, but this is expected to be a rare event, as
number of desired outliers (n) is much smaller that the
data set size (N). Therefore, we expect Phase 2 to scale
as O(N × d). As Phase 1 scales as O(NlogN × d), we
expect RBRP to scale close to O(NlogN × d).

At this juncture, we would like to point out that
RBRP will always discover the exact same set of out-

liers as ORCA. The key difference between RBRP and
ORCA is that when processing normal points, RBRP

will discover the k approximate nearest neighbors in far
less time than ORCA. For outliers, both ORCA and
RBRP will need to scan the entire data set.

4 Experimental Results

4.1 Setup We evaluate our algorithm’s performance
on a Linux-based system with a 2.4 GHz Intel Pentium
4 processor and 1 GB of main memory. We report the
wall clock time in order to capture both CPU and I/O
time. All of the algorithms were implemented using
C. While the source code for ORCA is not publicly
available, the binary is publicly available. However, we
chose not to use this binary for performance evaluation
for the following reasons. First, it is not easy to
compare performance between implementations that
use different data set representations. For instance,
we are not aware of the precision with which ORCA

maintains floating point numbers. Second, we are
not aware of other performance optimizations (such as
improved memory and I/O managers) that may have
been incorporated into the public implementation. The
data set representation and the different performance
optimizations can have a large impact on execution
time. Therefore, we implemented our own version of
ORCA, with the same set of optimizations and data set
representation as RBRP’s implementation. Our version
scales like the public ORCA implementation and so
comparisons provided henceforth will be based on our
version.

We use several real and synthetic data sets for our
analysis. These data sets are summarized in Table 4.

Procedure: Bin
Input: Binsize, the maximum size of a bin; k, the number of partitions; it, no. of iterations; D, data points to be binned.
Output: B, the set of bins.
begin

c = {c1, c2, ..., ck} (the set of k random centers)
p = {p1, p2, ..., pk} (the set of k partitions of D, initially empty)
for it iterations

Empty all k partitions in p

for each d in D

j = Closest(c, d)
Insert(d, j)

end for
c = {}
RecomputeCenters(c, p)

end for
for each pi in p

if size of pi > Binsize

Bin(Binsize, k, it, pi)
else

Reorganize data points in pi, ordered as per their projection along the principal component of pi

Add pi to B

end if
end for

end
Note:

Closest(c, d) returns the index of the nearest elements in c to d

Insert(d, j) inserts point d in jth partition in p

RecomputeCenters(c, p) inserts k centers of partitions in p into c

Table 2: RBRP Phase 1

Procedure: Find Outliers
Input: k, the number of nearest neighbors; n, the number of outliers to be returned; D, the set of data points.
Output: O, the set of outliers.
begin

c = 0 (c is the cutoff threshold)
O = {}
for each bin b in B

for each d in b

Neighbors(d) = {}
for each t in B, ordered by increasing distance to b

for each p in t such that p 6= d

if |Neighbors(d)| < k or Distance(d, p) < Maxdist(d, Neighbors(d))
Neighbors(d) = Closest(d, Neighbors(d) ∪ p, k)

endif
if |Neighbors(d)| ≥ k and c > Distance(p, d))

break
end if

end for
end for

end for
O = TopOutliers(O ∪ b, n)
c = MaxThreshold(O)

end for
end
Note:

Maxdist(d, S) returns the maximum distance between d and an element in set S

Closest(d, S, k) returns the k nearest elements in S to d

TopOutlier(S, n) returns the top n outliers in S based on the distance to their kth nearest neighbor
MaxThreshold(S) returns the distance between the weakest outlier in S and its kth nearest neighbor

Table 3: RBRP Phase 2

Data set Continuous Attributes No. of Points
Corel Histogram 32 68,040

Covertype 55 5,81,012
KDDCup 1999 24 4,898,430

Mixed 30D 30 2,000,000
Uniform 30D 30 1,000,000

Ipums 128 2,000,000

Table 4: Data sets

They span a range of problems and have different types
of features. We describe each in more detail.

• Covertype - This data set represents the type of
forest coverings for 30×30 meter cells in the Rocky
Mountain region. For each cell, the data contains
the cover type, which is the dominant tree species,
and additional attributes such as elevation, slope,
and soil type.

• Corel Histogram - Each point in this data set
encodes the color histogram of an image in a
collection of photographs. The histogram has 32
bins corresponding to eight levels of hue and four
levels of saturation.

• Ipums - This data set contains the responses from
the 1990 Census in the United States.

• KDDCup 1999 - This data set contains a set of
records that represent connections to a military
computer network where there have been multiple
intrusions by unauthorized users. The raw TCP
data from the network has been processed into
features such as the connection duration, protocol
type, number of failed logins, and so forth.

• Mixed 30D - This is a synthetic data set gener-
ated from a mixture of 30-dimensional normal and
uniform distributions centered on the origin. The
normal distribution is centered on the origin with
a covariance matrix equal to the identity matrix.
This data set contains one million data points from
each of the distributions.

• Uniform 30D - This is a synthetic data set gen-
erated from a 30 dimensional uniform distribution
centered on the origin and in the range [-1,1].

We obtained the Covertype, Corel Histogram, and
KDDCup 1999 data sets from the UCI KDD Archive
[3]. The Ipums data set was obtained from the IPUMS
repository [15].

4.2 Scalability with increasing data set size

Figures 2-4 show the total execution time to mine
outliers on the six data sets as the number of data points
are varied. Here, total execution time accounts for both

the phases of RBRP. Each graph shows four lines. Two
of these lines represent the expected execution time to
mine the data set given a linear time algorithm and an
NlogN time algorithm. These lines are extrapolated
from the first point in the line representing ORCA’s
execution time. The two remaining lines show the actual
running times for RBRP and ORCA. The runs were set
to mine the top 30 outliers with k set to 2.

RBRP outperforms ORCA on all the considered
data sets. On the Covertype, Mixed 30D, and Uni-
form 30D data sets, RBRP outperforms ORCA by an
order of magnitude. Furthermore, it shows improved
scalability with increasing data set size when compared
with ORCA. We can attribute these results to the fact
that while RBRP incurs an O(NlogN) pre-processing
overhead, it can find outliers in near constant time per
data point. For data sets that have a larger number
of outlying data points, the cutoff threshold is able
to increase quickly, and ORCA is able to give fairly
good performance. This behavior can be seen on the
Ipums data set. However, when the data set has a
fewer number of outliers, the cut-off threshold does not
grow fast. As a result, we get near quadratic perfor-
mance for ORCA. This can be seen on the remaining
data sets. The performance of RBRP is not affected as
much by the slow decay in the cutoff threshold because
of its improved search space, resulting in improved per-
formance in all cases. Furthermore, Figures 2-4 indicate
that RBRP does indeed scale as O(NlogN). We note
that on the Ipums and KDDCup 1999 data sets, it ap-
pears as though RBRP scales marginally better than
O(NlogN). This is simply due to the errors introduced
during extrapolation.

4.3 Scalability with increasing number of near-

est neighbors Figures 5-7 shows the total time to mine
outliers on the six data sets as the number of nearest
neighbors (k) are varied. For all these experiments, we
mine outliers in the entire data set. Each graph shows
actual running times for RBRP and ORCA. The runs
were set to mine the top 30 outliers.

Both RBRP and ORCA exhibit linear scalability
on all the considered data sets. Moreover, RBRP ex-
hibits better scalability than ORCA with increasing
k. This is attributed to the localized search for ap-
proximate nearest neighbors employed by RBRP. As
k increases, for each normal point, we expect to see a
constant increase in the number of bins that need to
be searched. Unlike ORCA, RBRP is not affected by
the slow decay in the cutoff threshold that occurs on
most data sets. This is evident on all data sets except
the Ipums data set. On the Ipums data set, the cutoff
threshold converges to a large value relatively quickly.

Therefore ORCA and RBRP have comparable scaling
performance on this data set.

5 Conclusion

In this paper, we presented RBRP, a two phase
distance-based outlier detection algorithm targeted at
high dimensional data sets. RBRP improves upon the
scaling behavior of the state-of-the-art by employing an
efficient pre-processing step that allows for fast deter-
mination of approximate nearest neighbors. RBRP is
expected to scale as O(NlogN × d) on d-dimensional
data sets with N data points. We validated its scaling
behavior on several real and synthetic data sets. RBRP

consistently outperforms ORCA, the state-of-the-art
distance-based outlier detection algorithm, sometimes
by an order of magnitude.

References

[1] F. Angiulli and C. Pizzuti. Fast outlier detection
in high dimensional spaces. In Proceedings of the
International Conference on Principles of Data Mining
and Knowledge Discovery, 2002.

[2] V. Barnett and T. Lewis. Outliers in Statistical Data.
John Wiley and Sons, 1994.

[3] S. Bay. The UCI KDD archive. Irvine, CA: Uni-
versity of California, Department of Information and
Computer Science, 1999.

[4] S. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a
simple pruning rule. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining,
2003.

[5] J. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the
ACM, 1975.

[6] S. Berchtold, D. Keim, and H. Kreigel. The X-tree:
an index structure for high dimensional data. In
Proceedings of the International Conference on Very
Large Data Bases (VLDB), 1996.

[7] R. Bolton and D. Hand. Statistical fraud detection: A
review. Statistical Science, 2002.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. Mac Graw Hill, 1990.

[9] D. Gamberger, N. Lavrac, and C. Groselj. Experiments
with noise filtering in the medical domain. In Pro-
ceedings of the International Conference on Machine
Learning, 1999.

[10] R. Guttmann. A dynamic index structure for spatial
searching. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), 1984.

[11] J. Hartigan. Clustering Algorithms. John Wiley and
Sons, 1975.

[12] I. Jolliffe. Principal Component Analysis. Springer-
Verlag, 1986.

[13] E. Knorr and R. Ng. Finding intensional knowledge of
distance-based outliers. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB),
1999.

[14] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient al-
gorithms for mining outliers from large datasets. In
Proceedings of the International Conference on Man-
agement of Data, 2000.

[15] S. Ruggles and M. Sobek. Integrated public use
microdata series: Version 2.0, 1997.

[16] K. Sequeira and M. Zaki. ADMIT: Anomaly-based
data mining for intrusions. In Proceedings of the
International Conference on Knowledge Discovery and
Data Mining, 2002.

[17] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In Proceedings of the International Con-
ference on Management of Data (SIGMOD), 1996.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100000 200000 300000 400000 500000 600000

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000 60000 70000

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

Figure 2: (a) Covertype (b) Corel histogram

0

500

1000

1500

2000

2500

3000

3500

4000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

0

100

200

300

400

500

600

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

Figure 3: (a) Ipums (b) KDDCup 1999

0

5000

10000

15000

20000

25000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

0

2000

4000

6000

8000

10000

12000

14000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

Figure 4: (a) Mixed 30D (b) Uniform 30D

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

Figure 5: (a) Covertype (b) Corel histogram

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

Figure 6: (a) Ipums (b) KDDCup 1999

0

50000

100000

150000

200000

250000

300000

350000

400000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

Figure 7: (a) Mixed 30D (b) Uniform 30D

