
Asynchronous Zero-copy Communication for Synchronous Sockets in the
Sockets Direct Protocol (SDP) over InfiniBand

P. BALAJI, S. BHAGVAT, H. -W. JIN AND D. K. PANDA

Technical Report
Ohio State University (OSU-CISRC-10/05-TR68)



Asynchronous Zero-copy Communication for Synchronous Sockets in the
Sockets Direct Protocol (SDP) over InfiniBand∗†

P. Balaji S. Bhagvat H. -W. Jin D. K. Panda
Department of Computer Science and Engineering

The Ohio State University
{balaji, bhagvat, jinhy, panda}@cse.ohio-state.edu

Abstract
The Sockets Direct Protocol (SDP) is a recently proposed industry
standard to allow existing sockets applications take advantage of the
advanced features of current generation networks such as InfiniBand.
The SDP standard supports two kinds of sockets semantics, viz., Syn-
chronous sockets (e.g., used by Linux, BSD and Windows) and Asyn-
chronous sockets (e.g., used by Windows and upcoming support in
Linux). Due to the inherent benefits of asynchronous sockets, the
SDP standard allows several intelligent approaches such as source-
avail and sink-avail based zero-copy for these sockets. Unfortunately,
most of these approaches are not applicable for the synchronous sock-
ets interface. Further, due to its portability, ease of use and support
on a wider set of platforms, the synchronous sockets interface is one
used by most sockets applications today. Thus, a mechanism in which
the approaches proposed for asynchronous sockets can be used for
synchronous sockets would be very beneficial for such applications.
In this paper, we propose one such mechanism, termed as AZ-SDP
(Asynchronous Zero-Copy SDP), where we memory protect applica-
tion buffers and carry out communication in an asynchronous man-
ner while maintaining the synchronous sockets semantics. We present
our detailed design in this paper and evaluate the stack with an exten-
sive set of micro-benchmarks. The experimental results demonstrate
that our approach can provide an improvement of close to 35% for
medium-message uni-directional throughput, up to a factor of 2 bene-
fit for computation-communication overlap tests and multi-connection
benchmarks and significant benefits in other benchmarks as well.

Keywords: SDP, InfiniBand, SDP, Asynchronous Communication

1 Introduction
With several high-performance networks being introduced into
the High Performance Computing (HPC) market, each expos-
ing its own communication interface, application developers
demand a common interface that they can utilize in order to
achieve portability across the various networks. The Message
Passing Interface (MPI) [16, 12, 7] and the Sockets interface
have been two of the most popular choices towards achiev-
ing such portability. MPI has been the de facto standard for

∗This research is supported in part by Department of Energy’s grant #CNS-
0403342 and #CNS-0509452; grants from Intel, Mellanox, Cisco Systems, Sun
Microsystems and Linux Network; and equipment donations from Intel, Mel-
lanox, AMD, Apple, Microway, PathScale and Silverstorm.

†We would like to thank S. Liang for helping us with an initial implemen-
tation of this project. We would also like to thank R. Noronha for his valuable
comments during the course of this project.

scientific applications, while Sockets has been more promi-
nent in legacy scientific applications, as well as grid-based
or heterogeneous-computing applications, file and storage sys-
tems, and other commercial applications.

Because traditional sockets over host-based TCP/IP [19, 21]
has not been able to cope with the exponentially increasing net-
work speeds, InfiniBand (IBA) [13] and other network tech-
nologies recently proposed a new standard known as the Sock-
ets Direct Protocol (SDP) [1]. SDP is a pseudo sockets-like
implementation to meet two primary goals: (i) to directly and
transparently allow existing sockets applications to be deployed
on to clusters connected with modern networks such as IBA and
(ii) allow such deployment while retaining most of the raw per-
formance provided by the networks.

The SDP standard supports two kinds of sockets semantics,
viz., Synchronous sockets (e.g., used by Linux, BSD and Win-
dows) and Asynchronous sockets (e.g., used by Windows and
upcoming support in Linux). In the synchronous sockets inter-
face, the application has to block for every data transfer oper-
ation, i.e., if an application wants to send a 1 MB message, it
has to wait till either the data is transferred to the remote node
or is copied to a local communication buffer and scheduled for
communication. In the asynchronous sockets interface on the
other hand, the application can initiate a data transfer and check
whether the transfer is complete at a later point of time provid-
ing a better overlap of the communication with the other com-
putation going on in the application. Further, due to the inherent
benefits of asynchronous sockets, the SDP standard also allows
several intelligent approaches such as source-avail and sink-
avail based zero-copy for these sockets. Unfortunately, most
of these approaches are not as beneficial for the synchronous
sockets interface. Further, due to its portability, ease of use
and support on a wider set of platforms, the synchronous sock-
ets interface is the one used by most sockets applications today.
Thus, a mechanism in which the approaches proposed for asyn-
chronous sockets can be used for synchronous sockets would be
very beneficial for such applications.

In this paper, we propose one such mechanism, termed as
AZ-SDP (Asynchronous Zero-Copy SDP) which allows the ap-
proaches proposed for asynchronous sockets to be used for syn-
chronous sockets while maintaining the synchronous sockets
semantics. The basic idea of this mechanism is to protect ap-
plication buffers from memory access during a data transfer
event and carry out communication in an asynchronous man-

1



ner. Once the data transfer is completed, the memory protection
is removed and the application is allowed to touch the buffer
again. It is to be noted that this entire scheme is completely
transparent to the end application. We present our detailed de-
sign in this paper and evaluate the stack with an extensive set
of micro-benchmarks. The experimental results demonstrate
that our approach can provide an improvement of close to 35%
for medium-message uni-directional throughput, up to a factor
of 2 benefit for computation-communication overlap tests and
multi-connection benchmarks and significant benefits in other
benchmarks as well.

The remaining part of the paper is organized as follows. In
Section 2, we provide a brief background about InfiniBand and
SDP. In Section 3, we present some of the related work in this
area and mention our research contributions in improving the
existing literature. The detailed description about the design
and the implementation details are presented in Section 4. We
evaluate our scheme against the other approaches with a wide
range of micro-benchmarks in Section 5 and conclude the paper
in Section 6.

2 Background
In this section, we first provide a brief background on the Infini-
Band (IBA) architecture and the subset of its features that are
used in this paper. Next, in Section 2.2, we give an overview of
Sockets Direct Protocol (SDP).

2.1 Overview of InfiniBand Architecture
The InfiniBand Architecture (IBA) is an industry standard that
defines a System Area Network (SAN) to design clusters of-
fering low latency and high bandwidth. The compute nodes
are connected to the IBA fabric by means of Host Channel
Adapters (HCAs). IBA defines a semantic interface called as
Verbs for the consumer applications to communicate with the
HCAs. VAPI is one such interface developed by Mellanox
Technologies. Other such Verbs interfaces including Gen2-
verbs, etc., also exist.

IBA supports two types of communication semantics: chan-
nel semantics (send-receive communication model) and mem-
ory semantics (RDMA communication model). In the chan-
nel semantics, every send request has a corresponding receive
request at the remote end. Thus, there is a one-to-one corre-
spondence between every send and receive operation. In the
memory semantics, Remote Direct Memory Access (RDMA)
operations are used. These operations are transparent at the re-
mote end since they do not require the remote end to involve
in the communication. Therefore, an RDMA operation has to
specify both the memory address for the local buffer as well as
that for the remote buffer. There are two kinds of RDMA oper-
ations: RDMA Write and RDMA Read. In an RDMA write op-
eration, the initiator directly writes data into the remote node’s
user buffer. Similarly, in an RDMA Read operation, the initia-
tor directly reads data from the remote node’s user buffer.

Together with these communication semantics, IBA also
supports network-based atomic operations directly against the
memory at the end node. Atomic operations are posted as nor-
mal data transmission or reception requests at the sender side

as in any other type of communication. However, the operation
is completely handled by the NIC and involves very little host
intervention and resource consumption. The atomic operations
supported are fetch-and-add and compare-and-swap, both on
64-bit data. The fetch-and-add operation performs an atomic
addition at the remote end. The compare-and-swap operation
is used to compare two 64-bit values and swap the remote value
with the data provided if the comparison succeeds.

2.2 Sockets Direct Protocol
Sockets Direct Protocol (SDP) is an IBA specific protocol de-
fined by the Software Working Group (SWG) of the IBA Trade
Association (IBTA) [2]. The design of SDP is mainly based
on two architectural goals: (i) to directly and transparently al-
low existing sockets applications to be deployed on to clusters
connected with IBA and (ii) allow such deployment while re-
taining most of the raw performance provided by the network
using features such as zero-copy data transfers, RDMA opera-
tions, etc. Figure 1 illustrates the SDP architecture.

Sockets Interface

Sockets Application

Device Driver

Offloaded Transport
Layer

Offloaded Network
Layer

InfiniBand

SDP

Traditional Sockets

TCP / IP

Figure 1: Sockets Direct Protocol

SDP’s Upper Layer Protocol (ULP) interface is a byte-stream
protocol that is layered on top of IBA’s message-oriented trans-
fer model. The mapping of the byte stream protocol to IBA’s
message-oriented semantics was designed to enable ULP data
to be transfered by one of two methods: through intermediate
private buffers (using a buffer copy) or directly between ULP
buffers (zero copy). A mix of IBA Send-Recv and RDMA
mechanisms are used to transfer ULP data. The SDP specifi-
cation also suggests two additional control messages known as
Buffer Availability Notification messages, viz., source-avail and
sink-avail messages for performing zero-copy data transfer.

Sink-avail Message: If the data sink has already posted a
receive buffer and the data source has not sent the data mes-
sage yet, the data sink does the following steps: (i) registers
the receive user-buffer (for large message reads) and (ii) sends
a sink-avail message containing the receive buffer handle to the
source. The data source on a data transmit call, uses this receive
buffer handle to directly RDMA write the data into the receive
buffer.

Source-avail Message: If the data source has already posted
a send buffer and the available SDP window is not large enough
to contain the buffer, it does the following two steps: (i) reg-
isters the transmit user-buffer (for large message sends) and

2



(ii) sends a source-avail message containing the transmit buffer
handle to the data sink. The data sink on a data receive call,
uses this transmit buffer handle to directly RDMA read the data
into the receive buffer.

However, these control messages are most relevant only for
the asynchronous sockets interface due to their capability of
exposing multiple source or sink buffers simultaneously to the
remote node. Accordingly, most current implementations for
synchronous sockets do not implement these and use only the
buffer copy based scheme. Recently, Goldenberg et. al., have
suggested a zero-copy SDP scheme [11, 10]. In this scheme,
they utilize a restricted version of the source-avail based zero-
copy communication model for synchronous sockets. Due to
the semantics of the synchronous sockets, however, the re-
strictions affect the performance achieved by zero-copy com-
munication significantly. In this paper, we attempt to relieve
the communication scheme of such restrictions and carry out
zero-copy communication in a truly asynchronous manner, thus
achieving high performance.

3 Related Work
Though the Sockets Direct Protocol (SDP) standard has been
recently proposed for InfiniBand (IBA), the concept of such
high performance sockets has existed for quite some time over
other networks. Several researchers, including ourselves, have
performed a significant amount of research on such sockets im-
plementations over various networks. Shah, et. al., from Intel,
were the first to come up with such an implementation for VIA
over the GigaNet cLAN network [18]. This was followed by
other implementations over VIA by Kim et. al. [15] and Balaji
et. al. [6]. Other networks soon adapted this solution to have
their own implementations on top of Myrinet [17], Gigabit Eth-
ernet [5], etc.

For the high performance sockets implementations over IBA,
i.e., SDP, there has been some amount of previous research as
well. Balaji et. al., were the first to show the benefits of SDP
over IBA in [4] using a buffer copy based implementation of
SDP. As mentioned earlier, Goldenberg et. al., recently pro-
posed a zero-copy implementation of SDP using a restricted
version of the source-avail scheme [11, 10]. In particular,
the scheme allows zero-copy communication by restricting the
number of outstanding data communication requests on the net-
work to just one. This, however, significantly affects the perfor-
mance achieved by the zero-copy communication. Our design,
on the other hand, presents an approach by which we can carry
out zero-copy communication while not being restricted to just
one communication request allowing for a significant improve-
ment in the performance.

To optimize the TCP/IP and UDP/IP protocol stacks it-
self, many researchers have been suggested several zero-copy
schemes [14, 22, 8, 9]. However, most of these approaches are
for asynchronous sockets and all of them require modifications
of the kernel and even the NIC firmware in some cases. In ad-
dition, these approaches still suffer from the heavy packet pro-
cessing overheads of TCP/IP and UDP/IP. On the other hand,
our work benefits the more widely used synchronous sockets

interface, it does not require the kernel or firmware modifica-
tions at all and can achieve very low packet processing over-
head while preserving the sockets interface.

In summary, AZ-SDP is a novel and unique design for high
performance sockets over IBA.

4 Design and Implementation Issues
As described in Section 2.2, to achieve zero-copy communi-
cation, Buffer Availability Notification messages need to be im-
plemented. In this paper, we focus on a design that uses source-
avail messages to implement zero-copy communication using
IBA’s RDMA read operations. In this section, we detail our
mechanism to take advantage of asynchronous communication
for synchronous zero-copy sockets.

4.1 Application Transparent Asynchronism
The main idea of asynchronism is to avoid blocking the appli-
cation while waiting for the communication to be completed,
i.e, as soon as the data transmission is initiated, the control is
returned to the application. With the asynchronous sockets in-
terface, the application is provided with additional socket calls
through which it can initiate data transfer in one call and wait
for its completion in another. In the synchronous sockets in-
terface, however, there are no such separate calls; there is just
one call which initiates the data transfer AND waits for its com-
pletion. Thus, the application cannot initiate multiple commu-
nications requests at the same time. Further, the semantics of
synchronous sockets assumes that when the control is returned
from the communication call, the buffer is free to be used (e.g.,
read from or written to). Thus, returning from a synchronous
call asynchronously means that the application can assume that
the data has been sent or received and try to write or read from
the buffer irrespective of the completion of the operation. Ac-
cordingly, a simple scheme which asynchronously returns con-
trol from the communication call after initiating the communi-
cation, might result in data corruption for synchronous sockets.

To transparently provide asynchronous capabilities for syn-
chronous sockets, two goals need to be met: (i) the interface
should not change; the application can still use the same inter-
face as earlier, i.e., the synchronous sockets interface and (ii)
the application can assume the synchronous sockets semantics,
i.e., once the control returns from the communication call, it
can read or write from/to the communication buffer. In our ap-
proach, the key idea in meeting these design goals is to memory
protect the user buffer without allowing the application to ac-
cess it and to carry out communication asynchronously from
this buffer, while tricking the application into believing that we
are carrying out data communication in a synchronous manner.

In this section, we present the basic design of the asyn-
chronous zero-copy SDP scheme and describe its potential ben-
efits with respect to the synchronous zero-copy SDP scheme.
In Section 4.2 we describe our approach to handle scenarios
where the application attempts to access the buffer involved in
the communication operation and guarantee the synchronous
communication semantics.

Figures 2(a) and 2(b) illustrate the designs of the syn-
chronous zero-copy SDP (ZSDP) scheme and our asyn-

3



GET COMPLETE

SRC AVAIL

GET COMPLETE

Get Data

Get Data

SRC AVAIL

Send

Send
Complete

Send
Complete

Send
Complete

Buffer 1

blocks
Application

Buffer 2
Send

Buffer 3

SRC AVAIL

Application
blocks

Send

Get Data

GET COMPLETE

Application
blocks

Sender Receiver

Buffer 1

Unprotect Memory

Unprotect Memory
GET COMPLETE

Buffer 3

Buffer 2

Send

Send

Send

Get Data

SOURCE AVAIL

Protect

Protect

Protect
Memory

Memory

Memory

Unprotect Memory

Sender Receiver

Figure 2: (a) Synchronous Zero-copy SDP (ZSDP) and (b) Asynchronous Zero-copy SDP (AZ-SDP)

chronous zero-copy SDP (AZ-SDP) scheme. As shown in Fig-
ure 2(a), in the ZSDP scheme, on a data transmission event
a SOURCE AVAIL message containing information about the
source buffer is sent to the receiver side. The receiver, on see-
ing this request, initiates a GET on the source data to be fetched
into the final destination buffer using an IBA RDMA read re-
quest. Once the GET has completed, the receiver sends a GET
COMPLETE message to the sender indicating that the com-
munication has completed. The sender on receiving this GET
COMPLETE message, returns the control to the application.

Figure 2(b) shows the design of the asynchronous zero-copy
SDP (AZ-SDP) scheme. This scheme is similar to the ZSDP
scheme, except that it memory protects the transmission ap-
plication buffers and sends out several outstanding SOURCE
AVAIL messages to the receiver. The receiver, on receiving
these SOURCE AVAIL messages, memory protects the receive
application buffers and initiates several GET requests using
multiple IBA RDMA read requests. On the completion of each
of these GET requests, the receiver sends back GET COM-
PLETE messages to the sender. Finally, on receiving the GET
COMPLETE requests, the sender unprotects the correspond-
ing memory buffers. Thus, this approach allows for a better
pipelining in the data communication providing a potential for
a much higher performance as compared to synchronous zero-
copy SDP (ZSDP).

4.2 Buffer Protection Mechanisms
As described in Section 4.1, our asynchronous communication
mechanism uses memory protection operations to disallow the
application from accessing the buffer involved in communica-
tion. If the application tries to access the buffer, a page fault sig-
nal is generated; our scheme needs to appropriately handle this
signal such that the semantics of synchronous sockets is main-
tained. In this section, we describe the different approaches
possible for handling the page fault signal and maintaining the
synchronous sockets semantics.

On the receiver side, we use a simple approach for ensuring
the synchronous sockets semantics. Specifically, if the applica-
tion calls a recv() call, the buffer to which the data is arriving
is protected and the control is returned to the application. Now,
if the receiver tries to read from this buffer before the data has

actually arrived, our scheme blocks the application in the page
fault signal until the data arrives. From the application’s per-
spective, however, this operation is completely transparent ex-
cept that the memory access would seem to take a longer time.

On the sender side, however, we can consider two different
approaches to handle this signal and guarantee the synchronous
communication semantics: (i) block-on-write and (ii) copy-on-
write. We discuss these alternatives in Sections 4.2.1 and Sec-
tions 4.2.2, respectively.

4.2.1 Block on Write

This approach is similar to the approach used on the receiver
side. In this approach, if the application tries to access the
communication buffer before the communication completes,
we force the application to block (Figure 3(a)). The advan-
tage of this approach is that we not only always achieve zero-
copy communication (saving on precious CPU cycles by avoid-
ing memory copy operations) but also overlap computation and
communication till the application touches the buffer. The dis-
advantage of this approach is that it is not skew tolerant, i.e.,
if the receiver process is delayed because of some computation
and cannot post a receive for the communication, the sender has
to block for the receiver to arrive and perform the data commu-
nication.

4.2.2 Copy on Write
The idea of this approach is to perform a copy-on-write oper-
ation from the communication buffer to a temporary internal
buffer when a page fault signal is generated and return the con-
trol to the user as soon as the data is copied. However, before
this is done, the AZ-SDP layer needs to ensure that the receiver
has not already started the GET operation; otherwise, it could
result in corruption of the data received.

This scheme performs the following steps to maintain the
synchronous sockets semantics (illustrated in Figure 3(b)):

1. The AZ-SDP layer maintains a lock for each SOURCE
AVAIL message it sends to the receiver. This lock is main-
tained at the receiver side and is initiated as soon as the
SOURCE AVAIL message is sent to the receiver.

2. Once the receiver calls a recv() operation and sees this
SOURCE AVAIL message, it sets the lock and initiates the

4



Memory
Protect

Memory
Protect

Memory
Protect

Block on touch

GET COMPLETE

SIGSEGV
generated

Buffer 1

Send

Send

SRC AVAIL

Send

Get data

SRC AVAIL

Buffer 2

Un protect memory

Buffer 3

Application
touches Buffer

ReceiverSender

Memory
Protect

Memory
Protect

Memory
Protect

SIGSEGV
generated

Get data

Send

Send

Buffer 1

Buffer 2
Application

touches Buffer

on Write
Copy

SRC AVAIL

ATOMIC LOCK

ReceiverSender

Un protect memory

Send

Buffer 3

UPDATED SRC AVAIL
ATOMIC UNLOCK

Get data from
Copy−on−Write buffer

Figure 3: Buffer Protection Schemes for AZ-SDP: (a) Block-on-Write based buffer protection and (b) Copy-on-Write based
buffer protection

GET operation for the data using the IBA RDMA read op-
eration.

3. On the sender side, if a page fault occurs (due to the ap-
plication trying to touch the buffer), the AZ-SDP layer at-
tempts to obtain the lock on the receiver side using a IBA
compare-and-swap network-based atomic operation. De-
pending on whether the sender gets a page fault signal first
or whether the receiver calls the recv() operation first, one
of them will get the lock.

4. If the sender gets the lock, it means that the receiver has
not made a recv() call for the data yet. In this case, the
sender copies the data into a copy-on-write buffer, sends
an UPDATED SOURCE AVAIL message pointing to the
copy-on-write buffer instead of the application buffer and
returns the lock.

5. If the sender does not get the lock, it means that the re-
ceiver has already called the recv() call and is in the pro-
cess of transferring data. In this case, the sender just
blocks waiting for the receiver to complete the data trans-
fer and send it a GET COMPLETE message.

The advantage of this approach is that it is more skew tol-
erant as compared to the block-on-write approach, i.e., if the
receiver is delayed because of some computation and does not
call a recv() soon, the sender does not have to block; the scheme
would just copy the data into a copy-on-write buffer and allow
the sender to proceed with accessing the buffer. The disadvan-
tages of this approach, on the other hand, are: (i) it requires an
additional copy operation, so it consumes more CPU cycles as
compared to the ZSDP scheme and (ii) it has an additional lock
management phase which adds more overhead in the commu-
nication. Thus, this approach may result in a higher overhead
than even the copy-based scheme (BSDP) because of these ad-
ditional overheads when there is no skew.

4.3 Handling Buffer Sharing
Several applications perform buffer sharing using approaches
such as memory mapping two different buffers (e.g., mmap()

operation). Let us consider a scenario where buffer B1 and
buffer B2 are memory mapped to each other. In this case, it
is possible that the application can perform a send() operation
from B1 and try to access B2. In our approach, we memory-
protect B1 and disallow all accesses to it. However, if the ap-
plication writes to B2, this newly written data is reflected in B1
as well (due to the memory mapping); this can potentially take
place before the data is actually transmitted from B1 and can
cause data corruption.

In order to handle this, we override the mmap() call from
libc to call our own mmap() call. The new mmap() call, in-
ternally maintains a mapping of all memory mapped buffers.
Now, if any communication is initiated from one buffer, all
buffers memory mapped to this buffer are protected. Similarly,
if a page fault signal arrives, the access is blocked (or copy-on-
write performed) till all communication for this and its associ-
ated memory mapped buffers has completed.

4.4 Handling Unaligned Buffers
The mprotect() operation used to memory protect buffers in
Linux, performs memory protections in a granularity of a phys-
ical page size, i.e., if a buffer is protected, all physical pages on
which it resides are protected. However, when the application
is performing communication from a buffer, it is not necessary
that this buffer is aligned so that it starts on a physical page.

Application BufferVAPI
Control Buffer

Physical
Page

Shared Physical Page

Figure 4: Physical Page Sharing Between Two Buffers

Let us consider the case depicted in Figure 4. In this case, the
application buffer shares the same physical page with a control
buffer used by the protocol layer, e.g, VAPI. Here, if we protect

5



the application buffer disallowing any access to it, the proto-
col’s internal control buffer is also protected. Now, suppose the
protocol layer needs to access this control buffer to carry out
the data transmission; this would result in a deadlock.

In this section, we present two approaches for handling this
kind of scenarios: (i) Malloc Hook and (ii) Hybrid approach
with BSDP.

4.4.1 Malloc Hook
In this approach, we provide a hook for the malloc() and free()
calls, i.e., we override the malloc() and free() calls to be redi-
rected to our own memory allocation and freeing functions.
Now, in the new memory allocation function, if an allocation
for N bytes is requested, we allocate N + PAGE SIZE bytes and
return a pointer to a portion of this large buffer such that the
start address is aligned to a physical page boundary.

Malloc Hook Overhead

0

1

2

3

4

5

6

3 6 9 14 22 37 62 10
5

18
1

31
2

53
7

92
6

15
99

27
61

47
70

82
41

14
23

9

Message Size (bytes)

T
im

e 
(u

s)

Malloc

Malloc-Hook

Figure 5: Overhead of the Malloc Hook

While this approach is simple, it has several disadvantages.
First, if the application calls several small buffer allocations,
for each call atleast a PAGE SIZE amount of buffer is allocated.
This might result in a lot of wastage. Second, as shown in Fig-
ure 5, the amount of time taken to perform a memory allocation
operation increases significantly from a small buffer allocation
to a PAGE SIZE amount of buffer allocation. Thus, if we use a
malloc hook, even a 40 byte memory allocation would take the
amount of time equivalent to that of a complete physical page
size, i.e., instead of 0.1µs, a 40 byte memory allocation would
take about 4.8µs.

Table 1: Transmission Initiation Overhead
Operation w/ Malloc (µs) w/ Malloc Hook (µs)

Registration Check 1.4 1.4
Memory Protect 1.4 1.4
Memory Copy 0.3 0.3

Malloc 0.1 4.8
Descriptor Post 1.6 1.6

Other 1.1 1.1

On first sight, the second issue (with respect to the memory
allocation time) does not seem to be a major issue since we typ-
ically do zero-copy communication (and hence asynchronous
zero-copy communication) for large messages only. And for
such communication, an additional 4.8µs might not add too
much overhead. However, to understand the impact of the ad-
ditional memory allocation time, we show the break up of the
message transmission initiation phase in Table 1.

As shown in the table, initiating a data transfer request has
several steps. First, we need to verify if the buffer used in the

communication is registered with the network adapter (once a
buffer is registered, we typically maintain a cache so that we do
not need to register it again; here we need to check if the entry
is present in our cache table). Assuming that the buffer is in
our cache list, this operation takes about 1.4µs. Second, as we
had mentioned earlier, in our AZ-SDP scheme we protect com-
munication buffers from memory accesses in order to carry out
the communication asynchronously. This protection operation
takes about 1.4µs. Third, the SOURCE AVAIL control message
needs to be created and copied into the transmission buffer; this
takes about 0.3µs. The fourth and fifth overheads are related to
the Verbs API (VAPI) by Mellanox Technologies, which we
used in this paper. For small message sends, VAPI allocates a
small buffer (40 bytes), copies the data into the buffer together
with the descriptor describing the buffer itself and its protec-
tion attributes. This allows the network adapter to fetch both
the descriptor as well as the actual buffer in a single DMA op-
eration. Here, we calculate the memory allocation portion for
the small buffer (40 bytes) as the fourth overhead (which takes
about 0.1µs) and the actual posting of the descriptor to the net-
work adapter as the fifth overhead (which takes about 1.6µs).
Finally, the remaining operations such as checking the com-
pletion queue for any outstanding communication completion
events, etc., take about 1.1µs. In summary, the memory alloca-
tion portion (done by VAPI) forms about 1.5% of the overhead.

Now, if we add our malloc hook, all the overheads remain the
same, except for the fourth overhead, i.e., the memory alloca-
tion for VAPI to copy the buffer increases to 4.8µs; its portion
in the entire transmission initiation overhead increases to about
45% from 1.5% making it the dominant overhead in the data
transmission initiation part.

4.4.2 Hybrid Approach with Buffered SDP (BSDP)

In this approach, we use a hybrid mechanism between AZ-SDP
and BSDP. Specifically, if the buffer is not page aligned, we
transmit the page aligned portions of the buffer using AZ-SDP
and the remaining portions of the buffer using BSDP. The be-
ginning and end portions of the communication buffer are thus
sent through BSDP while the intermediate portion, sent over
AZ-SDP.

This approach does not have any of the disadvantages men-
tioned for the previous malloc-hook based scheme. The only
disadvantage with this scheme is that a single message commu-
nication might need to be carried out in multiple communica-
tion operations (atmost three). This might add some overhead
when the communication buffers are not page aligned.

In our preliminary results, we noticed that this approach
gives about 5% to 10% better throughput as compared to the
malloc-hook based scheme. Hence, we went ahead with this
approach in this paper.

5 Experimental Evaluation
In this section, we evaluate the AZ-SDP implementation and
compare it with the other two implementations of SDP, i.e.,
Buffered SDP (BSDP) and Zero-copy SDP (ZSDP). We per-
form two sets of evaluations. In the first set (section 5.1), we

6



use single connection micro-benchmarks such as ping-pong la-
tency, uni-directional throughput, computation-communication
overlap capabilities and effect of page faults. In the second
set (section 5.2), we use multi-connection micro-benchmarks
such as hot-spot latency, fan-in and fan-out streaming through-
put tests.

For AZ-SDP, we currently only present results with the
block-on-write-based-fallback technique on page faults due
to performance issues with the copy-on-write-based-fallback
technique.

The experimental test-bed used in this paper consists of four
nodes with dual 3.6 GHz Intel Xeon EM64T processors. Each
node has a 2 MB L2 cache and 512 MB of 333 MHz DDR
SDRAM. The nodes are equipped with Mellanox MT25208 In-
finiHost III DDR PCI-Express adapter (capable of link-rate of
20 Gbps) and are connected to a Mellanox MTS-2400, 24-port
completely non-blocking DDR switch.

5.1 Single Connection Micro-Benchmarks
In this section, we evaluate the three stacks with a suite of single
connection micro-benchmarks.
Ping-Pong Latency: Figure 6(a) shows the point-to-point la-
tency achieved by the three stacks. In this test, two nodes
communicate with each other. The sender node first sends a
message to the receiver; the receiver receives this message and
sends back another message to the sender. Such exchange of
messages is carried out for several iterations, the total time cal-
culated and averaged over the number of iterations. This gives
the time for a complete message exchange. The ping-pong la-
tency demonstrated in the figure is half of this amount, i.e., one-
way communication latency.

As shown in the figure, both zero-copy based schemes
(ZSDP and AZ-SDP) achieve a superior ping-pong latency as
compared to BSDP. However, there is no significant difference
in the performance of ZSDP and AZ-SDP. This is due to the
way the ping-pong latency test is designed. In this test, only one
message is sent at a time and the node has to wait for a reply
from its peer before it can send the next message, i.e., the test
itself is completely synchronous and cannot utilize the capabil-
ity of AZ-SDP with respect to allowing multiple outstanding
requests on the network at any given time. This causes AZ-
SDP to behave similar to ZSDP resulting in no performance
difference between the two schemes.
Uni-directional Throughput: Figure 6(b) shows the uni-
directional throughput achieved by the three stacks. In this test,
the sender node keeps streaming data and the receiver keeps
receiving it. Once the data transfer is completed, the time is
measured and the data rate is calculated as the number of bytes
sent out per unit time. We used the ttcp benchmark [20] version
1.4.7 for this experiment.

As shown in the figure, for small messages BSDP performs
the best. The reason for this is two fold:

1. Both ZSDP and AZ-SDP rely on control message ex-
change for every message to be transferred. This causes
an additional overhead for each data transfer which is sig-
nificant for small messages.

2. Our BSDP implementation uses an optimization technique
known as reverse packetization for small messages. In this
technique when the application tries to transmit data, if it
has enough flow-control credits to send the data across, it
copies the data and also goes ahead and sends it. On the
other hand, if it does not have enough credits, it copies
the data into the local socket buffer and returns the control
to the application without actually transmitting the data.
Now, if the application makes a second data transmission
request, the new data is coalesced with the existing data
in the local socket buffer and the coalesced data is sched-
uled for transmission. Thus, the actual data being sent out
on the wire is made up of larger messages causing the
throughput to increase more sharply. This technique is,
however, not valid for the ZSDP and AZ-SDP implemen-
tations.

Computation-Communication Overlap: As mentioned ear-
lier, IBA provides hardware offloaded network and transport
layers to allow a high performance communication. This also
implies that the host CPU now has to do a lesser amount of
work for carrying out the communication, i.e., once the data
transfer is initiated, the host is completely free to carry out its
own computation while the actual communication is carried out
by the network adapter. However, the amount of such overlap
between the computation and communication that each of the
schemes (BSDP, ZSDP, AZ-SDP) can exploit varies. In this
experiment, we measure the capability of each scheme with re-
spect to overlapping application computation with the network
communication. Specifically, we modify the ttcp benchmark to
add additional computation between every data transmission.
We vary the amount of this computation and report the through-
put delivered by the benchmark.

Figure 7 shows the overlap capability for the different
schemes. Figure 7(a) shows the overlap capability for a mes-
sage size of 64Kbytes and Figure 7(b) shows that for a message
size of 1Mbyte. As shown in the figures, AZ-SDP achieves
a significantly higher computation-communication overlap as
compared to the other schemes, as illustrated by its capability
to retain a high performance even for a significant amount of
intermediate computation. For example, for a message size of
64Kbytes, AZ-SDP achieves an improvement of up to a factor
of 2 times. Also, for a message size of 1Mbyte, we see ab-
solutely no drop in the performance of AZ-SDP even with a
computation amount of 200µs while the other schemes see a
significant degradation in the performance.

The reason for this better performance of AZ-SDP is its ca-
pability to utilize the hardware offloaded protocol stack more
efficiently, i.e., once the data buffer is protected and the trans-
mission initiated, AZ-SDP returns the control to the application
allowing it to perform its computation while the data transmis-
sion is going on, thus causing no degradation in performance.
ZSDP on the other hand waits for the actual data to be trans-
mitted before returning control to the application, i.e., it takes
absolutely no advantage of the network adapter’s capability to
carry out data transmission independently, thus causing a sig-
nificant degradation in performance. The overlap capability of

7



Ping-Pong Latency (Event-based)

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (bytes)

La
te

nc
y 

(u
s)

BSDP

ZSDP

AZ-SDP

Uni-directional Throughput (Event-based)

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Figure 6: Micro-Benchmarks: (a) Ping-Pong Latency and (b) Unidirectional Throughput
Computation/Communication Overlap (64Kbytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140 160 180 200

Computation (us)

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZSDP

Computation/Communication Overlap (1 Mbyte)

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160 180 200

Computation (us)

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZSDP

Figure 7: Computation and Communication Overlap Micro-Benchmark: (a) 64Kbyte message and (b) 1Mbyte message

BSDP depends on the amount of socket buffer allocated to it.
As long as the message size is smaller than its socket buffer,
BSDP can copy the data, initiate the data transfer with the net-
work adapter and return the control back to the application to
carry out its computation. If the data to be transmitted is larger
than the socket buffer, BSDP blocks waiting for the data to be
either received by the receiver or copied into its local socket
buffer. In our experiments, we used a 64Kbyte socket buffer –
the first transmission just copies the data into the socket buffer
and initiates the data transfer; but the successive transmissions
need to block waiting for the socket buffer to be cleared before
they can copy the data.
Impact of Page Faults: As described earlier, the AZ-SDP
scheme protects memory locations and carries out communi-
cation from or to these memory locations in an asynchronous
manner. If before the communication completes, the applica-
tion tries to touch the data buffer, a page fault event is gen-
erated. The AZ-SDP implementation traps this event, blocks
to make sure that the data communication completes and re-
turns the control to the application (allowing it to touch the
buffer). Thus, in the case where the application very frequently
touches the data buffer immediately after communication event,
the AZ-SDP scheme has to handle several page faults adding
some amount of overhead to this scheme. To characterize this
overhead, we have modified the ttcp benchmark to occasion-
ally touch data1. We define a variable known as the Window
Size (W) for this. The transmission side first calls W data trans-
mission calls and then writes a pattern into the transmission
buffer. Similarly, the receiver calls W data reception calls and
then reads the pattern from the reception buffer. This obviously

1The micro-benchmark uses the same communication buffer for every iter-
ation.

does not impact the BSDP and ZSDP schemes since they do
not perform any kind of a protection of the application buffers.
However, for the AZ-SDP scheme, each time the sender tries to
write to the buffer or the receiver tries to read from the buffer, a
page fault is generated, adding additional overhead.

Figures 8(a) and 8(b) show the impact of page faults on the
different schemes for message sizes 64Kbytes and 1Mbyte re-
spectively. As shown in the figure, when the window size is
very small, the performance of AZ-SDP is poor. Though this
degradation is lesser for larger message sizes (Figure 8(b)),
there is still some amount of drop. The reason for this is two
fold:

1. When the application attempts to touch the communica-
tion buffer and the page fault is generated, no additional
data transmission or reception requests are initiated. Thus,
during this time, the behavior of AZ-SDP would be similar
to that of ZSDP with respect to the number of outstanding
communication requests it can sustain.

2. Handling the page fault adds close to 6µs overhead to the
AZ-SDP scheme. Thus, though the network behavior falls
back to the ZSDP scheme, AZ-SDP still has to deal with
the page faults for the buffers it has already protected. This
causes its performance to be worse than ZSDP. As an opti-
mization, we went ahead and implemented a patch to this
problem where AZ-SDP completely falls back to ZSDP
if the application is generating too many page faults, i.e.,
if the number of page faults generated is above a certain
threshold, the AZ-SDP scheme completely avoids protect-
ing any more buffers and carries out communication in a
synchronous manner (like ZSDP). However, to avoid di-
luting the results, we set this threshold to a very high num-
ber so that it is never triggered in the experiments.

8



Effect of Page Faults (64 Kbytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10

Window Size

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Effect of Page Faults (1 Mbytes)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

Window Size

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Figure 8: Impact of Page Faults: (a) 64Kbyte message and (b) 1Mbyte message

5.2 Multi-Connection Micro-Benchmarks
In this section, we present the evaluation of the stacks with sev-
eral benchmarks which carry out communication over multiple
connections simultaneously.
Hot-Spot Latency Test: Figure 9(a) shows the impact of mul-
tiple connections in message transaction kind of environments.
In this experiment, a number of client nodes perform a point-to-
point latency test with the same server, forming a hot-spot on
the server. We performed this experiment with one node acting
as a server node and two other dual-processor nodes hosting a
total of 4 client processes. As shown in the figure, AZ-SDP
significantly outperforms the other two schemes especially for
large messages. On first sight, this is a little surprising since this
test is similar to the ping-pong latency test shown in Figure 6(a)
where AZ-SDP and ZSDP show a similar performance. How-
ever, the key to the performance difference in this experiment
lies in the usage of multiple connections for the test. Since the
server has to deal with several connections at the same time,
it can initiate a request to the first client and handle the other
connections while the first data transfer is being carried out.
Thus, though each connection is synchronous, the overall ex-
periment provides some amount of asynchronism with respect
to the number of clients the server has to deal with. Further, we
expect this benefit to grow with the number of clients allowing
a better scalability for the AZ-SDP scheme.
Multi-Stream Throughput Test: The multi-stream through-
put test is similar to the uni-directional throughput test, except
that multiple threads on the same pair of physical nodes carry
out uni-directional communication separately. We measure the
aggregate throughput of all the threads together and report it in
Figure 9(b). The message size used for the test is 64Kbytes.
As shown in the figure, when the number of streams is one, the
test behaves similar to the uni-directional throughput test with
AZ-SDP outperforming the other schemes. However, when we
have more streams performing communication as well, the per-
formance of ZSDP is also similar to what AZ-SDP can achieve.
To understand this behavior, we briefly reiterate on the way
the ZSDP scheme works. In the ZSDP scheme, when a pro-
cess tries to send the data out to a remote process, it sends the
buffer availability notification message and WAITS till the re-
mote process completes the data communication and informs it
about the completion. Now, in a multi-threaded environment,
while the first process is waiting, the remaining processes can
go ahead and send out messages. Thus, though each thread is

blocking for progress in ZSDP, the network is not left unuti-
lized due to several threads accessing it simultaneously. This
results in ZSDP achieving a similar performance as AZ-SDP in
this environment.
Fan-in and Fan-out Throughput Tests: In the fan-in and fan-
out throughput tests, similar to the hot-spot test, we use one
server and 4 clients (spread over two dual-processor physical
nodes). In this setup, we perform streaming throughput tests
between each of the clients and the same server. The difference
in the two tests is that, in the fan-in test all clients send data to
the server while in the fan-out test all clients receive data from
the server. We measure the aggregate throughput the server sees
and report it in Figure 10.

As shown in Figure 10(a), AZ-SDP performs significantly
better than both ZSDP and BSDP in the fan-in throughput test.
Like the hot-spot test, the improvement in the performance of
AZ-SDP is attributed to its ability to perform communication
over the different connections simultaneously while ZSDP and
BSDP perform communication one connection at a time. In the
fan-out throughput test (Figure 10(b)), surprisingly we do not
see this kind of a difference between ZSDP and AZ-SDP. We
are currently looking into this to understand this behavior.

6 Conclusions and Future Work
Because traditional sockets over host-based TCP/IP has not
been able to cope with the exponentially increasing network
speeds, InfiniBand (IBA) and other network technologies re-
cently proposed a new standard known as the Sockets Direct
Protocol (SDP). The idea of SDP is to allow existing sockets
applications directly and transparently take advantage of the ad-
vanced features of current generation networks such as IBA.
The SDP standard supports two kinds of sockets semantics:
synchronous and asynchronous. Due to the inherent benefits
of asynchronous sockets, the SDP standard allows several in-
telligent approaches such as source-avail and sink-avail based
zero-copy for these sockets. Unfortunately, most of these ap-
proaches are not as beneficial for the synchronous sockets in-
terface. Further, due to its portability, ease of use and support
on a wider set of platforms, the synchronous sockets interface
is one used by most sockets applications today. In this paper
we proposed a mechanism, termed as AZ-SDP (Asynchronous
Zero-Copy SDP), which allows the approaches proposed for
asynchronous sockets to be used for synchronous sockets while
maintaining the synchronous sockets semantics. We presented

9



Hot-Spot Latency

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

Message Size (bytes)

La
te

nc
y 

(u
s)

BSDP

ZSDP

AZ-SDP

Multi-Stream Throughput (64 Kbytes)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8

Number of Streams

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Figure 9: Multi-Connection Micro-Benchmarks: (a) Hot-Spot Latency test and (b) Multi-Stream Throughput test
Fan-In Throughput

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Fan-Out Throughput

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

Message Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Figure 10: Multi-Connection Micro-Benchmarks: (a) Fan-in Throughput test and (b) Fan-out Throughput test

our detailed design in this paper and evaluated the stack with an
extensive set of micro-benchmarks. The experimental results
demonstrate that our approach can provide an improvement of
close to 35% for medium-message uni-directional throughput,
up to a factor of 2 benefit for computation-communicationover-
lap tests and multi-connection benchmarks and significant ben-
efits in other benchmarks as well.

As a part of the future work, we plan to evaluate the AZ-SDP
scheme with several applications from various domains. Fur-
ther, we also plan to utilize a similar idea in other networks as
well to provide zero-copy and asynchronous sockets communi-
cation. Finally, we plan to extend our previous work on imple-
menting an extended sockets API [3] to AZ-SDP. This would
not only provide a good performance for existing applications,
but also allow for minor modifications in the applications to uti-
lize the advanced features provided by modern networks such
as one-sided communication, etc.
References
[1] SDP Specification. http://www.rdmaconsortium.org/home.
[2] Infiniband Trade Association. http://www.infinibandta.org.
[3] P. Balaji, H. W. Jin, K. Vaidyanathan, and D. K. Panda. Supporting

iWARP Compatibility and Features for Regular Network Adapters. In
RAIT, 2005.

[4] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and
D. K. Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it
Beneficial? In ISPASS ’04.

[5] P. Balaji, P. Shivam, P. Wyckoff, and D. K. Panda. High Performance
User Level Sockets over Gigabit Ethernet. In Cluster Computing ’02.

[6] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz. Impact
of High Performance Sockets on Data Intensive Applications. In HPDC
’03.

[7] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster En-
vironment for MPI. In Supercomputing Symposium.

[8] J. Chase, A. Gallatin, and K. Yocum. End-System Optimizations for
High-Speed TCP. IEEE Communications Magazine, 39(4):68–75, April
2001.

[9] H. J. Chu. Zero-Copy TCP in Solaris. In Proceedings of 1996 Winter
USENIX, 1996.

[10] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Transparently
Achieving Superior Socket Performance using Zero Copy Socket Direct
Protocol over 20 Gb/s InfiniBand Links. In RAIT, 2005.

[11] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Zero Copy Sockets
Direct Protocol over InfiniBand - Preliminary Implementation and Per-
formance Analysis. In HotI, 2005.

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance,
Portable Implementation of the MPI Message Passing Interface Standard.
Parallel Computing.

[13] Infiniband Trade Association. http://www.infinibandta.org.
[14] H. W. Jin, P. Balaji, C. Yoo, J . Y. Choi, and D. K. Panda. Exploiting

NIC Architectural Support for Enhancing IP based Protocols on High
Performance Networks. JPDC ’05.

[15] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer
Over Virtual Interface Architecture. In Cluster Computing ’01.

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, March 1994.

[17] Myricom Inc. Sockets-GM Overview and Performance.
[18] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance

Sockets and RPC over Virtual Interface (VI) Architecture. In CANPC
Workshop ’99.

[19] W. R. Stevens. TCP/IP Illustrated, Volume I: The Protocols. Addison
Wesley, 2nd edition, 2000.

[20] USNA. TTCP: A test of TCP and UDP performance, December 1984.
[21] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume II: The

Implementation. Addison Wesley, 2nd edition, 2000.
[22] C. Yoo, H. W. Jin, and S. C. Kwon. Asynchronous UDP. IEICE Trans-

actions on Communications, E84-B(12):3243–3251, December 2001.

10


