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Abstract

InfiniBand is an emerging cluster intercon-
nect that is being used in many modern clus-
ters. InfiniBand clusters with several thousands
of nodes have already appeared in the Top 500
list. The next-generation InfiniBand clusters are
expected to be even larger with tens-of-thousands
of nodes. Most of the scientific parallel appli-
cations running on these clusters are written us-
ing the Message Passing Interface (MPI). Thus,
a high-performance scalable MPI design is cru-
cial for these applications to unlock the poten-
tial of these large clusters. MVAPICH is a pop-
ular implementation of MPI over InfiniBand. It is
based on a connection oriented InfiniBand inter-
face. The requirement of this interface to make
communication buffers available for each con-
nection imposes a memory scalability problem. In
order to mitigate this issue, the latest InfiniBand
standard includes a new feature called Shared Re-
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ceive Queue (SRQ) which allows sharing of com-
munication buffers across multiple connections.
In this paper, we propose a novel MPI design
which efficiently utilizes SRQs and provides very
good performance. Our analytical model reveals
that our proposed designs will take only 1/10th
the memory requirement as compared to the orig-
inal design on a cluster sized at 16,000 nodes.
Performance evaluation of our design on our 8-
node PCI-Express shows that our new design was
able to provide the same performance as the ex-
isting design utilizing only a fraction of the mem-
ory required by the existing design. In compari-
son to tuned existing designs our design showed
a 20% and 5% improvement in execution time of
NAS Benchmarks (Class A) LU and SP, respec-
tively. The High Performance Linpack was able
to execute a much larger problem size using our
new design, whereas the existing design ran out
of memory.

1 Introduction

Cluster computing has become quite popular
during the past decade. The interconnect used



in these clusters is very crucial for attaining the
highest possible performance [1]. InfiniBand [7]
is an emerging high-performance interconnect,
offering low latency (1.5-3.0 microseconds) and
high bandwidth (several GigaBytes/second). In
addition to high-performance, InfiniBand also
provides many advanced features like Remote
Direct Memory Access (RDMA), atomic oper-
ations, multicast and QoS. As InfiniBand gains
popularity, large scale clusters are being built us-
ing it [13]. Clusters of several tens-of-thousands
of nodes have now appeared as the most powerful
machines in the Top 500 list [18]. Accordingly, it
is expected that the scale of the InfiniBand clus-
ters to be deployed in the near future will be even
larger. MPI [11] is the de-facto standard in writ-
ing parallel scientific applications. Hence, a scal-
able and high performance MPI design is very
critical for end HPC applications which will run
on these modern and next generation very large
scale clusters.

MVAPICH [14] is a popular implementation
of MPI over InfiniBand which is used by more
than 270 organizations world-wide. It has enabled
several InfiniBand clusters to achieve Top 500
ranks. MVAPICH is also distributed in an inte-
grated manner with emerging OpenIB/Gen2 [15]
software stack for Linux and Windows clusters. It
implements the Abstract Device Interface (ADI)
layer of MPICH [6]. MVAPICH was derived
from MVICH [8].

MVAPICH uses a reliable connection oriented
model provided by InfiniBand. This model pro-
vides superior performance on current generation
InfiniBand stacks than the unreliable connection-
less model as well as providing reliable transport.
However, one of the restrictions is that messages
can be received only in buffers which are already
available to the Host Channel Adapter (HCA) or
Network Interface Card (NIC). In order to achieve
this, MVAPICH allocates and dedicates buffers
for each connection (the number of connections
increases as the number of processes). Although
the amount of buffers allocated per connection

can be tuned and MVAPICH has scaled quite well
for contemporary clusters (up to 1000 nodes and
beyond), the challenges imposed by the scale of
next generation very large clusters (up to 10,000
nodes and beyond) is quite hard to meet with the
current buffer management model.

The latest InfiniBand standard (Release 1.2) [7]
has provided a new feature calledShared Receive
Queues(SRQ) which aims at solving this scala-
bility issue at the HCA level. This new feature
removes the requirement that message buffers be
available in a dedicated fashion for each connec-
tion. Using this feature, a process which intends
to receive from multiple processes can in fact pro-
vide receive buffers in a single queue. Before uti-
lizing this feature, however, we need to solve sev-
eral design challenges.

In this paper, we carry out detailed analysis
of the design alternatives and propose a high-
performance MPI design using SRQ. We propose
a novel flow control mechanism using a “wa-
termark” based approach. In addition, we de-
sign a mechanism which can help users fine tune
our designs on their specific platforms. Further,
we come up with an analytical model which can
predit memory usage by the MPI library on clus-
ters of tens-of-thousands of nodes. Verification
of our analytical model reveals that our model is
accurate within 1%. Based on this model, our
proposed designs will take only 1/10th the mem-
ory requirement as compared to the default MVA-
PICH distribution on a cluster sized at 16,000
nodes. Performance evaluation of our design on
our 8-node PCI-Express shows that our new de-
sign was able to provide the same performance
as the existing design utilizing only a fraction of
the memory required by the existing design. In
comparison to tuned existing designs our design
showed a 20% and 5% improvement in execution
time of NAS Benchmarks (Class A) LU and SP,
respectively. The High Performance Linpack [4]
was able to execute a much larger problem size
using our new design, whereas the existing design
ran out of memory.



The rest of the paper is organized as follows:
in Section 2 we provide a background to our re-
search. In Section 3 we present the motivation for
designing MPI with SRQ. In Section 4 we pro-
pose our designs. In Section 5 we experimentally
evaluate our designs. In Section 6 we discuss re-
lated work in this area. Finally in Section 7 we
conclude the paper.

2 Background

In this section we provide a detailed back-
ground behind the work done in this paper.
Broadly, there are two important topics which
pertain to this work. First, we present an overview
of the InfiniBand network and its transport mod-
els. Secondly, we describe the existing de-
sign of MPI over InfiniBand, particularly, MVA-
PICH [14].

2.1 InfiniBand Overview

The InfiniBand Architecture [7] (IBA) defines
a switched network fabric for interconnecting
processing and I/O nodes. In an InfiniBand net-
work, hosts are connected to the fabric by Host
Channel Adapters (HCAs). A queue based model
is used in InfiniBand. A Queue Pair (QP) consists
of a send and a receive queue. Communication
operations are described in the Work Queue Re-
quests (WQR), or descriptors, and submitted to
the work queue. It is a requirement that all com-
munication buffers be posted into receive work
queues before any message can be placed into
them. In addition, all communication buffers need
to be registered (locked in physical memory) be-
fore any operations can be issued from there. This
is to ensure that memory is present when HCA
accesses the memory. Finally, the completion of
WQRs is reported through Completion Queues
(CQ).

IBA provides several types of transport ser-
vices: Reliable Connection (RC), Unreliable
Connection (UC), Reliable Datagram (RD) and

Unreliable Datagram (RD). RC and UC are
connection-oriented and require one QP to be
connected to exactly one other QP. On the other
hand, RD and UD are connectionless and one QP
can be used to communicate with many remote
QPs. To the best of our knowledge, Reliable Data-
gram (RD) transport has not been implemented by
any InfiniBand vendor yet.

On top of these transport services, IBA pro-
vides software services. However, all software
services are not defined for all transport types.
Figure 1 depicts which software service is defined
for which transport, as of IBA specification re-
lease 1.2. As shown in the figure, the send/receive
operations are defined for all classes of trans-
port. For connection-oriented transport, a new
type of software service called Shared Receive
Queue (SRQ) has been introduced. This allows
the association of many QPs to one receive queue
even for connection oriented transport. Thus, any
remote process which is connected by a QP can
send a message which is received in buffers spec-
ified in the SRQ.

Reliable
Connection

Unreliable
Connection

Reliable
Datagram

Unreliable
Datagram

Send/Receive
Shared Receive

RDMA Write
RDMA Read

Connection Oriented Connectionless

Software
Service

Transport

Implemented
Not implemented

Figure 1. IBA Transport and Software Ser-
vices

Apart from the basic send/receive opera-
tions, IBA also defines Remote Direct Memory
(RDMA) operations. Using this service, appli-
cations can directly access memory locations of
remote processes. In order to utilize RDMA, the
requesting process is required to know the virtual
address and a memory access key of the remote
process. RDMA is supported on all reliable trans-



ports. The only exception being that RDMA Read
is not supported on UC.

In addition to these features, IBA provides a
host of other exciting features like hardware mul-
ticast, QoS, Atomic operations. These features
are not described here because they are not re-
lated to the research direction discussed in the pa-
per. Additional details on these features can be
obtained from IBA specification [7].

2.2 MVAPICH Design Overview

MVAPICH [14] is a popular implementa-
tion of MPI over InfiniBand. It uses both
Send/Receive and RDMA operations to achieve
high-performance message passing. It has two
modes of data transfer namely Eager and Ren-
dezvous. Eager mode is used to transmit small
messages over either the RDMA or send/receive.
It is based on copy-in (sender side) and copy-out
(receiver side), thus utilizing the pre-registered
(locks in physical memory) MPI internal buffers
as “communication buffers”. The Rendezvous
mode of communication is utilized for transfer-
ring large messages. The cost of copying large
messages into MPI internal buffers is prohibitive.
Instead, the Rendezvous mode directly registers
the application buffer and directly sends the mem-
ory contents to the receiving process’s memory
location. Thus, the Rendezvous mode can achieve
zero-copy data transfer.

Eager mode communication is divided into
RDMA and send/receive channels. The RDMA
channel [10] is the highest performing one out
of them. This channel dedicates a certain num-
ber of buffers per connection. These buffers are
used in a cyclic manner. These buffers are allo-
cated duringMPI Init and the virtual addresses
and memory keys are exchanged. Each process
maintains a window of RDMA buffers with ev-
ery other remote process for flow control. These
buffers will be called “RDMA Buffers” in the rest
of the paper.

The Send/Receive channel is used as a backup,

in case the RDMA channel is unavailable for
some reason (e.g., filled up with unexpected mes-
sages). This channel requires pre-posting a cer-
tain number of buffers for each QP connection
during MPI Init . When a certain threshold of
messages is exceeded on any connection, a larger
set of buffers are posted for that connection. The
buffers used for Send/Receive are pre-allocated
and registered duringMPI Init . These buffers
will be called the “Send/Receive buffers” for the
rest of the paper. To facilitate the easy manage-
ment and to avoid runtime registration of these
buffers, they are organized in a large pool (which
is shared between all the connections) of typically
thousands of small buffers. These buffers will be
referred to as “Buffer Pool” in the rest of the pa-
per.

3 SRQ Based MPI design: Is it Bene-
ficial?

3.1 Limitations in Current Design

In Section 2.2 we described the design
of MVAPICH. MVAPICH is based on the
connection-oriented reliable transport of Infini-
Band utilizing both RDMA and Send/Receive
channels. In order to communicate using these
channels, it has to allocate and dedicate buffers to
each remote process. This means that the mem-
ory consumption grows linearly with the number
of processes. Although the number of buffers per
process can be tuned (at runtime), and MVAPICH
has scaled well for contemporary InfiniBand clus-
ters, the next-generation InfiniBand clusters are in
the order of tens-of-thousands of nodes. In order
for MVAPICH to scale well for these clusters, the
linear growth of memory requirement with num-
ber of processes has to be removed.

Adaptive buffer management is a mechanism
by which the MPI can control the amount of
buffers available for each connection during run-
time based on message patterns. However, there
are several problems with this mechanism when



implemented on top of the Send/Receive and
RDMA channels:

• Send/Receive Channel: This channel al-
lows us to choose how many buffers are
posted on it dynamically. However, buffers
once posted on a receive queue cannot be re-
called. Hence, posted buffers on idle connec-
tions lead to wasted memory. This problem
exacerbates memory consumption issues in
large scale applications that run for a very
long time. In addition, if MVAPICH is very
aggressively tuned to run with low number of
buffers per Send/Receive channel, this will
lead to performance degradation. This is be-
cause the Send/Receive channel is based on
window-based flow control mechanism [9].
Reducing the window in order to reduce
memory consumption hampers the message
passing performance.

• RDMA Channel: This channel allows very
low-latency message passing. However, the
allocation of buffers for every connection is
very rigid. The cyclic window of buffers
(Section 2.2) needs to be contiguous mem-
ory. If not, then another round of address
and memory key exchange (extra overhead)
is required. Recalling of RDMA buffers is
possible from any connection, but there is
an additional overhead of informing remote
nodes about the reduced memory they have
with the receiving process. This process can
lead to some race conditions which have to
be eliminated using further expensive atomic
operations, thus, leading to high overheads.

Thus, in order to improve the buffer usage scal-
ability of MPI while preserving high-performance
we need to explore a different communication
channel.

3.2 Benefits of SRQ

Since we aim to remove the dependence of
number of communication buffers with the num-

ber of MPI processes, we need to look at con-
nectionless models. As described in Section 2.1,
InfiniBand provides two kinds of connectionless
transport. One is Reliable Datagram (RD) and
the other is Unreliable Datagram (UD). Unfortu-
nately, Reliable Datagram is not implemented in
any InfiniBand stack (to the best of our knowl-
edge), so that rules out this option. UD can pro-
vide the scalable features, but the MPI design
would now have to provide reliability. This will
add to the overall cost of message transfers, and
may result in loss of high-performance. In addi-
tion, UD does not support RDMA features, which
are needed for zero-copy message transfer, thus
further degrading performance.

Shared Receive Queues (SRQ) provides a
model to efficiently share receive buffers across
connections whilst maintaining the good perfor-
mance and reliability of a connection oriented
transport. Thus, the SRQ is a good candidate for
achieving scalable buffer management.

Figure 2 shows the difference between the
buffer organization schemes for MVAPICH and
the new proposed design based on SRQ.

3.3 Reduced Memory Consumption with SRQ

In order to fully understand the impact of the
memory usage model of our proposed SRQ based
design, we construct an analytical model of the
memory consumption by MPI internal buffers.

There are several components of the memory
consumed during startup. The major compo-
nents are memory consumed by the Buffer Pool,
RDMA channel, Send/Receive channel and the
memory consumed by the InfiniBand RC connec-
tions themselves.

The size of the Buffer Pool is given by the prod-
uct of the number of buffers in the pool and the
size of each buffer.

Mbp = Npool ∗ Sbuf (1)

Where, Mbp is the amount of memory con-
sumed by the Buffer Pool,Npool is the number
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Figure 2. Comparison of Buffer Management Models

of buffers in the pool andSbuf is the size of each
buffer.

The memory consumed by MVAPICH-
SR (tuned version of MVAPICH using only
Send/Receive channel) is composed of three
parts, the memory consumed by the Buffer Pool
and the memory consumed by each connection
and the Send/Receive buffers.

Msr = Mbp + (Mrc + Nsr ∗ Sbuf) ∗ Nconn (2)

Where, Msr is the amount of memory con-
sumed by MVAPICH-SR,Mrc is the memory
needed for each InfiniBand connection by HCA
driver,Nsr is the number of Send/Receive buffers
for each connection andNconn is the total number
of connections.

MVAPICH-RDMA (default version of MVA-
PICH using both RDMA and Send/Receive chan-
nels) consumes all the memory as MVAPICH-SR
and in addition, allocates RDMA buffers for each
connection. The RDMA channel also needs to
keep dedicated send buffers per connection [10].
Hence, the amount of dedicated buffers per con-
nection doubles.

Mrdma = Msr + 2 ∗ Nrdma ∗ Sbuf ∗ Nconn (3)

Where,Mrdma is the amount of memory con-
sumed by MVAPICH-RDMA andNrdma is the
number of RDMA buffers per connection.

Finally, the MVAPICH-SRQ (our proposed
SRQ based design) only needs to allocate the
Buffer Pool and a fixed number of buffers for
posting to the SRQ.

Msrq = Mbp + Mrc ∗ Nconn + Nsrq ∗ Sbuf (4)

Where, Msrq is the memory consumed by
MVAPICH-SRQ andNsrq is the number of SRQ
buffers.

Analyzing Equations 2, 3 and 4, we observe
that the memory requirement by MVAPICH-SRQ
is much lesser if the number of connections is
very large.

4 Proposed SRQ Based MPI Design

In this section we present the design challenges
associated with SRQ based MPI design. The
SRQ mechanism achieves good buffer scalabil-
ity by exposing the same set of receive WQEs
to all remote processes on a first come first serve
(FCFS) basis. However, in this mechanism, the
sending process lacks a critical piece of informa-
tion: number of available receive buffers at the



receiver. In the absence of this information, the
sender can overrun the available buffers in the
SRQ. To achieve optimal message passing perfor-
mance, it is critical that this situation is avoided.
In the following sections, we propose our novel
design which enables the benefits provided by
SRQ, while avoiding senders from over-running
receive buffers.

4.1 Proposed SRQ Refilling Mechanism

A high-performance MPI design often requires
the MPI progress engine to be polling to achieve
the lowest possible point-to-point latency. MVA-
PICH is thus based on a polling progress engine.
Ideally, we would like to maintain the polling na-
ture of the MPI for the SRQ based design. How-
ever, in this polling based design, MPI can only
discover incoming messages from the network
when explicit MPI calls are made. This increases
the time intervals in which MPI can check the
state of the SRQ. Moreover, if the MPI applica-
tion is busy performing computation or involved
in I/O, there can be prolonged periods in which
the state of SRQ is not observed by the MPI. In
the meantime, the SRQ might have become full.
In order to efficiently utilize SRQ feature, we
must avoid this situation. Broadly, three design
alternatives can be utilized: Explicit acknowl-
edgement from receiver, Interrupt based progress
and Selective interrupt based progress.

4.1.1 Explicit Acknowledgement from Re-
ceiver

In this approach, the sending processes can be
instructed to refrain from sending messages to a
particular receiver unless they receive an explicit
OKTO SENDmessage after everyk messages.
Arrival of the OKTO SENDmessage means that
the receiver has reservedk buffers in a dedicated
manner for this sender and allows the sender to
sendk more messages. Wherek is a threshold of
messages that can be tuned or selected at runtime.
This scheme can avoid the scenario in which the

sender completely fills up the receiver queue with
messages. This scheme is illustrated in Figure 3.
However, this scheme suffers from a couple of
critical deficiencies:

1. Waste of Receive Buffer:Since in this de-
sign alternative we reservek buffers for a
specific sender if the sender does not have
more messages to send the memory resource
for the reserved buffers can be wasted.
To prevent this problem, if we reduce the
value of k, we cannot achieve high band-
width because the sender should wait the
OKTO SENDmessage for every few mes-
sages.

2. Early throttling of senders: Even though
not all senders may be transmitting at the
same time, a particular sender may sendk

messages and then be throttled until the re-
ceiver sends theOKTO SENDmessage. If
the receiver is busy because of a compu-
tation, the sender blocks until the receiver
operates the progress engine and sends the
OKTO SENDmessage.

. .
 .

. .
 .

Sender Receiver

k

Buffer Reservation
for the next k sends
from the senderOK_TO_SEND

Figure 3. Explicit ACK mechanism

4.1.2 Interrupt Based Progress

As mentioned earlier in this section, if the MPI
application is busy performing computation or
I/O, it cannot observe the state of the SRQ. In
this design approach, the progress engine of the



MPI is modified so as to explicitly request an in-
terrupt before returning execution control to the
MPI application. If there is an arrival of a new
message, the interrupt handler thread becomes ac-
tive and processes the message along with refill-
ing the SRQ. The Figure 4 illustrates this design
alternative.

This approach can effectively avoid the situa-
tion where the SRQ is left without any receive
WQEs. However, this approach also has a limi-
tation. There is now an interrupt on arrival of any
new message when the application is busy com-
puting. This can cause increased overhead and
lead to non-optimal performance. In addition, we
note that the arrival of the next message as such is
not a critical event. There may be several WQEs
still available in the SRQ. Hence, most of the in-
terrupts caused by this mechanism will be unnec-
essary.

Sender Receiver

Interrupt &
Buffer Posting

Figure 4. Interrupt Based Progress

4.1.3 Selective Interrupt Based Progress

In this design alternative, we try to minimize the
number of interrupts to the bare minimum. In-
finiBand provides an asynchronous event associ-
ated with a SRQ calledSRQLIMIT REACHED.
This asynchronous event is fired when a low “wa-
termark” threshold (preset by the application) is
reached. This event allows the application to act
accordingly. In our case, we can utilize this event
to trigger a thread to post more WQEs in the SRQ.
The Figure 5 demonstrates the sequence of oper-

ations. In step 1, the remote processes send mes-
sages to the receiver. In step 2, the arrival of a
new message causes the SRQ WQE count to drop
below the limit (as shown by the grayed out re-
gion of the SRQ). In step 3, the thread designated
to handle this asynchronous event (called LIMIT
thread from now on) becomes active. In step 4,
the LIMIT thread posts more WQEs to the SRQ.
It should be noted that as soon as a SRQ WQE is
consumed it is directly moved to the completion
queue (CQ) by the HCA driver.
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Figure 5. SRQ Limit Event Based Design

This design alternative meets our design cri-
teria and causes minimum interference with the
MPI application. Hence, we choose this design
alternative for our SRQ based MPI design.

4.2 Proposed Design of SRQ Limit Threshold

As mentioned in Section 4.1.3, we utilize the
SRQLIMIT REACHEDasynchronous event pro-
vided by InfiniBand. This event is fired when a
preset limit is reached on the SRQ. In order to
achieve an optimal design, we need to make sure
that the event is: a) not fired too often and b) has
enough time to post buffers so that SRQ is not left
empty.

In order to calculate a reasonable low water-
mark limit, we need to find out the rate at which
the HCA can fill up receive buffers. We can
find out this information in a dynamic manner by
querying the HCA. In addition to that, we need
to find out the time taken by the LIMIT thread to



become active. For finding out this value, we de-
sign an experiment, as illustrated in Figure 6. In
this experiment, we measure the round-trip time
using SRQ (marked ast1). The subsequent mes-
sage triggers the SRQ LIMIT thread which replies
back with a special message. We mark this time
ast2. The LIMIT thread wakeup latency is given
by: (t2−t1). On our platform, this is around 12µs.

Sender Receiver

LIMIT
Thread

t 1

t 2

Figure 6. LIMIT Thread Wakeup Latency

Thus, we can calculate the minimum low wa-
termark limit as:

Watermark =
BW ∗ 103

MinPacketSize
∗ twakeup (5)

Where,BW is the maximum bandwidth sup-
ported by the HCA is Gb/s,MinPacketSize is
the minimum packet size of MPI messages in
bits andtwakeup is the time taken by the LIMIT
thread to wake up in microseconds. For our ex-
perimental platform (described in Section 5), the
Watermark value is 300. In addition to the
MPI library, another utility will be distributed
which can automatically calculate the value of the
Watermark value on the MPI library user’s plat-
form. The user can then simply plug in this value
in the MPI application’s environment, from where
it will be picked up by the MPI library.

5 Experimental Evaluation

In this section we evaluate the memory usage
and performance of our MPI with SRQ design

over InfiniBand. We first introduce the experi-
mental environment, and then compare our design
with MVAPICH in terms of memory usage and
application performance. We also show the im-
portance of flow control in using SRQ.

The default configuration of MVAPICH is to
use a set of pre-registered RDMA buffers for
small and control messages as described in sec-
tion 2. In our performance graphs we call this
configuration “MVAPICH-RDMA”. MVAPICH
can also be configured to use “Send/Receive”
buffers for small and control messages. We also
compared with this configuration, and it is called
“MVAPICH-SR” in the graphs. We have incorpo-
rated our design into MVAPICH, and it is called
“MVAPICH-SRQ”.

5.1 Experimental Environment

Our testbed cluster consists of 8 dual Intel
Xeon 3.2GHz EM64T systems. Each node is
equipped with 512MB of DDR memory and PCI-
Express interface. These nodes have MT25128
Mellanox HCAs with firmware version 5.1.0. The
nodes are connected by an 8-port Mellanox Infini-
Band switch. The Linux kernel used here is ver-
sion 2.6.13.1. Open-IB Gen2 [15] is installed on
all nodes.

5.2 Startup Memory Utilization

In this section we analyze the startup mem-
ory utilization of our proposed designs as com-
pared to MVAPICH-RDMA and MVAPICH-SR.
In our experiment, the MPI program starts up and
goes to sleep afterMPI Init . Then we use the
UNIX utility pmap to record the total memory
usage of any one process. The same process is
repeated for MVAPICH-RDMA, MVAPICH-SR
and MVAPICH-SRQ. The results are shown in
Figure 7.

Observing Figure 7, we can see that
MVAPICH-RDMA scheme consumes the
most memory. Since the RDMA buffers are
dedicated to each and every connection, the
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Figure 7. Memory Utilization Experiment

memory requirement grows linearly as number of
processes. On the other hand, the MVAPICH-SR,
as described earlier in this section is a highly-
tuned version of MVAPICH using Send/Receive
channel. This uses the same amount of memory
as MVAPICH-SRQ. This is because the number
of actual processes running is not enough for the
per connection buffer posting to empty theBuffer
Pool. If the number of processes is increased
to a few hundred, then MVAPICH-SR will
consume more memory than MVAPICH-SRQ.
MVAPICH-SRQ just requires the same Buffer
Pool and afixed number of buffers which are
posted on the SRQ. This number does not grow
with the number of processes.

In Section 3.3, we have developed an analyt-
ical model for predicting the memory consump-
tion by MVAPICH-RDMA, MVAPICH-SR and
MVAPICH-SRQ on very large scale systems. In
this section, we will first validate our analytical
model and then use this to extrapolate memory
consumption numbers on much larger scale sys-
tems.

On our experimental platform and MVAPICH
configuration, the values of these parameters are:
Nrdma = 32,Nsr = 10,Npool = 5000,Sbuf = 12KB,
Mrc = 88KB. In addition, we have measured a
constant overhead of 20MB which is contributed
by various other libraries required by MVAPICH.
It is to be noted that in the experiment,Nsr is
simply taken from the Buffer Pool, so this factor
does not show up. In Figure 8 we show the error
margin of our analytical model with the measured

data. We observe that our analytical model is in-
deed quite accurate.
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Now we use this model to predict the memory
consumption on much larger scale clusters. By in-
creasing the number of connections and using the
above mentioned parameter values, we extrapo-
late the memory consumption for each of the three
schemes. The results are shown in Figure 9.
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Figure 9. Estimation of memory consumption
on very large clusters

5.3 Flow Control

In this section we present the importance of
having flow control in using SRQ. We designed a
micro-benchmark to illustrate it. The benchmark
includes two nodes. The receiver first posts non-
blocking receives (MPI Irecv ), and then starts
computing. While the receiver is busy computing,
the sender sends a “burst size” number of mes-
sages to the receiver. After the receiver finishes
computing, it callsMPI Waitall to finally get



all the messages. We record the time the receiver
spends inMPI Waitall as an indication of how
well the receiver can handle the incoming mes-
sages while it is computing.

Figure 10 shows the experimental results. We
used the selective interrupt based approach for
flow control as described in section 4.1.3. We
can easily see from the graph that MVAPICH-
SRQ without flow control can handle messages
as well as MVAPICH-SRQ with flow control up
to burst size around 250. After that, the line
of MVAPICH-SRQ without flow control goes up
steeply, which means the performance becomes
very bad. As we discussed in section 4.1, without
flow control the receiver can only update (refill)
the SRQ when it calls the progress engine. In this
benchmark, since the receiver is busy computing,
it has no means to detect the SRQ is full, so the
incoming messages get silently dropped. Only af-
ter computation, the receiver can resume to re-
ceive messages, but it has already lost computa-
tion/communication overlap and the network traf-
fic becomes messy because of the sender retries.
MVAPICH-SRQ with flow control, however, can
handle a large “burst size” number of messages,
and it doesn’t add much overhead. In later sec-
tions MVAPICH-SRQ refers to MVAPICH-SRQ
with selective interrupt based flow control.
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Figure 10. MPI Waitall Time comparison

5.4 NAS Benchmarks

In this section we present the performance of
MVAPICH-SRQ by using NAS Parallel Bench-

marks [2], Class A. We conducted experiments
on 16 processes. Figures 11 and 12 show
the total execution time of MVAPICH-RDMA,
MVAPICH-SR, and MVAPICH-SRQ.

From these two graphs we can see that for
all benchmarks MVAPICH-SRQ performs almost
exactly the same as MVAPICH-RDMA, which
means using MVAPICH-SRQ we can dramati-
cally reduce memory usage while not sacrificing
performance at all. Looking at MVAPICH-SR,
however, we can see that for LU, it performs 20%
worse than MVAPICH-SRQ. This is because LU
uses a lot of small messages, and in MVAPICH-
SR, the sender will be blocked if it doesn’t have
enough credits from the receiver, as described in
section 3.1. This is not a problem in MVAPICH-
SRQ, because the sender can always send without
any limitations. Similarly we can see a 5% per-
formance difference between MVAPICH-SR and
MVAPICH-SRQ for SP.

Comparing the performance of MVAPICH-
SRQ and MVAPICH-SR, we find that although
MVAPICH-SR can also reduce memory usage
compared with MVAPICH-RDMA, it leads to
performance degradation, so MVAPICH-SRQ is
a better solution.
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5.5 High Performance Linpack

In this section we carry out experiments using
the standard High Performance Linpack (HPL)
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Figure 12. NAS Benchmarks Class A Total Ex-
ecution Time (CG, EP, FT, IS, MG)

benchmark [4]. HPL stresses various components
of a system including memory usage. For ev-
ery system there is a limit for problem size based
on the total amount of physical memory. The
benchmark cannot run if the problem size goes
beyond the limit. Figure 13 shows the perfor-
mances of MVAPICH-RDMA, MVAPICH-SR,
and MVAPICH-SRQ, in terms of Gflops.

From this graph we can see that MVAPICH-SR
and MVAPICH-SRQ perform comparably with
MVAPICH-RDMA for problem size from 10000
to 15000. For some problem sizes, such as
11000, 12000, and 13000, MVAPICH-SR and
MVAPICH-SRQ perform even 10% better than
MVAPICH-RDMA. This is because MVAPICH-
RDMA needs to poll RDMA buffers of each con-
nection when it makes communication progress.
This polling wastes CPU cycles and pollutes
cache content.

It is to be noted that for problem size 16000, the
result for MVAPICH-RDMA is missing. This is
because the memory usage of MVAPICH-RDMA
itself is so large that the benchmark doesn’t have
enough memory to run. In other words, the prob-
lem size limit for MVAPICH-RDMA is around
15000. MVAPICH-SR and MVAPICH-SRQ,
however, continue to give good performance as
the problem size increases. Our system size is
not large enough to show that MVAPICH-SRQ
scales better than MVAPICH-SR. On a much

larger cluster we will also be able to show that
MVAPICH-SR has a smaller problem size limit
than MVAPICH-SRQ.
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Figure 13. High Performance Linpack

6 Related Work

To reduce resource usage, P. Gilfeather and
A. Maccabe proposed connection-less TCP [5].
They discussed issues in dynamically activating
and deactivating TCP connections based on the
need. But their paper mainly focused on con-
nection management while this paper focuses on
designing a Shared Receive Queue based buffer
management.

Scalability limitations of VIA-based technolo-
gies in supporting MPI are discussed in [3]. In
that paper the authors analyzed various issues that
might prevent the system to scale. In this paper
we propose to use Shared Receive Queue as a so-
lution to improve memory usage scalability.

Many messaging libraries provide connection-
less services to minimize memory resource allo-
cation, such as GM [12], AM [17], and VMI [16].
But to the best of our knowledge they don’t pro-
vide Shared Receive Queue.

7 Conclusion and Future Work

In this paper, we have proposed a novel Shared
Receive Queue based Scalable MPI design. Our
designs have been incorporated into MVAPICH



which is a widely used MPI library over In-
finiBand. Our design uses selective interrupts
to achieve efficient flow control and utilizes the
memory available to the fullest extent, thus dra-
matically improving the system scalability. In ad-
dition, we also proposed an analytical model to
predict the memory requirement by the MPI li-
brary on very large clusters (to the tune of tens-
of-thousands of nodes).

Verification of our analytical model reveals that
our model is accurate within 1%. Based on this
model, our proposed designs will take 1/10th
the memory requirement as compared to the de-
fault MVAPICH distribution on a cluster sized at
16,000 nodes. Performance evaluation of our de-
sign on our 8-node PCI-Express shows that our
new design was able to provide the same perfor-
mance as the existing design utilizing only a frac-
tion of the memory required by the existing de-
sign. In comparison to tuned existing designs our
design showed a 20% and 5% improvement in ex-
ecution time of NAS Benchmarks (Class A) LU
and SP, respectively. The High Performance Lin-
pack [4] was able to execute a much larger prob-
lem size using our new design, whereas the exist-
ing design ran out of memory.

We will continue working in this research area.
We want to evaluate our design on a larger Infini-
Band cluster. In addition to that we want to ex-
plore reliable data transfer mechanisms over Un-
reliable Datagram to achieve scalability for ultra-
scale clusters (hundreds-of-thousands of nodes).
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