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Abstract— This paper proposes a novel strategy that uses
hypergraph partitioning and K-way iterative mapping-refinement
heuristics for scheduling a batch of data-intensive tasks with
batch-shared I/O behavior on heterogeneous collections of storage
and compute clusters. The strategy formulates the sharing of files
among tasks as a hypergraph to minimize the I/O overheads
due to transferring of the same set of files multiple times and
employs a K-way iterative mapping-refinement scheme to adapt
to the heterogeneity of compute clusters and storage networks
in the system. We evaluate the proposed approach through real
experiments and simulations on application scenarios from two
application domains; satellite data processing and biomedical
imaging. Our experimental results show that our approach can
achieve significant performance improvement over algorithms
such as HPS, Shortest Job First, MinMin, MaxMin and Sufferage
for workloads with high degree of shared I/O among tasks.

I. I NTRODUCTION

Data-driven approaches that make use of large datasets
to solve complex problems in science and engineering have
become increasingly important. Data analysis is a key com-
ponent in data-driven science and engineering to gain a better
understanding of the problem under study and to more effi-
ciently refine the search space for solutions. A data analysis
application accesses and processes a subset of a dataset. Most
scientific datasets are stored in files. A request for the region
of interest specifies a subset of data files and/or segments in
data files – either as part of the input parameters or after an
index lookup, which finds the files and file segments that can
address the request. The data of interest is retrieved from the
storage system and transformed into a data product, which is
more suitable for examination by the scientist.

This paper looks at the problem of scheduling a batch of
data analysis tasks withbatch-shared I/O behavior [21] in
a heterogeneous environment. Our goal is to minimize the
execution time of the batch. The target environment consists of
a heterogeneous collection of compute clusters connected over
switched/shared network(s) to one or more storage clusters
with different I/O bandwidths. We expect that such configura-
tions will increasingly be common in supercomputing centers
(hence in Grids) as the capacity of commodity disks continues
to increase and their cost per gigabyte to decrease.

We propose a two-stage scheduling heuristic based on
hypergraph partitioning and a K-way iterative mapping refine-
ment scheme. The proposed heuristic formulates the sharing
of files among tasks in the batch as a hypergraph. In the first

stage, an initial mapping of tasks to compute nodes is com-
puted without taking the system heterogeneity into account
and then this initial mapping is refined using hill-climbing
based K-way iterative mapping heuristics that take system
heterogeneity into account. In the second phase, tasks thatare
mapped to compute nodes are ordered in order to minimize
end-point contention on the storage cluster. We experimentally
evaluate the proposed approach on real platforms and using
simulations with application emulators from two application
domains; analysis of remotely-sensed data and biomedical
imaging.

II. RELATED WORK

Many techniques have been developed for scheduling in
heterogeneous computing systems [1], [7], [11]. Some deal
with a single application structured as a DAG, while others
apply to globally scheduling many independent tasks. These
techniques target compute-intensive tasks with no file sharing.
Maheswaran et al. [18] considered three heuristics designed for
completely independent tasks (no input file sharing). Casanova
et al. [4] modified the MinMin, MaxMin, and Sufferage
heuristics to take into account the additional constraint of
inter-task file affinities. Their work targets the scheduling of
parameter sweep applications in a Grid environment.

The work of Giersch et al. [9] addressed the problem
of scheduling a collection of tasks sharing files onto het-
erogeneous clusters. They proposed extensions to the well-
known MinMin heuristic [10] to lower the cost of scheduling
while achieving scheduling quality (i.e., batch executiontime)
similar to that of MinMin. Our work differs from their work
in that we investigate whether the quality of scheduling can
be improved with the proposed algorithms.

In our recent work [15], we looked at the problem of
scheduling tasks exhibiting batch-shared I/O behavior on ho-
mogeneous clusters. We modeled the file-sharing in tasks using
a hypergraph approach and employed hypergraph partitioning
to get a load-balanced cut-minimized partitioning of tasksonto
compute nodes. That approach inherently looked at homoge-
neous platforms. Our current work targets truly heterogeneous
environments and uses efficient mapping refinement heuristics
to map tasks onto heterogeneous compute clusters.

Kaya and Aykanat have concurrently developed an iterative
improvement based heuristic for scheduling tasks sharing files
on heterogeneous systems [14]. Their work assumes a central



master file server, while we target clustered storage systems
where multiple files are accessed in parallel. The application
is modeled as a hypergraph in a way that balances the
computational load across processors. On the other hand, our
model tries to balance both computation and I/O load across
processors.

A decoupled approach to scheduling of computations and
data for data-intensive applications was proposed and evalu-
ated using a simulation testbed in [19]. However, a simple first-
come first-served scheduling strategy was used in that study.
Jain et al. [12] modeled scheduling of I/O operations (with
certain assumptions) as a bipartite graph coloring problemwith
two separate sets of nodes namely, disks and processors.

III. PROBLEM DEFINITION AND USE-CASE APPLICATIONS

Given a batch of tasks and a set of files required by these
tasks, our goal is to schedule the tasks in an efficient manner
so as to minimize the batch execution time (makespan). Tasks
in a batch may share files, i.e., the set of files required by a
task may overlap with the sets of files required by other tasks.
We target configurations consisting of coupled heterogeneous
compute and storage clusters. Data files are distributed across
storage clusters. Storage clusters are connected to a hetero-
geneous collection of compute clusters over switched/shared
networks with differing bandwidths. Each compute cluster is a
collection of nodes which are homogeneous in their processing
capacities. Each node in a compute cluster is assumed to have
local disks and can request files from any of the storage nodes
in the system. The files required by a task are copied from
storage nodes to the compute node, to which the task has
been assigned, before the task is executed.

We have evaluated our approach using application scenarios
from two application classes; analysis of remote sensing data
and biomedical image analysis. These application scenarios
are briefly described below.

Satellite data processing.Remotely sensed data is either
continuously acquired or captured on-demand via sensors at-
tached to satellites orbiting the earth [6]. Datasets of remotely
sensed data can be organized into multiple files. Each file
contains a subset of data elements acquired within a time
period and a region of the earth surface. For instance, a dataset
in the form of a snapshot of the surface captured by a Landsat
thematic mapper satellite consists ofN files (usually 4 or
5 files), with each file corresponding to a specific sensor on
the satellite and storing data captured by the sensor withinthe
time period and surface region specified by the ground control.
When multiple scientists access these datasets, there will likely
be overlaps among the set of files requested because of ”hot
spots” such as a particular region or time period that scientists
may want to study.

Biomedical Image Analysis.Biomedical imaging is a pow-
erful method for disease diagnosis and for monitoring therapy.
State-of-the-art studies make use of large datasets, which
consist of time dependent sequences of 2D and 3D images
from multiple imaging sessions. Systematic development and
assessment of image analysis techniques requires an ability

to efficiently invoke candidate image quantification methods
on large collections of image data. A researcher may apply
several different image analysis methods on image datasets
containing thousands of 2D and 3D images to assess ability to
predict outcome or effectiveness of a treatment across patient
groups.

IV. TASK SCHEDULING STRATEGIES

A. HPS, Shortest Job First, MinMin, MaxMin, and Sufferage

In this work, we compare our proposed approach against
our previous work, Hypergraph-based Scheduling Approach
(HPS) [15], which was targeting homogeneous systems. In
addition, we also investigate the performance of the modified
MinMin, MaxMin, Sufferage, and Shortest Job First (SJF)
heuristics that takes the heterogeneity into account. These tech-
niques were originally proposed for scheduling independent
computational tasks onto compute resources [10]. We employ
the algorithms as modified in [4], [3] to take into account the
time it takes to transfer input files to compute nodes and files
that have already been staged to a compute node in estimating
the minimum completion time (MCT) of a task. We briefly
describe these algorithms in this section.

Hypergraph Partitioning Based Scheduling (HPS).HPS
formulates the sharing of files (batch-shared I/O) among
tasks as a hypergraph and clusters the tasks into groups via
hypergraph partitioning. Each group is mapped to a compute
processor in the system. The scheduling problem is translated
into a load-balanced cut minimizing hypergraph partitioning
problem. However, HPS formulation does not take heterogene-
ity into account.

Shortest Job First (SJF). SJF orders tasks in increasing
order of their expected execution times. The execution timeof
a taskti is calculated as the sum of the time it takes to transfer
files needed forti (assuming all files have to be transferred
from the remote storage) and the execution time for processing
the files. The task with the least expected execution time is
scheduled on the next processor that becomes idle.

MinMin. This algorithm computes the minimum comple-
tion time (MCT) of each task on each node in the system.
Among the unscheduled tasks in the batch, it chooses the task
that can complete the earliest and assigns it to the node that
can execute that task fastest. When computing the MCT of a
task on a node, MinMin takes into account the files already
available on the node and the files that will be staged onto
that compute node by currently running tasks.

MaxMin. As in MinMin, the MaxMin strategy computes
the MCT of a task on each node in the system. However,
among unscheduled tasks, it chooses the task with the maxi-
mum MCT.

Sufferage. The underlying idea is that the system should
execute the task that willsuffer the most if the task is not
assigned to the host that will execute the task fastest. The
sufferage of a task is computed as the difference between the
task’s best MCT and its second best MCT. Among unsched-
uled tasks, Sufferage chooses the task with highest sufferage
and assigns it to the node that will achieve the best MCT for
the task.



B. A Hypergraph-based Scheduling Heuristic for Heteroge-
neous Systems (Het-HPS).

We propose a two-stage heuristic for scheduling tasks with
batch-shared I/O on heterogeneous systems. The first stage
consists of hypergraph partitioning-based mapping of tasks to
the compute nodes. The second stage is the ordering of tasks
on each compute node. Here we will first present a very brief
introduction to hypergraph partitioning and the stages of our
scheduling algorithm will follow.

1) Hypergraph Partitioning: Hypergraphs are mostly used
for VLSI layout placement [17] and modeling the computa-
tional structure of parallel applications [5]. Their success in
parallel and distributed computing area stems from the fact
that they can model asymmetric dependencies and the total
volume of communication as a cut metric [5]. A hypergraph
H=(V,N ) is defined as a set of verticesV and a set of nets
(hyper-edges)N among those vertices. Every netnj ∈ N
is a subset of vertices, i.e.,nj ⊆ V . The size of a netnj

is equal to the number of vertices it has, i.e.,sj = |nj | .
Weights (wi ) and costs (cj ) can be assigned to the vertices
(vi ∈V ) and edges (nj ∈N ) of the hypergraph, respectively.
P = {V1, V2, . . . , VP } is a P-way partitionof H if 1) each
part is a nonempty subset ofV , 2) parts are pairwise disjoint
and 3) union ofP parts is equal toV . In a partitionP of
H , a net nj is said to becut if it connects more than one
parts. The hypergraph partitioning problem can be defined as
the task of dividing a hypergraph into two or more parts such
that the cutsize is minimized, while a given balance criterion
among the part weights is maintained. Algorithms based on
themulti-level paradigm, such as hMETIS [13] and PaToH [5],
have been shown to compute good partitions quickly.

2) Task Mapping: Our goal is to find a mapping of tasks
to compute nodes such that computational and I/O load of
the compute nodes and I/O load of the storage nodes are
balanced, and the total communication volume between the
storage nodes and compute nodes is minimized. Our solution
for this problem is again a two-phase approach. In the first
phase, a partitioning of tasks is done by modeling file-sharing
interaction as a hypergraph and partitioning is achieved by
assuming all the nodes are homogeneous. In the second
phase, this initial partition is refined using a K-way mapping
heuristic that takes heterogeneity into account. For the first
phase, we leverage our previous work [15] on scheduling
tasks with batch-shared I/O on homogeneous systems and
use a publicly available hypergraph partitioner, namely
PaToH [5], to compute the partitioning. For the second phase,
we propose a novelK -way iterative mapping heuristics based
on Sanchis [20] multi-way circuit partitioning algorithm.

First Phase: Hypergraph Partitioning. In hypergraph formu-
lation of bag-of-tasks, each taskti is represented by a vertex
vi in the hypergraph. Each hyper-edgenj represents a file
fj and connects the vertices that require this file as input.
Computation requirement of the taskti and size of the filefj

are used as weight of the vertexvi and cost of the netnj .
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b) Hypergraph representation
Fig. 1. Hypergraph representation of a sample batch of tasks.The numbers
indicate tasks. The letters are files required by the tasks.

An example batch of tasks and its hypergraph representation
are illustrated in Figure 1.

The estimated execution time of a task on a compute node
is calculated as the sum of I/O overhead (the transfer time of
files from storage nodes plus the I/O time to read files from
local disk) and the computation cost of the task. To employ an
existing hypergraph partitioner without any modification,we
use a probabilistic approach when computing the execution
time ExecTi of task ti as vertex weights in the partitioner.
Let the set of files a taskti needs beFi and the number of
compute nodes in the system beK . The cost of transferring
one byte of filefj , Trj , for task ti is equal to

Trj =
ProbFNE

BW
+ (1 − ProbFNE) ∗

(1 − ProbFE)

BW
(1)

Here,BW is the minimum{I/O,network} bandwidth between
any storage and compute node pair,ProbFNE is the prob-
ability that task ti will be the first task to execute in its
group that requiresfj , and ProbFE is the probability that
ti executes on a node, to which filefj has already been
transferred. In our current implementation, we assume uniform
probability distribution,ProbFNE = 1

sj
and ProbFE = 1

K
.

sj denotes the number of tasks that shares the filefj . With
the assumption that computation time is linear with the size
of the input files, the estimated execution time of taskti is
computed as

ExecTi =
∑

fj∈Fi

filesize(fj) × (Trj +
1

LBW
+ C) (2)

where LBW is the I/O bandwidth from local disk on a



compute node andC is the compute cost of one byte [15].
By assigning file sizes as hyper-edge costs and the estimated
execution times as vertex weights, the proposed method
reduces the task mapping problem to theK -way hypergraph
partitioning problem according to theconnectivity-1 cutsize
definition [5]. By using expected execution times as vertex
weights, the algorithm aims to balance computational load
across the compute nodes.

Second Phase: Refining Initial Partition. The initial par-
titioning is done assuming a homogeneous system. Hence,
it may lead to computational load imbalance and should
be refined to account for heterogeneity in the system. We
propose a directK -way mapping refinement heuristic based
on Sanchis [20] multi-way circuit partitioning algorithm.
Given an initial mapping, the algorithm iteratively refinesthe
mapping by reconsidering the assignment of each of the tasks
by tentatively moving them to different parts one by one.
Algorithm 1 outlines our mapping heuristic. The goal of the
algorithm is to minimize the overall execution time. In this
work, we modelled the total execution time as the sum of
execution time of the maximally loaded compute-node and
the I/O time of the maximally loaded storage node. That is

ExecutionT ime = max
i

Exec(Pi) + max
p

IO(Sp) (3)

where Exec(Pi) and IO(Sp) are the execution time of
compute nodei and I/O time of the storage nodep . Note
that this is an heuristic that does not take the computation and
I/O overlap into account. The algorithm selects a task, from
the most heavily loaded part, that will yield the maximum
reduction in the above mentioned cost. The amount of the
reduction is called themove-gain of that task.

The execution time of a part and I/O time of a storage node
is estimated as follows. LetP = {P1, P2, . . . , PK} be a K -
way partitioning of tasks, where eachPj be the set of tasks
allocated to partj . Let S = {S1, S2, . . . , Sm} be the set of
storage nodes. The execution time of parti , Exec(Pi) , is
the sum of two components; computation and network. The
computation componentComp(Pi) represents the aggregate
computation weight of the part in terms of the estimated time
that would be spent in computation by all the tasks belonging
to that part. The network componentNetwork(Pi) represents
the total communication weight of that part in terms of the
estimated time spent in transferring files to that part. This
component is calculated keeping in mind the fact that tasks
belonging to a part share files and a particular file needed by
multiple tasks needs to be transferred only once for that part.
The I/O cost of storage nodep , IO(Sp) , is the aggregate I/O
weight of the storage node in terms of the estimated time that
would be spent in I/O for all the files resident on that storage
node.

Exec(Pi) = Comp(Pi) + Network(Pi) (4)

Comp(Pi) =
∑

tk∈Pi

∑

ft∈Fk

filesize(ft) × (
1

LBWi

+ Ci) (5)

Algorithm 1 Direct K -way Mapping Refinement Heuristic
Input: M : Initial mapping
Output: M : Final mapping

1: BEST ← ExecutionT ime(M);
2: repeat
3: unlock all vertices
4: let s be the heavily loaded part
5: computeK−1 move gains of each vertexv in part s

6: while there exists anunlocked vertexdo
7: select an unlocked vertexv with max gain gmax

from s to processort
8: tentatively realize the move of vertexv ; M [v]← t

9: lock vertex v ;
10: update the move gains ofunlocked vertices ins

11: if ExecutionT ime(M) < BEST then
12: BEST ← ExecutionT ime(M)
13: permanently realize the moves up to current move
14: let s′ be the heavily loaded part
15: if s 6= s′ then
16: s ← s′

17: recompute K − 1 move gains of each unlocked
vertex v in part s

18: until no more improvements in execution time

Network(Pi) =
∑

fj∈Filei

filesize(fj) ×
1

NBWi,M(fj)
(6)

IO(Sp) =
∑

fj∈Sp

filesize(fj) ×
1

IBWp

(7)

Here, Files(Pi) represents the set of all the files required
by the tasks allocated to the parti , M(fj) represents the
storage node that filej is stored, IBWp represents the
I/O bandwidth available at storage nodep , and NBWi, p

represents the network bandwidth between the compute nodei

and the storage nodep . These estimates take into account
both file affinities and the fact that different compute nodes
may have different computing capacities and different network
bandwidths with the remote storage nodes. Once the execution
time of each part is computed, the part with the highest time is
chosen and all the free vertices are considered to move. After
each such move, the cost function is recomputed. If the current
value is less than the best one so far, all the moves (including
the ones with negative gain) are committed. Allowing tentative
negative moves allows the algorithm to get out off a local
optima. This procedure works in an iterative manner until no
improvement in the batch execution time is obtained.

3) Ordering of Tasks: Once the tasks are partitioned into
groups, the second phase of the scheduling algorithm is to
order tasks in each group and to schedule transfer of files
from the storage cluster to the compute cluster. Two tasks that
are in different groups may have their input files stored on the
same set of nodes. Thus, ordering of tasks in each group and
transfer of files should be done in a way to minimize end-
point contention on the storage cluster. We employ a strategy



in which tasks within a group are scheduled based on their
earliest completion time. The earliest completion time of a
task is computed iteratively and dynamically based on the
availability of resources.

The algorithm maintains an estimate of the wait times for
each of the storage nodes. The wait time of a storage node
is the earliest time at which the storage node would become
free to service a queued request. When a task in a group is
scheduled for execution, the estimated transfer cost of thetask
from each of the storage nodes is added to the wait times
associated with the corresponding storage nodes. In our model,
We assume that multiple requests to the same storage node are
multiplexed and that a compute node can receive a file after
it has finished storing the previously received file on disk.

The earliest estimated completion time for taskti is com-
puted as the sum of 1) time to stage its input files, 2) time
to read the files on local disk, and 3) cpu time to process
the files. If all of the input files are already in the compute
node, the staging time will be zero. Otherwise, it will be the
amount of time spent to transfer the required files from the
remote storage system. The staging time is computed as the
sum of the actual transfer times (size of the file divided by
the storage bandwidth) from each of the the storage nodes and
the corresponding wait times at each of those storage nodes.

When a compute node becomes idle, the task with the
earliest expected completion time in that group is executed.

V. EXPERIMENTAL RESULTS
We evaluated the scheduling algorithms through real ex-

periments and simulations, against two application classes:
satellite data processing and biomedical image analysis.

A. Application Workloads

To generate datasets for the satellite data processing ap-
plication (referred to here asSAT), we used the emulator
developed in [22]. The application [6] operates on data chunks
that are formed by grouping subsets of sensor readings that are
close to each other in spatial and temporal dimensions. In our
emulation, we assigned one data chunk per file. A satellite data
analysis task specifies the data of interest via a spatio-temporal
window. For the image analysis application (referred to here
as IMAGE ), we implemented a program to emulate studies
that involve analyses on images obtained from MRI and CT
scans (captured on multiple days as follow-up studies). An
image dataset consists of a series of 2D images obtained for a
patient and is associated with metadata describing patientand
study related information (in our case, we used patient id and
study id as the metadata). Each image in a dataset is associated
with an imaging modality and the date of image acquisition
and stored in a separate file. An image analysis program can
select a subset of images based on a set of patient ids and
study ids, image modality, and a date range.

We evaluated the system for three different types of work-
loads;high overlap, medium overlap, and low overlap, each
of which represents different amounts of file sharing among
tasks in a batch. For SAT, we simulated queries directed
to geographically distant parts of the world. Four sets of

queries were generated representing the queries directed to
4 hot spot regions. The number of queries in each set varies
from 50 for smaller workloads to 500 for bigger workloads.
Across the sets, there is no overlap between the queries, and
in each set, queries are adjusted such that for high overlap
workload, they resulted in a 85% overlap, on average, in terms
of files requested by different tasks in the batch. Similarly,
we generated medium and low overlap workloads with 40%
and 10% overlap, respectively. For IMAGE, different degrees
of overlap is achieved by varying the values of patient and
time attributes across requests by different tasks. We generated
workloads with 85%, 40%, and 0% overlap for high, medium,
and low overlap cases.

We generated 35 days worth of data, about 162 GB for
SAT. The data was distributed across the storage nodes using
a Hilbert-curve based declustering method [8]. Each file in
the dataset was 4.5 MB. In the high overlap case, each task
accessed on an average 30 files. In the medium and low overlap
cases, each task accessed on an average 8 files. For IMAGE,
the dataset generated by the emulator corresponded to a dataset
of 5000 patients and images acquired over several days from
MRI and CT scans. The sizes of images were 1 MB and
16 MB for MRI and CT scans, respectively. The overall size
of the dataset was around 330 GB. Images for each patient
were distributed among all the storage nodes in a round robin
fashion. For both application domains, the number of tasks in
a batch varied from 200 tasks for small experiments to 2000
tasks for larger experiments.

In order to create data intensive workloads which are
targeted in this paper, we set the processing time for each
task to be 0.001 seconds per Megabyte of data.

B. Performance Evaluation on Real Machines

Our experiments were carried out using two compute clus-
ters and a single storage cluster as described below. The first
system (OSC) is a compute cluster at the Ohio Supercomputer
Center. The compute cluster consists of dual-processor nodes
equipped with dual 2.4 GHz Intel P4 Xeon processors with
hyper threading, resulting in 4 virtual CPUs per node. Each
node has 4 GB of memory, 62 GB of local scratch space,
interconnected by an 8 Gbps Infiniband switch. The second is
a 5 node cluster of dual Intel P4 Xeon 2.4 GHz nodes (DC).
Each node on this cluster has 2 GB of memory and uses
switched Gigabit Ethernet for intra-cluster communication.
Using our emulator, we measured each DC node to be about
1.2 times faster than an OSC node1. The storage cluster is
a cluster of Pentium III 933 MHz nodes (OSUMED). Each
node of this cluster has 300 GB disk space and 512 MB
of memory. The disk bandwidth available on these storage
nodes varies from 18 MB/sec to around 25 MB/sec. Using
micro benchmarks, we measured the bandwidth of the shared
links between the storage cluster OSUMED and the compute
clusters OSC and DC to be around 100 Mbps.

1Even though both systems have same type of CPUs we believe that the
difference of the speed comes form hyper threading and possibly from memory
bandwidth differences of the motherboards.



(a) (b)
Fig. 2. Throughput achieved by different algorithms on 8 OSC nodes and 4 DC nodes for (a) IMAGE and (b) SAT.

(a) (b)
Fig. 3. Performance of HPS and Het-HPS with varying degrees ofnetwork heterogeneity (a) IMAGE and (b) SAT.

(a) (b)
Fig. 4. Comparison of real experiment and simulation trends on 8OSC nodes and 4 DC nodes for (a) IMAGE and (b) SAT.

(a) (b)
Fig. 5. Performance of different algorithms for IMAGE with varying number of (a) storage nodes and (b) compute nodes .



We evaluated the algorithms on configurations with different
number of compute nodes in each cluster to capture varying
degrees of heterogeneity. Figure 2 shows the relative perfor-
mance of the various scheduling schemes on workloads with
different degrees of shared I/O among tasks, for both appli-
cation classes. These experiments were conducted using 12
compute nodes (8 OSC and 4 DC nodes) and 6 storage nodes
(OSUMED) on high, medium and low overlap workloads of
200 tasks each. The results show that the proposed Het-HPS
strategy performs better than the other algorithms for most
cases. This is because the mapping heuristic groups tasks that
share files together, thus leveraging data reuse, while adapting
to the system and network heterogeneity. The performance
improvement due to the mapping heuristic is maximum for the
high overlap workload and reduces as the degree of overlap
decreases, as expected. Among the base algorithms, Sufferage
seems to perform well in most cases. For image analysis
workload, SJF seems to perform well for the case of low
overlap. This is because, in the image analysis workload, low
overlap corresponds to no sharing of files among tasks and
hence all schemes transfer the same amount of data from the
storage server. In this scenario, SJF achieves maximum load
balance among all schemes, since it implicitly balances the
load after each task completion.

In terms of scheduling time, the proposed Het-HPS algo-
rithm does comparable to MinMin, MaxMin and Sufferage
schemes. Since the focus of this work is batch execution
time, we have neither tried to optimize our implementation
of the scheduling algorithms nor we present execution times
of the scheduling algorithms. However, all of our experiments
showed that the scheduling times for all the schemes are
significantly less than the corresponding batch execution times.

The next set of experiments (Figure 3) is to demonstrate
how the proposed Het-HPS approach adapts to varying levels
of network heterogeneity. In this experiment we have used
6 storage nodes and 8 compute nodes from OSC and 4
compute nodes from DC cluster. The workload used for these
experiments was a 200 task high overlap workload. While we
keep the network bandwidth between OSUMED and OSC
at 100 Mbps, we have varied network bandwidth between
the OSUMED storage nodes and the DC compute nodes
from 100 Mbps to 400 Mbps, by transferring proportionally
smaller amounts of data to the DC nodes. The results show
that the Het-HPS scheme does better than the HPS scheme.
The performance benefit of the Het-HPS scheme over the
HPS scheme improves as the level of network heterogeneity
increases. This is expected, since the Het-HPS scheme is able
to adapt well to increasing levels of network heterogeneity.

C. Performance Evaluation through Simulations

We used simulations to understand the performance of
the various scheduling schemes on larger systems. We ran
our simulations using theSimgrid Toolkit [2], [16]. This
toolkit implements event-driven simulation of applications on
heterogeneous distributed systems. It models a resource by
two performance characteristics: latency (time to access the

resource) and service rate (number of work units performed
per time unit). It also provides the flexibility of modelling
time-shared resources like shared links and different topolo-
gies. In our simulations, we used version 2.18.5 of this toolkit.
Since Simgrid does not provide an abstraction for disk, we
modelled the disk as a shared link (with bandwidth equal to
disk bandwidth) which is time-sliced. Each task was modelled
as a set of data transfer tasks to stage necessary files from
the remote storage, followed by a computation task which
simulates processing of the input files.

For the purpose of validating the simulations, we simulated
a hardware configuration similar to the experimental setup for
the real experiments. We simulated two clusters, ClusterA
and ClusterB. ClusterA simulated the configuration of the
OSC cluster and ClusterB simulated the configuration of the
DC cluster. Nodes within each cluster are homogeneous in
terms of processing capability and local disk bandwidth. The
networks between compute clusters (ClusterA and ClusterB)
and the storage nodes is simulated as two separate 100 Mbps
links. The heterogeneity in the network comes from different
number of nodes in each of the clusters which means that the
bandwidth seen by a node of ClusterA and a node of ClusterB
differ. This is because all the nodes of a compute cluster share
the link to the storage cluster and thus, in the worst case, the
bandwidth is shared by all of them. Nodes in ClusterB are 1.2
times faster in processing capability than those in ClusterA.
Figure 4 shows the comparison between the real experiments
and the simulated results for both application domains. We see
that the relative trends of the simulated results closely follow
those of the real experiments even though the absolute values
vary slightly.

To analyze the performance of our scheduling strategy with
respect to the varying number of storage and compute nodes
in the system, we ran simulations of high overlap workloads
of 2000 IMAGE tasks using a 4 compute cluster configuration,
and the results are presented in Figure 5. The network band-
width between the compute clusters and the storage cluster
was simulated to be in the ratio 1:4 for the compute cluster
with the slowest network to the compute cluster with the fastest
network. The simulated network bandwidth values varied from
12.5 MB/sec to 50 MB/sec. The disk bandwidth in these
simulations was taken to be as 40 MB/sec. The number
of compute nodes in each cluster were taken to be as 4.
Figure 5(a) shows the performance of the various scheduling
algorithms as the number of storage nodes in the system are
scaled. The results show that as the number of storage nodes
increase, the performance of all the algorithms improves only
slightly. The reason is that in these simulations, the network
is the bottleneck since, even the fastest network bandwidth
of 50 MB/sec between one of the compute clusters and the
storage clusters is shared among 4 compute nodes. Thus,
increasing the number of storage nodes does not quite yield the
benefit of distributing the data across more storage nodes. The
results however, do show that the proposed Het-HPS scheme
performs significantly better than all the other schemes as the
number of storage nodes in the system increase. Figure 5(b)



Fig. 6. Comparison of real experiments and simulations for different
algorithms with varying number of compute nodes for IMAGE.

shows the simulation results while varying the number of
compute nodes to 4, 8 and 16 in each cluster. The number
of storage nodes in these simulations was 6. The proposed
Het-HPS algorithm gives roughly 280% improvement over
the base algorithms (SJF, MinMin, MaxMin and Sufferage)
and 40% over the HPS algorithm. The results show that the
throughput values do not scale well as the the number of
compute nodes per cluster increase. This is because as the
number of compute nodes per cluster increase, there is a
greater degree of contention on the shared link between the
compute cluster and the storage cluster.

In order to validate the above mentioned claim, we ran both
real experiments and simulations for the 2-cluster configura-
tion (OSC and DC), by varying the number of OSC compute
nodes from 4 to 16 and keeping the number of compute nodes
of DC fixed at 4. Figure 6 shows the comparison between the
real experiments and the simulated results for IMAGE. We see
that the relative trends of the simulated results closely follow
those of the real experiments and hence validates our claim.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents a novel strategy for scheduling a
collection of data intensive tasks with batch-shared I/O on
heterogeneous systems. The performance results obtained on
real machines and through simulations show that our strat-
egy achieves significant performance improvement over HPS,
SJF, MinMin, MaxMin and Sufferage. The base schemes
like MinMin and Sufferage look at each task-host pair in
isolation for making scheduling decisions and do not explicitly
consider inter-task dependencies arising out of file-sharing.
Our proposed approach, on the other hand, maps tasks to
processors based on a global view of the tasks and their file
sharing behavior. In comparison to our earlier work HPS, HPS
only looks at task-file affinities without taking into account
any system heterogeneity whereas our new approach Het-
HPS models the system heterogeneity, resulting in significantly
better schedules on systems with diverse resources.

REFERENCES

[1] T. D. Braun, H. J. Siegel, N. Beck, L. L. B̈olöni, M. Maheswaran, A. I.
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