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Abstract— This paper proposes a novel strategy that uses stage, an initial mapping of tasks to compute nodes is com-
hypergraph partitioning and K-way iterative mapping-refinement  puted without taking the system heterogeneity into account
heuristics for scheduling a batch of data-intensive tasks with and then this initial mapping is refined using hill-climbing

batch-shared I/0 behavior on heterogeneous collections of stoge based K iterati ina heuristics that tak ¢
and compute clusters. The strategy formulates the sharing of file 2S€d K-way leralive mapping heunstcs that take system

among tasks as a hypergraph to minimize the 1/O overheads heterogeneity into account. In the second phase, tasksutbat
due to transferring of the same set of files multiple times and mapped to compute nodes are ordered in order to minimize
employs a K-way iterative mapping-refinement scheme to adapt end-point contention on the storage cluster. We experiafignt

to the heterogeneity of compute clusters and storage networks evaluate the proposed approach on real platforms and using
in the system. We evaluate the proposed approach through real _. lati ith licati lat f ¢ licati
experiments and simulations on application scenarios from two simu "?‘ 1ons wi _app ICalion emuiators from two apP' : .
application domains; satellite data processing and biomedical domains; analysis of remotely-sensed data and biomedical

imaging. Our experimental results show that our approach can imaging.
achieve significant performance improvement over algorithms
such as HPS, Shortest Job First, MinMin, MaxMin and Sufferage Il. RELATED WORK

for workloads with high degree of shared I/O among tasks. Many techniques have been developed for scheduling in

heterogeneous computing systems [1], [7], [11]. Some deal
with a single application structured as a DAG, while others
Data-driven approaches that make use of large datasspply to globally scheduling many independent tasks. These
to solve complex problems in science and engineering haeghniques target compute-intensive tasks with no fileispar
become increasingly important. Data analysis is a key comtaheswaran et al. [18] considered three heuristics degifpre
ponent in data-driven science and engineering to gain abettompletely independent tasks (no input file sharing). Cagan
understanding of the problem under study and to more eféit al. [4] modified the MinMin, MaxMin, and Sufferage
ciently refine the search space for solutions. A data arslysieuristics to take into account the additional constraint o
application accesses and processes a subset of a dataset. Mter-task file affinities. Their work targets the schedaliof
scientific datasets are stored in files. A request for theoregiparameter sweep applications in a Grid environment.
of interest specifies a subset of data files and/or segments iThe work of Giersch et al. [9] addressed the problem
data files — either as part of the input parameters or after @ scheduling a collection of tasks sharing files onto het-
index lookup, which finds the files and file segments that canogeneous clusters. They proposed extensions to the well-
address the request. The data of interest is retrieved fr@m known MinMin heuristic [10] to lower the cost of scheduling
storage system and transformed into a data product, whichwisile achieving scheduling quality (i.e., batch executiiome)
more suitable for examination by the scientist. similar to that of MinMin. Our work differs from their work
This paper looks at the problem of scheduling a batch of that we investigate whether the quality of scheduling can
data analysis tasks witbhatch-shared I/0 behavior [21] in be improved with the proposed algorithms.
a heterogeneous environment. Our goal is to minimize theln our recent work [15], we looked at the problem of
execution time of the batch. The target environment caisiSt scheduling tasks exhibiting batch-shared 1/0 behavior @n h
a heterogeneous collection of compute clusters conneg®rd anogeneous clusters. We modeled the file-sharing in taskg usi
switched/shared network(s) to one or more storage clustarfiypergraph approach and employed hypergraph partigonin
with different I/O bandwidths. We expect that such configurao get a load-balanced cut-minimized partitioning of taskio
tions will increasingly be common in supercomputing cesitecompute nodes. That approach inherently looked at homoge-
(hence in Grids) as the capacity of commodity disks con8nuaeous platforms. Our current work targets truly heterogase
to increase and their cost per gigabyte to decrease. environments and uses efficient mapping refinement hezgristi
We propose a two-stage scheduling heuristic based tmnmap tasks onto heterogeneous compute clusters.
hypergraph partitioning and a K-way iterative mapping mfin Kaya and Aykanat have concurrently developed an iterative
ment scheme. The proposed heuristic formulates the sharingprovement based heuristic for scheduling tasks sharieg fi
of files among tasks in the batch as a hypergraph. In the ficst heterogeneous systems [14]. Their work assumes a central

I. INTRODUCTION



master file server, while we target clustered storage systetn efficiently invoke candidate image quantification method
where multiple files are accessed in parallel. The apptination large collections of image data. A researcher may apply
is modeled as a hypergraph in a way that balances tbeveral different image analysis methods on image datasets
computational load across processors. On the other hand, containing thousands of 2D and 3D images to assess ability to
model tries to balance both computation and I/O load acrossedict outcome or effectiveness of a treatment acrosergati
processors. groups.
A decoupled approach to scheduling of computations and IV. TASK SCHEDULING STRATEGIES
data for data-intensive applications was proposed andievah. HPS, Shortest Job First, MinMin, MaxMin, and Sufferage
ated using a simulation testbed in [19]. However, a simpst-fir  |n this work, we compare our proposed approach against
come first-served scheduling strategy was used in that stugir previous work, Hypergraph-based Scheduling Approach
Jain et al. [12] modeled scheduling of 1/O operations (wittHPS) [15], which was targeting homogeneous systems. In
certain assumptions) as a bipartite graph coloring prob¥étn  addition, we also investigate the performance of the matlifie
two separate sets of nodes namely, disks and processors. MinMin, MaxMin, Sufferage, and Shortest Job First (SJF)
heuristics that takes the heterogeneity into account. & tezh-
nigues were originally proposed for scheduling indepehden
Given a batch of tasks and a set of files required by thesemputational tasks onto compute resources [10]. We employ
tasks, our goal is to schedule the tasks in an efficient manmigé algorithms as modified in [4], [3] to take into account the
so as to minimize the batch execution time (makespan). Tasife it takes to transfer input files to compute nodes and files
in a batch may share files, i.e., the set of files required byti@at have already been staged to a compute node in estimating
task may overlap with the sets of files required by other taskfie minimum completion time (MCT) of a task. We briefly
We target configurations consisting of coupled heterogesieqjescribe these algorithms in this section.
compute and storage clusters. Data files are distributess&icr  Hypergraph Partitioning Based Scheduling (HPS).HPS
storage clusters. Storage clusters are connected to ahetgirmulates the sharing of files (batch-shared 1/0) among
geneous collection of compute clusters over switchedéshatasks as a hypergraph and clusters the tasks into groups via
networks with differing bandwidths. Each compute clussei hypergraph partitioning. Each group is mapped to a compute
collection of nodes which are homogeneous in their prongssiprocessor in the system. The scheduling problem is traslat
capacities. Each node in a compute cluster is assumed to hiaté a load-balanced cut minimizing hypergraph partitigni
local disks and can request files from any of the storage noggsblem. However, HPS formulation does not take heterogene
in the system. The files required by a task are copied froiy into account.
storage nodes to the compute node, to which the task hashortest Job First (SJF). SJF orders tasks in increasing
been assigned, before the task is executed. order of their expected execution times. The execution tifne
We have evaluated our approach using application scenarpgsk¢; is calculated as the sum of the time it takes to transfer
from two application classes; analysis of remote sensintg d#iles needed fort; (assuming all files have to be transferred
and biomedical image analysis. These application scenarifom the remote storage) and the execution time for proogssi
are briefly described below. the files. The task with the least expected execution time is
Satellite data processing.Remotely sensed data is eithescheduled on the next processor that becomes idle.
continuously acquired or captured on-demand via sensers atMinMin. This algorithm computes the minimum comple-
tached to satellites orbiting the earth [6]. Datasets ofatety  tion time (MCT) of each task on each node in the system.
sensed data can be organized into multiple files. Each fienong the unscheduled tasks in the batch, it chooses the task
contains a subset of data elements acquired within a tirkat can complete the earliest and assigns it to the node that
period and a region of the earth surface. For instance, aelat&¢an execute that task fastest. When computing the MCT of a
in the form of a snapshot of the surface captured by a Landsatk on a node, MinMin takes into account the files already
thematic mapper satellite consists of files (usually 4 or available on the node and the files that will be staged onto
5 files), with each file corresponding to a specific sensor ¢mat compute node by currently running tasks.
the satellite and storing data captured by the sensor witlin ~ MaxMin. As in MinMin, the MaxMin strategy computes
time period and surface region specified by the ground cbntrthe MCT of a task on each node in the system. However,
When multiple scientists access these datasets, therékslif | among unscheduled tasks, it chooses the task with the maxi-
be overlaps among the set of files requested because of "hntm MCT.
spots” such as a particular region or time period that sisent ~ Sufferage. The underlying idea is that the system should
may want to study. execute the task that willuffer the most if the task is not
Biomedical Image Analysis.Biomedical imaging is a pow- assigned to the host that will execute the task fastest. The
erful method for disease diagnosis and for monitoring thyera sufferage of a task is computed as the difference between the
State-of-the-art studies make use of large datasets, whiakk’s best MCT and its second best MCT. Among unsched-
consist of time dependent sequences of 2D and 3D imag#ed tasks, Sufferage chooses the task with highest sgéera
from multiple imaging sessions. Systematic developmedt aand assigns it to the node that will achieve the best MCT for
assessment of image analysis techniques requires ary abtlie task.

Ill. PROBLEM DEFINITION AND USE-CASE APPLICATIONS



B. A Hypergraph-based Scheduling Heuristic for Heteroge-
neous Systems (Het-HPS). — Siorage

We propose a two-stage heuristic for scheduling tasks wi
batch-shared 1/0 on heterogeneous systems. The first st
consists of hypergraph partitioning-based mapping ofstask
the compute nodes. The second stage is the ordering of ta
on each compute node. Here we will first present a very bri
introduction to hypergraph partitioning and the stages wf o
scheduling algorithm will follow.

1) Hypergraph Partitioning: Hypergraphs are mostly used
for VLSI layout placement [17] and modeling the computa
tional structure of parallel applications [5]. Their sussén
parallel and distributed computing area stems from the fact
that they can model asymmetric dependencies and the total
volume of communication as a cut metric [5]. A hypergraph
H=(V,N) is defined as a set of verticas and a set of nets
(hyper-edges)VV among those vertices. Every net € A
is a subset of vertices, i.en; C V. The size of a netn;
is equal to the number of vertices it has, i.8; = |n;|.
Weights ;) and costs ¢;) can be assigned to the vertices
(v; €V) and edges; € N') of the hypergraph, respectively. _
P={W,V,..., Vp}jis a P-way partitionof H if 1) each b) Hypergrgph representation
part s & nonerpty subset of, 2 paits are painwise disjoint (5 1. IPEIeRh oresereien o s o b of @ermber
and 3) union of P parts is equal toV. In a partition P of
H, a netn; is said to becut if it connects more than one
parts. The hypergraph partitioning problem can be defined & example batch of tasks and its hypergraph representation
the task of d|_V|d|pg a hyp_ergraph_mto two or more parts sgq}e illustrated in Figure 1.
that the cutsize is minimized, while a given balance cioteri  The estimated execution time of a task on a compute node
among the part weights is maintained. Algorithms based @fcajculated as the sum of I/O overhead (the transfer time of
themulti-level paradigm, such as hMETIS [13] and PaToH [Skles from storage nodes plus the I/O time to read files from
have been shown to compute good partitions quickly. local disk) and the computation cost of the task. To employ an

2) Task Mapping: Our goal is to find a mapping of tasksexisting hypergraph partitioner without any modificatiove
to compute nodes such that computational and I/O load @$e a probabilistic approach when computing the execution
the compute nodes and 1/O load of the storage nodes &#@rfe ExecT; of task t; as vertex weights in the partitioner.
balanced, and the total communication volume between thet the set of files a task; needs beF; and the number of
storage nodes and compute nodes is minimized. Our solutitbmpute nodes in the system €. The cost of transferring
for this problem is again a two-phase approach. In the firshe byte of filef;, Tr;, for taskt; is equal to
phase, a partitioning of tasks is done by modeling file-sigari
. . e . . PTObFNE (1—P7’ObFE)
interaction as a hypergraph and partitioning is achieved byrr; = ——— == 2 (1)
assuming all the nodes are homogeneous. In the second BW BW
phase, this initial partition is refined using a K-way magpinHere, BW is the minimum{l/O,network bandwidth between
heuristic that takes heterogeneity into account. For the figny storage and compute node paityobryr is the prob-
phase, we leverage our previous work [15] on schedulidility that taskt; will be the first task to execute in its
tasks with batch-shared 1/0O on homogeneous systems &tigup that requiresf;, and Probrg is the probability that
use a publicly available hypergraph partitioner, namefy executes on a node, to which fil§; has already been
PaToH [5], to compute the partitioning. For the second phadeansferred. In our current implementation, we assumeoumif
we propose a novek -way iterative mapping heuristics basedrobability distribution, Probryr = % and Probpp = % .
on Sanchis [20] multi-way circuit partitioning algorithm. s; denotes the number of tasks that shares the ffileWith

the assumption that computation time is linear with the size
First Phase: Hypergraph Partitioning. In hypergraph formu- Of the input files, the estimated execution time of taskis
lation of bag-of-tasks, each tagk is represented by a vertexcomputed as
v; in the hypergraph. Each hyper-edge represents a file o
f; and connects the vertices that regﬁire this file as input. £recTi = > filesize(f;) x (Tr +
Computation requirement of the tagk and size of the filef; ik
are used as weight of the vertex and cost of the nety;. where LBW is the /O bandwidth from local disk on a

L» Storage Nodes
Batch of Tasks <

a) A sample batch of tasks
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compute node and’ is the compute cost of one byte [15]Algorithm 1 Direct K -way Mapping Refinement Heuristic
By assigning file sizes as hyper-edge costs and the estimatgeut: M : Initial mapping

execution times as vertex weights, the proposed methOditput: A/: Final mapping

reduces the task mapping problem to theway hypergraph 1. BEST «— ExecutionTime(M);

partitioning problem according to theonnectivity-1 cutsize  2: repeat

definition [5]. By using expected execution times as vertexd:  unlock all vertices

weights, the algorithm aims to balance computational load: let s be the heavily loaded part

across the compute nodes. 5. compute K —1 move gains of each vertex in part s
6: while there exists aminlocked vertexdo
Second Phase: Refining Initial Partition. The initial par- 7: select an unlocked vertex with max gain g.q.
titioning is done assuming a homogeneous system. Hence, from s to processort
it may lead to computational load imbalance and should: tentatively realize the move of vertex; M[v]«—t
be refined to account for heterogeneity in the system. We: lock vertex v;
propose a directk -way mapping refinement heuristic based.o: update the move gains ofinlocked vertices ins
on Sanchis [20] multi-way circuit partitioning algorithm. 11: if EzecutionTime(M) < BEST then
Given an initial mapping, the algorithm iteratively refinbe  12: BEST — ExecutionTime(M)
mapping by reconsidering the assignment of each of the tasks permanently realize the moves up to current move
by tentatively moving them to different parts one by onel4: let s’ be the heavily loaded part
Algorithm 1 outlines our mapping heuristic. The goal of thes: if s#s' then
algorithm is to minimize the overall execution time. In thisié: s s
work, we modelled the total execution time as the sum df7: recompute K — 1 move gains of each unlocked
execution time of the maximally loaded compute-node and vertex v in part s

the 1/0 time of the maximally loaded storage node. That is 18: until no more improvements in execution time

EzecutionTime = max Ezec(P;) + maxIO(S,) (3)
7 p
1

where Ezec(P;) and IO(S,) are the execution time of Network(P;) = Z filesize(f;) x NBW. ot (6)
compute nodei and /O time of the storage node. Note f;€File; “M(f;)

that this is an heuristic that does not take the computatich a 1

/O overlap into account. The algorithm selects a task, from 10(S,) = Y filesize(f;) X +mr ()
the most heavily loaded part, that will yield the maximum £,€5, IBW,

reduction in the above mentioned cost. The amount of the ) . .
reduction is called thenove-gain of that task. Here, Files(P;) represents the set of all the files required

The execution time of a part and I/O time of a storage nod¥ the tasks allocated to the pait M(f;) represents the
is estimated as follows. LeP = {Py, P,,..., Px} be a K- storage node that filej is stored, IBW, represents the
way partitioning of tasks, where ead®; be the set of tasks /O Pandwidth available at storage node and NBW;, p
allocated to partj. Let S = {S1,Sa, ..., S} be the set of represents the network bandwidth between the compute hode
storage nodes. The execution’tim7e 0f7 part Ezec(P;), is and the storage nodg. These estimates take into account

the sum of two components; computation and network. le?é’th file affinities and the fact that different compute nodes
computation componentomp(P;) represents the aggregaté“ay hgve d|ﬁ§rent computing capacities and different netw .
computation weight of the part in terms of the estimated tinfg@ndwidths with the remote storage nodes. Once the executio
that would be spent in computation by all the tasks belongifitg'€ Of each partis computed, the part with the highest tsne i

to that part. The network componetetwork(P;) represents chosen and all the free vertices are considered to mover Afte
the total communication weight of that part in terms of thgach such move, the cost function is recomputed. If the otirre

estimated time spent in transferring files to that part. Thi&!ue is less than the best one so far, all the moves (indudin

component is calculated keeping in mind the fact that taski ©nes with negative gain) are committed. Allowing teiméat
belonging to a part share files and a particular file needed B§g2tive moves allows the algorithm to get out off a local
multiple tasks needs to be transferred only once for that peﬁlptlma. This procedure works in an |t_erat|_ve manner until no
The I/O cost of storage node, 10(S,), is the aggregate 1/0 |mprovemgnt in the batch execution time is obta!qed. '
weight of the storage node in terms of the estimated time that?) Ordering of Tasks: Once the tasks are partitioned into

would be spent in I/O for all the files resident on that storag&©upPs, the second phase of the scheduling algorithm is to
node. order tasks in each group and to schedule transfer of files

from the storage cluster to the compute cluster. Two tasis th
Exec(P;) = Comp(P;) + Network(F;) (4) arein different groups may have their input files stored @n th
1 same set of nodes. Thus, ordering of tasks in each group and

Comp(P;) = E E filesize(fy) x ( + ;) (5) transfer of files should be done in a way to minimize end-
LBW; i i
twEP; f1EF point contention on the storage cluster. We employ a styateg




in which tasks within a group are scheduled based on theueries were generated representing the queries directed t
earliest completion time. The earliest completion time of 4 hot spot regions. The number of queries in each set varies
task is computed iteratively and dynamically based on tliemm 50 for smaller workloads to 500 for bigger workloads.
availability of resources. Across the sets, there is no overlap between the queries, and
The algorithm maintains an estimate of the wait times fan each set, queries are adjusted such that for high overlap
each of the storage nodes. The wait time of a storage noserkload, they resulted in a 85% overlap, on average, ingerm
is the earliest time at which the storage node would becorokfiles requested by different tasks in the batch. Similarly
free to service a queued request. When a task in a groupms generated medium and low overlap workloads with 40%
scheduled for execution, the estimated transfer cost diasle and 10% overlap, respectively. For IMAGE, different degree
from each of the storage nodes is added to the wait timesoverlap is achieved by varying the values of patient and
associated with the corresponding storage nodes. In ouelnodime attributes across requests by different tasks. Wergtt
We assume that multiple requests to the same storage nodevarkloads with 85%, 40%, and 0% overlap for high, medium,
multiplexed and that a compute node can receive a file afeand low overlap cases.
it has finished storing the previously received file on disk. =~ We generated 35 days worth of data, about 162 GB for
The earliest estimated completion time for tagkis com- SAT. The data was distributed across the storage nodes using
puted as the sum of 1) time to stage its input files, 2) timee Hilbert-curve based declustering method [8]. Each file in
to read the files on local disk, and 3) cpu time to processe dataset was 4.5 MB. In the high overlap case, each task
the files. If all of the input files are already in the computaccessed on an average 30 files. In the medium and low overlap
node, the staging time will be zero. Otherwise, it will be theases, each task accessed on an average 8 files. For IMAGE,
amount of time spent to transfer the required files from thbe dataset generated by the emulator corresponded tosetiata
remote storage system. The staging time is computed as tfies000 patients and images acquired over several days from
sum of the actual transfer times (size of the file divided bMRI and CT scans. The sizes of images were 1 MB and
the storage bandwidth) from each of the the storage nodes 46dMB for MRI and CT scans, respectively. The overall size
the corresponding wait times at each of those storage node$.the dataset was around 330 GB. Images for each patient
When a compute node becomes idle, the task with tleere distributed among all the storage nodes in a round robin
earliest expected completion time in that group is executed. fashion. For both application domains, the number of tasks i
V. EXPERIMENTAL RESULTS a batch varied from 200 tasks for small experiments to 2000

We evaluated the scheduling algorithms through real e$asks for larger experiments. _ _
periments and simulations, against two application ckasse In order to create data intensive workloads which are

satellite data processing and biomedical image analysis. targeted in this paper, we set the processing time for each
task to be 0.001 seconds per Megabyte of data.

A. Application Workloads _ _
To generate datasets for the satellite data processing gp_Performance Evaluation on Real Machines
plication (referred to here aSAT), we used the emulator Our experiments were carried out using two compute clus-
developed in [22]. The application [6] operates on data kbunters and a single storage cluster as described below. The firs
that are formed by grouping subsets of sensor readingsrinat @/stem OSC) is a compute cluster at the Ohio Supercomputer
close to each other in spatial and temporal dimensions. in de€nter. The compute cluster consists of dual-processcgsnod
emulation, we assigned one data chunk per file. A satelli@ dgduipped with dual 2.4 GHz Intel P4 Xeon processors with
analysis task specifies the data of interest via a spatipdesh hyper threading, resulting in 4 virtual CPUs per node. Each
window. For the image analysis application (referred toehepode has 4 GB of memory, 62 GB of local scratch space,
as IMAGE ), we implemented a program to emulate studidgterconnected by an 8 Gbps Infiniband switch. The second is
that involve analyses on images obtained from MRI and X5 node cluster of dual Intel P4 Xeon 2.4 GHz node€)
scans (captured on multiple days as follow-up studies). Axgch node on this cluster has 2 GB of memory and uses
image dataset consists of a series of 2D images obtained févdtched Gigabit Ethernet for intra-cluster communicatio
patient and is associated with metadata describing patiesht Using our emulator, we measured each DC node to be about
study related information (in our case, we used patient il a2 times faster than an OSC néd&he storage cluster is
study id as the metadata). Each image in a dataset is agsbcidt cluster of Pentium Ill 933 MHz node©GUMED). Each
with an imaging modality and the date of image acquisitiofode of this cluster has 300 GB disk space and 512 MB
and stored in a separate file. An image analysis program @&nmemory. The disk bandwidth available on these storage
select a subset of images based on a set of patient ids &Rges varies from 18 MB/sec to around 25 MB/sec. Using
study ids, image modality, and a date range. micro benchmarks, we measured the bandwidth of the shared
We evaluated the system for three different types of workiks between the storage cluster OSUMED and the compute
loads; high overlap, medium overlap, andlow overlap, each Cclusters OSC and DC to be around 100 Mbps.
of which represents different amounts of file sharing amonglEven though both systems have same type of CPUs we believehthat t

tasks in a batCh' For SAT, we simulated queries direCt@ﬁ’ference of the speed comes form hyper threading and gg$sim memory
to geographically distant parts of the world. Four sets ofndwidth differences of the motherboards.
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We evaluated the algorithms on configurations with differemesource) and service rate (number of work units performed
number of compute nodes in each cluster to capture varyipgr time unit). It also provides the flexibility of modelling
degrees of heterogeneity. Figure 2 shows the relative perfime-shared resources like shared links and differentltepo
mance of the various scheduling schemes on workloads wites. In our simulations, we used version 2.18.5 of thiskit.ol
different degrees of shared 1/0O among tasks, for both appBince Simgrid does not provide an abstraction for disk, we
cation classes. These experiments were conducted usingnidtelled the disk as a shared link (with bandwidth equal to
compute nodes (8 OSC and 4 DC nodes) and 6 storage nodis& bandwidth) which is time-sliced. Each task was modelle
(OSUMED) on high, medium and low overlap workloads ofs a set of data transfer tasks to stage necessary files from
200 tasks each. The results show that the proposed Het-HR& remote storage, followed by a computation task which
strategy performs better than the other algorithms for masimulates processing of the input files.
cases. This is because the mapping heuristic groups taaks th For the purpose of validating the simulations, we simulated
share files together, thus leveraging data reuse, whiletiadap a hardware configuration similar to the experimental setup f
to the system and network heterogeneity. The performarite real experiments. We simulated two clusters, ClusterA
improvement due to the mapping heuristic is maximum for thend ClusterB. ClusterA simulated the configuration of the
high overlap workload and reduces as the degree of overl@SC cluster and ClusterB simulated the configuration of the
decreases, as expected. Among the base algorithms, $uffe@C cluster. Nodes within each cluster are homogeneous in
seems to perform well in most cases. For image analy$&sms of processing capability and local disk bandwidthe Th
workload, SJF seems to perform well for the case of lonetworks between compute clusters (ClusterA and ClusterB)
overlap. This is because, in the image analysis workload, I@nd the storage nodes is simulated as two separate 100 Mbps
overlap corresponds to no sharing of files among tasks diniks. The heterogeneity in the network comes from différen
hence all schemes transfer the same amount of data from mluienber of nodes in each of the clusters which means that the
storage server. In this scenario, SJF achieves maximum |dgsthdwidth seen by a node of ClusterA and a node of ClusterB
balance among all schemes, since it implicitly balances td#fer. This is because all the nodes of a compute clustaresha
load after each task completion. the link to the storage cluster and thus, in the worst case, th

In terms of scheduling time, the proposed Het-HPS algbandwidth is shared by all of them. Nodes in ClusterB are 1.2
rithm does comparable to MinMin, MaxMin and Sufferagdéimes faster in processing capability than those in Cldster
schemes. Since the focus of this work is batch executidiigure 4 shows the comparison between the real experiments
time, we have neither tried to optimize our implementatioand the simulated results for both application domains. &ée s
of the scheduling algorithms nor we present execution tim#sat the relative trends of the simulated results closelipvio
of the scheduling algorithms. However, all of our experitsenthose of the real experiments even though the absolutessalue
showed that the scheduling times for all the schemes amry slightly.
significantly less than the corresponding batch executimes. To analyze the performance of our scheduling strategy with

The next set of experiments (Figure 3) is to demonstratespect to the varying number of storage and compute nodes
how the proposed Het-HPS approach adapts to varying levigigshe system, we ran simulations of high overlap workloads
of network heterogeneity. In this experiment we have used 2000 IMAGE tasks using a 4 compute cluster configuration,
6 storage nodes and 8 compute nodes from OSC andard the results are presented in Figure 5. The network band-
compute nodes from DC cluster. The workload used for thesgdth between the compute clusters and the storage cluster
experiments was a 200 task high overlap workload. While weas simulated to be in the ratio 1:4 for the compute cluster
keep the network bandwidth between OSUMED and OSdith the slowest network to the compute cluster with thedsist
at 100 Mbps, we have varied network bandwidth betwearetwork. The simulated network bandwidth values variethfro
the OSUMED storage nodes and the DC compute nodk25 MB/sec to 50 MB/sec. The disk bandwidth in these
from 100 Mbps to 400 Mbps, by transferring proportionallgimulations was taken to be as 40 MB/sec. The number
smaller amounts of data to the DC nodes. The results shofvcompute nodes in each cluster were taken to be as 4.
that the Het-HPS scheme does better than the HPS schehRigure 5(a) shows the performance of the various scheduling
The performance benefit of the Het-HPS scheme over thlgorithms as the number of storage nodes in the system are
HPS scheme improves as the level of network heterogeneitsaled. The results show that as the number of storage nodes
increases. This is expected, since the Het-HPS schemeeis attrease, the performance of all the algorithms improveg on
to adapt well to increasing levels of network heterogeneity slightly. The reason is that in these simulations, the negtwo

_ . is the bottleneck since, even the fastest network bandwidth
C. Performance Evaluation through Smulations of 50 MB/sec between one of the compute clusters and the

We used simulations to understand the performance sibrage clusters is shared among 4 compute nodes. Thus,
the various scheduling schemes on larger systems. We nacreasing the number of storage nodes does not quite Yield t
our simulations using the&imgrid Toolkit [2], [16]. This benefit of distributing the data across more storage nodes. T
toolkit implements event-driven simulation of applicasoon results however, do show that the proposed Het-HPS scheme
heterogeneous distributed systems. It models a resourcepeyforms significantly better than all the other schemedas t
two performance characteristics: latency (time to acchkes mumber of storage nodes in the system increase. Figure 5(b)
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