
NFS/RDMA over InfiniBand: Is It Beneficial? ∗

Ranjit Noronha, Weikuan Yu and D.K. Panda
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{noronha,yuw,panda}@cse.ohio-state.edu

Abstract
Network File System (NFS) is a ubiquitous component

of most modern clusters. It allows users to transparently
share file and IO services on a variety of different platforms.
Traditionally NFS has used TCP or UDP as the underly-
ing transport for communication. However, these protocols
add considerable overhead to communication and may not
allow applications to extract performance from high-speed
networks. The emergence of modern high-performance net-
working technologies like InfiniBand in conjunction with
technologies like PCI-Express have dramatically enhanced
the achievable network bandwidth and reduced message la-
tency. These networks also allow the user to use operations
like Remote Direct Memory Access (RDMA) to achieve
zero-copy communication. Recent NFS protocol extensions
can communicate directly over RDMA-capable networks.
This may potentially help improve performance of these
protocols. However, given the dependency of NFS perfor-
mance on the application and underlying system character-
istics, it is not clear whether there can be an improvement in
performance at the application level. In this paper, we eval-
uate the performance of NFS over RDMA in OpenSolaris on
InfiniBand using a variety of benchmarks, applications and
system utilities. These experiments show that NFS/RDMA
can increase MPI Tile I/O write bandwidth by 126% com-
pared to NFS/IPoIB, as well as reduce kernel compile time
by 73%. In addition, PCI-Express can help reduce the bot-
tlenecks imposed by PCI-X and help improve IOzone aggre-
gate Write bandwidth in NFS/RDMA up to 24%. Finally, we
show that NFS critically depends on the back end filesystem
being used. With design changes to the back end memory
based filesystem, the performance of NFS over the same
transport show an order of magnitude improvement of up
to 11 times.
Keywords: InfiniBand, NFS, Distributed File Systems, Sys-
tem Area Networks, Clusters

1 Introduction

Modern computer systems have evolved substantially
over the past decade with impressive improvements in com-
puter and memory speeds, with decreasing costs. This has
led to the evolution of clusters of servers to allow users to

∗This research is supported in part by Department Energy’s grant #DE-
FC02-01ER25506, National Science Foundation grants #CNS-0403342
and #CNS-0509452; grants from Intel, Mellanox, and Sun Microsystems;
and equipment donations from Intel, Mellanox, and SUN Microsystems.

cheaply expand the computing capacity available to meet
additional demand. While modern clusters allow users to
expand as demand increases, there is increasing complex-
ity associated with the management of resources across the
cluster. To ease this complexity, many modern cluster sys-
tems, use NFS [1] mounted directories across a large set of
machines. While NFS makes file-sharing easy, it typically
uses networks like Gigabit Ethernet. Most Gigabit Ethernet
networks only allow TCP or UDP for network communi-
cation. With most NFS installations being a single server,
multiple client entity, the scalability of the NFS server may
be constrained by the protocol overhead and copying cost of
TCP or UDP, as well as by the network bandwidth of these
networks.

Modern high performance networks like InfiniBand 4X
allow applications to exploit low latency of a few micro-
seconds and high bandwidth communication up to 10 Gbps.
They also allow Remote Direct Memory Access (RDMA)
based communication. RDMA allows the application to
achieve zero-copy communication. This could potentially
reduce communication overhead. Technologies like PCI-
Express allow InfiniBand 4X to achieve lower latency as
well as full bidirectional bandwidth [14] eliminating the
constraints of legacy technologies like PCI-X.

With the emergence of modern interconnects like Infini-
Band [13], protocols such as NFS/RDMA [10] were de-
signed to exploit the low latency, high bandwidth, NIC
offload capabilities provided by these interconnects. It is
natural to ask whether NFS server storage exported across
RDMA capable networks can really be deployed with ac-
ceptable performance, so that applications can benefit with
enhanced performance on IO accesses. In addition, can
the RDMA offload capabilities of InfiniBand reduce over-
head at the server and enhance scalability. Or since NFS
performance is largely dependent on many factors such as
system-level scheduling and response time, availability of
limited resources in the kernel, disk bandwidth and design
of the back-end file system, will the improvements afforded
by better communication primitives not offer potential ben-
efit?

In this paper, we attempt to study the performance of the
first implementation of NFS/RDMA on the OpenSolaris en-
vironment [10]. We do this using a variety of widely used
benchmarks. The benchmarks characterize the performance
impact of NFS/RDMA compared to that of NFS/IPoIB. The
impact of NFS/RDMA on CPU utilization is also measured.
In addition, the impact of PCI-Express on NFS/RDMA per-
formance is also measured. These experiments show an im-

provement of 126% in MPI Tile I/O write bandwidth for
NFS/RDMA compared to NFS/IPoIB as well as a 73% re-
duction in kernel compile time. Additionally, we show that
NFS critically depends on the back end filesystem being
used. With design changes to the back end memory based
filesystem, the performance of NFS irrespective of the un-
derlying network protocol transport, show an order of mag-
nitude improvement of 11 times.

Section 2 provides an introduction to NFS and the net-
working technology InfiniBand. Following that in Sec-
tion 3, the evaluation in terms of micro-benchmarks is per-
formed. In section 4, the impact of NFS/RDMA on CPU
utilization is evaluated. Section 5 explores the impact of
PCI-Express. Section 6 presents related work. Finally in
Section 7, we present conclusions and future work.

2 Background
In this section, we provide brief overviews about Infini-

Band, NFS and Sun MicroSystem’s implementations of In-
finiBand and NFS over RDMA for the OpenSolaris Operat-
ing System.

2.1 InfiniBand Overview
The InfiniBand Architecture (IBA) [13] is an open spec-

ification designed for interconnecting compute nodes, IO
nodes and devices in a system area network. InfiniBand
supports channel based semantics for reliable communica-
tion. Operations include traditional send/receive semantics
as well as Remote Direct Memory Access (RDMA) prim-
itives. Send/Receive (Send) primitives require the prior
posting of a descriptor on the receiver side. RDMA oper-
ations allow secure access through protection domains to
the memory of a remote node without involvement of that
node. RDMA operations are mainly of two types Read and
Write. RDMA Read allows a given node to directly read
the contents of a remote node. Similarly, RDMA Write al-
lows one to deposit data directly into the memory of the re-
mote node. Implementations of an InfiniBand stack include
OpenIB Gen2 [4] and OpenSolaris IBTL [5]. PCI-Express
the next generation successor to the PCI-X architecture al-
lows InfiniBand 4X to achieve a bandwidth of 10 Gbps in
both directions [14]. It also offers improved small message
latency. A comparison in terms of basic micro-benchmarks
is shown in Figure 1.

 0

 10

 20

 30

 40

 50

 60

 1 4 16 64 256 1024 4096

La
te

nc
y

(u
s)

Message Size (bytes)

Latency

IPoIB (PCI-X)
IBTL (PCI-X)
IBTL (PCI-E)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2.62144e+06 16384 1024 64 4

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (bytes)

Uni and Bi-directional Bandwidth

IPoIB BW (PCI-X)
IBTL BW (PCI-X)

IBTL BW (PCI-E)
IBTL BIBW (PCI-X)
IBTL BIBW (PCI-E)

Fig. 1. Comparison between IPoIB (PCI-X), IBTL (PCI-X)
and IBTL (PCI-Express)

2.2 OpenSolaris Implementations of InfiniBand
Figure 2 shows the InfiniBand software stack in Open-

Solaris. At the bottom most layer the Tavor HCA driver

provides access to the InfiniBand hardware. On top of the
Tavor driver, the OpenSolaris InfiniBand Transport Frame-
work (IBTF) implements the InfiniBand Transport Layer
(IBTL). In addition to basic communication primitives,
IBTF also includes device management modules and a com-
munications manager. IBMF provides management access
features to clients. Other access protocols such as IETF
IP over InfiniBand (IPoIB) and user defined application
programming layer (uDAPL) are implemented using IBTF.
IPoIB implements the basic IP protocol over InfiniBand.
This enables existing TCP stacks to work over InfiniBand.
Traditional applications using sockets may run over Infini-
Band using IPoIB. At the top most level, user-level soft-
ware such as MVAPICH [3] (an implementation of MPI)
and NFS/RDMA may access InfiniBand through uDAPL
and IBTF respectively.

2.3 NFS Overview

Network File System (NFS) was originally developed
at Sun MicroSystems in the 1980’s. It has since been
deployed ubiquitously in most modern clusters. NFS al-
lows users to transparently share file and IO services on
various different platforms. NFS has seen three major
generations of development. The first generation, NFS
version 2, provided a stateless file access protocol be-
tween the client and the server via remote procedure calls
(RPCs) over UDP. On top of NFSv2, NFS version 3 pro-
vided several performance enhancements, including larger
block data transfer, TCP-based transport and asynchronous
write, among many others. The latest NFS protocol,

MPI
NFS
RPC
XDR

uDAPL IPoIB

IBMFIBTF

Tavor HCA Driver

Hardware

Fig. 2. OpenSolaris
InfiniBand Software
Stack

NFS version 4 [1] spec-
ification was developed
by IETF based on an
initial draft from Sun
MicroSystems. Its re-
quirements include: im-
proved access and perfor-
mance; strong, built-in
security; enhanced inter-
operability; extensibility;
as well as improvement
on locking and data shar-
ing. The key features
of NFSv4 includes com-
pound operations, state-
ful file access and file
delegation for aggressive
client cache. Initial NFSv4 implementations have become
available over several common Operating Systems, such as
Linux and OpenSolaris.

2.4 OpenSolaris Implementations of NFS over
RDMA

As shown in Figure 2, the NFS protocol communication
between the client and server is through the Remote Proce-
dure Call (RPC) protocol. The RPC protocol can imple-
ment different network protocols such as TCP, UDP and
RDMA. This allows the NFS layer to stay network inde-
pendent. The OpenSolaris implementation of the RPC over
RDMA protocol for IBTL is shown in Figure 3. The client

2

communicates with the server through the RPC Call, Re-
ply semantics. The RPC call or request propagates from the
client to the server through an RDMA Send operation. If
the client has additional data which cannot be sent in the
request (such as for file WRITE requests with sizes larger
than 1K), the server RDMA Reads it from the client. The
server processes the Request and sends a RPC Reply using
RDMA Send. The client may need to RDMA Read data
from the server (such as for file READ and directory list
requests, with sizes larger than 1K). Finally, the client can
send an RDMA Done message to the server (using RDMA
Send). This allows the server to deregister buffers if needed.

Client Server

Read
Reply
Chunks

RDMA Send

RDMA Read

RDMA Read

RDMA Send

RDMA
Done

RPC
Request

RPC
Reply

Read Request
Chunks

Fig. 3. OpenSolaris RPC over RDMA implementation

2.5 Pageable Memory Based File System (tmpfs)
The memory based filesystem tmpfs is manipulated by

other sub-systems such as NFS through the virtual filesys-
tem layer (VFS) [6]. The VFS layer provides functionality
for mounting, unmounting, accessing the root node of the
file-system, etc. Access to a particular vnode (which rep-
resents a file) is through the vfs vget function. The design
of the vfs vget currently does a linear search through all
the vnodes. This might cause a degradation in performance
particularly for applications which frequently access the

NFS Server
 VFS Interface

VGET cache Vnode

tmpfs implementation

Fig. 4. Enhanced tmpfs
with a vget cache

same vnode among a
list of many vnodes.
This might also impact
relative network compar-
isons between different
NFS implementations.
We have designed a
VGET cache to reduce
the impact of the linear lookup. This cache uses an LRU
eviction policy to store vnodes and provides on-demand
frequently used vnodes. This enhanced tmpfs shown in
Figure 4 is used for several experiments in the paper.

3 Micro-benchmark Evaluation
In this section, we measure the impact of various bench-

marks such as IOzone, Fileop, PostMark, kernel untar and
kernel compile. First the experimental setup used is de-
scribed.

3.1 Experimental Setup
The hardware setup consisted of four Sun Fire V20z’s

and one Sun Fire V40z. All five servers have PCI-X In-

finiBand MT23108 HCA’s. They are connected to a Sil-
verStorm 5000 switch. In addition two x2100 servers with
MT25208 PCI-Express HCA’s are used. They are also con-
nected to the SilverStorm 5000 switch. All servers are
connected with Gigabit-ethernet in addition to InfiniBand.
OpenSolaris build 33 was used on all the systems. For the
evaluation, the non debug version of the Open Solaris ker-
nel source release date 02/22/06 was used. Since NFSv3 is
the most commonly deployed NFS version, we use it for all
our experiments.

3.2 IOzone
IOzone [2] is a sequential IO benchmark for measuring

various performance characteristics of a file system. In the
read portion of the benchmark, IOzone creates a file of size
s in the current directory and then reads from the file in dif-
ferent number of chunks, each chunk being a record of size
r. In our tests, we have used a record size of 64KB and
run the benchmark for file sizes ranging from 256KB up to
1GB. We have used IOzone to mainly measure the read and
write bandwidth of NFS. In our setup, the NFS server ex-
ports a tmpfs directory, which clients will mount as a NFS
file system over either IPoIB or RDMA. To actually stress
the network, the RAM based file system was used as the
underlying file system, as discussed in Section 2.5. The re-
sulting read and write bandwidth are shown in Fig. 5. Read
bandwidth is comparable because of client side caching.
There is a larger difference in the write bandwidth of ap-
proximately 15%. This is because the client must always
contact the server, and as a result the network is exercised
much more in this benchmark. Additionally, the write band-
width is lower than the read bandwidth for the range of mes-
sages when the messages are fetched from the server-side
cache. This is due to the fact that the server must commit
the write data before sending an acknowledgment back to
the receiver. This adds additional overhead at the server as
compared to the read path.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 256 32768 1.04858e+06

Ba
nd

wi
dt

h
(M

B/
s)

Size (KB)

Read

IPoIB
RDMA

 0
 20
 40
 60
 80

 100
 120
 140
 160

 256 32768 1.04858e+06

Ba
nd

wi
dt

h
(M

B/
s)

Size (KB)

Write

IPoIB
RDMA

Fig. 5. Bandwidth achieved with IOzone using tmpfs

3.3 Fileop
The file operations (fileop) benchmark is included with

IOzone. It measures various commonly used file system
operations. The operations are file creation (create), file stat
(stat), file permission access (access), directory read (read-
dir), file link creation (link), file link deletion (unlink) and
file deletion (delete). The results are reported in the unit of
operations/sec. Our setup consists of a single client NFS
mounting a single directory from the NFS server over the
different underlying transports RDMA and IPoIB. Results
from these experiments when the server mount is on tmpfs
is shown in Fig. 6. Out of these operations, create, link,
unlink, readdir and delete will always generate a request to
the NFS server. Therefore they benefit more from the better

3

performance of RDMA compared with IPoIB. On the other
hand, many of the stat and access operations may be sat-
isfied locally and therefore don’t show much difference in
performance.

createreaddir link unlink delete0

2000

4000

6000

8000

10000

Operation

 O
pe

ra
tio

ns
/s

IPoIB
RDMA

stat access0

1

2

3

4

5x 105

Operation

 O
pe

ra
tio

ns
/s

IPoIB
RDMA

Fig. 6. Performance of different file operations with in-
creasing system size (tmpfs)

3.3.1 PostMark
PostMark [7] from Network Appliances is a well known
benchmark for measuring the performance of file systems
for small files and metadata intensive applications. These
types of workloads are typically seen in computing sys-
tems which process e-mail and network groups and other
communication intensive environments. Postmark works
by creating a set of random texts file whose sizes varies
between configurable bounds. These files are continu-
ously being modified with operations pairs consisting of
create/delete or append/delete. While this is being done,
file statistics are being generated. The different parameters
used are shown in Table 1. We have compared the perfor-
mance of RDMA to IPoIB using a single client and server
with the server using tmpfs.

Clearly with the enhanced tmpfs design, the running time
of PostMark over the same underlying transport is reduced
by 2-3 times. This helps to more clearly show the difference
between RDMA and IPoIB. We see that RDMA performs
better than IPoIB by 10%-19%. PostMark is metadata in-
tensive. Metadata operations are small and thus sensitive to
the latency of the underlying transport. This is responsible
for improved performance with RDMA.

Table 1. Postmark parameters

Notation Number of files Number of transactions
PM-1 8192 20000
PM-2 16384 40000
PM-3 32676 60,000

PM−1 PM−2 PM−3 untar compile0

5

10

15

20

25

30

35

40

Ti
m

e
(m

in
ut

es
)

IPoIB (regular)
RDMA (regular)
IPoIB (enhanced)
RDMA (enhanced)

Fig. 7. Benchmarks results using the enhanced version
of tmpfs (since kernel compile time with regular tmpfs is
very large, these numbers are not included)

3.3.2 Kernel untar
We also measured the time required to untar a kernel tar
ball source. Since OpenSolaris tar does not implement the
z option (uncompress), we only measured the time required
to do tar xvf opensolaris-20060222.tar with the output re-
directed to /dev/null. This was measured over both the reg-
ular tmpfs as well as the enhanced tmpfs described in Sec-
tion 2.5. These results are shown in Figure 7. The enhanced
tmpfs can dramatically reduce the time needed to untar a
kernel source much as 11 times (keeping the network com-
ponent the same). In addition, with the overhead of the file-
system reduced, RDMA shows a greater improvement over
IPoIB by 25%. The untar process consists mainly of the fol-
lowing operations a. create a directory b. fetch a directory
handle c. create a file (usually a C source code file). There is
also a single file READ operation at startup. The file READ
operation at startup, as well as many of the file WRITE’s
are large. The other operations are small. Small operations
go inline in the RPC Call (Figure 3). The improvement
in small message latency and bandwidth for RDMA over
IPoIB (Figure 1) helps improve performance.

3.3.3 Kernel Compile
The time required to compile an OpenSolaris kernel (re-
lease date 02/02/2006) was also measured. These results are
shown in Figure 7. Since the time with the regular tmpfs
was very large (several hours), these numbers are not in-
cluded. With the enhanced tmpfs design, the kernel com-
pile time with RDMA is reduced up to 73%. This is not
suprising, since kernel compile involves many file READ
operations in addition to those in the untar operation ex-
plained in Section 3.3.2. In addition, there are several file
READ/WRITE operations for object files created during
the kernel compile. These file WRITEs vary in size from
small to fairly large. The improvement in latency and band-
width of RDMA over IPoIB (Figure 1) helps improve per-
formance.

4 CPU Utilization
To measure the impact of CPU utilization, two parallel

IO benchmarks BTIO and MPI Tile I/O were used.

4.1 BTIO

The BTIO benchmark is part of the NASA Parallel
Benchmark suite of programs [17]. We use the full mode
in BTIO which uses collective MPI-IO [20] routines to per-
form IO accesses. The default behavior of BTIO is to write
to the file on every five timesteps. To stress the IO com-
ponent of the system, we have modified the benchmark to
write on every time step and on every two timestamps. We
have used class A and B and run the applications at four
processes on two nodes. To stress the network, we have
used tmpfs. These results are shown in Figure 8. The outer
letter corresponds to the NAS benchmark class size, while
the number in brackets corresponds to the number of writes
per interval. For example, A(1) corresponds to a class size
A which writes to the file at every timestamp. There is a
benefit for both sizes and write intervals of up to 40%. Us-
ing the OpenSolaris system utility dtrace, the time spent by

4

the CPU in processing NFS (IO) and network related activi-
ties is measured (time spent blocking is excluded). Figure 8
shows the breakdown of timing from these runs averaged
over all clients. From these timings it is clear that the bene-
fit comes from the reduction of processing time spent in the
socket layer in the kernel.

A(1) A(2) A(5) B(2) B(5)0

20

40

60

80

100

120

140

160

Problem Size

IO
 T

im
e

(s
ec

on
ds

)

Execution time
IPoIB
RDMA

A5 (IPoIB) (RDMA) A2 (IPoIB) (RDMA) A1 (IPoIB) (RDMA)
0

2

4

6

8

10

12

14

Number of processes

Ke
rn

el
 p

ro
ce

ss
 ti

m
e

(s
ec

on
ds

)

Timing breakdown

NFS
Network

Fig. 8. IO time for different BTIO configurations (tmpfs)
4.2 MPI Tile I/O

MPI Tile I/O [8, 19] attempts to measure the impact
of non-contiguous file accesses. These access patterns are
commonly found in visualization and other scientific appli-
cations. We have evaluated the performance of MPI Tile I/O
at two, four and six processes on one, two and three nodes,
respectively. Each tile is 1024x768 pixels and each pixel is
32 bytes. When IPoIB is replaced with RDMA as the under-
lying transport, MPI Tile I/O read bandwidth is improved
by 75% at six nodes while write bandwidth is improved by
126%. Using the OpenSolaris system utility dtrace, the time
spent by the CPU in actively performing NFS (IO) and net-
work related activities is measured (time spent blocking is
excluded). From figure 10, it is clear that the reduction in
execution time when the socket layer is replaced with the
RDMA layer comes from the reduction in processing time
spent in the socket layers.

 0

 20

 40

 60

 80

 100

 120

 6 4 2

Ba
nd

wi
dt

h
(M

By
te

s/
s)

Number of processes

Read

IPoIB
RDMA

 0
 10
 20
 30
 40
 50
 60
 70

 6 4 2

Ba
nd

wi
dt

h
(M

By
te

s/
s)

Number of processes

write

IPoIB
RDMA

Fig. 9. MPI Tile I/O Read and Write bandwidth

5 Impact of PCI-Express
We have also evaluated the impact of PCI-Express on

NFS/RDMA. PCI-Express x8 rectifies the bandwidth re-

2 (IPoIB) 2 (RDMA) 4 (IPoIB) 4 (RDMA) 6 (IPoIB) 6 (RDMA)
0

0.5

1

1.5

2

2.5

3

3.5

Number of processes

Ke
rn

el
 p

ro
ce

ss
 ti

m
e

(s
ec

on
ds

)

NFS
Network

Fig. 10. MPI Tile I/O execution time breakdown (write)
strictions of PCI-X and allows InfiniBand 4X to achieve
higher aggregate bandwidth [14]. It also offers lower la-
tency. We have used IOzone [2] with multiple threads to
measure the Write throughput. Since Read’s may be cached
as discussed in Section 3.2, we do not present these num-
bers here. In this experiment, two sets of machines were
used. The first set of machines has PCI-Express HCA’s.
The second set of machines has PCI-X HCA’s. One ma-
chine in each set acted as the NFS server and the other ma-
chine acted as the client. On the client IOzone with mul-
tiple threads was used. Since this is a multi-threaded test,
the directio option was used. Directio bypasses the systems
buffer cache. This helps reduce copying costs at the client,
allowing us to increase the number of threads. The number
of threads on the client was varied from 1 to 16. A filesize
of 32M (because of restrictions in available server memory
size) with a record size of 16K was chosen. tmpfs was used
as the backend storage. From Figure 11, we can see write
throughput with PCI-X saturate at eight threads. However,
the write throughput with PCI-Express increases (24% bet-
ter than PCI-X at 16 threads). This is because of the higher
number of outstanding RDMA Read’s allowed by the PCI-
Express HCA’s, which allows more thread requests to be
processed by the server.

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

eg
aB

yt
es

/s
)

Number of threads

Write (PCI-X)
Write (PCI-E)

Fig. 11. Write throughput of IOzone with PCI-X and PCI-
Express while varying the number of threads

6 Related Work
The performance of network file-access protocols has

been the topic of a lot of research, covering different aspects
of network file systems, such as caching strategies, sensi-
tivity to networking parameters and comparisons of NFS
to other network-based storage solutions. Xu et. al. [21]
investigated the performance benefits of client caching to
concurrent read sharing over NFS. Peng et. al. [18] showed
that a network-centric reorganization of the buffer cache
can improve the NFS performance. Radkov et. al. [16]

5

compared the performance of file-based NFS protocol and
block-based iSCSI protocol and noted that aggressive meta-
data caching can benefit the NFS protocol.

Martin et. al. [15] studied the sensitivity of NFS to high
performance networks by introducing controlled delays into
live systems in the late 90’s. They that observed NFS was
more sensitive to processor overhead rather than network-
ing latency and bandwidth. However, the emergence of
high speed networks with direct access protocols such as
RDMA lead to both the design of new network file system,
such as DAFS [11], and the revision of traditional network
file systems, such as NFS [10], to enable file accesses over
RDMA-capable networks. For example, Goglin et. al. [12]
replaced the RPC protocol of NFS with Myrinet GM pro-
tocol to achieve Optimized Remote File System Accesses
(ORFA). Callaghan et. al. [9] provided an initial implemen-
tation NFS over RDMA on Solaris. Our work continues this
endeavor and studies the performance benefits of NFS over
RDMA on top of InfiniBand [13].

7 Conclusions and Future Work
In this paper, we have studied the performance of

NFS/RDMA on InfiniBand as compared to NFS running
over TCP (IPoIB) with a variety of benchmarks. These re-
sults show that NFS/RDMA depends critically on the per-
formance of the back-end file system. With an enhanced
form of the back-end temporary file-system (tmpfs), on the
same underlying transport, there is often an order of magni-
tude improvement in performance of up to 11 times. The
enhanced tmpfs shows that RDMA can improve running
time up to 73% for a kernel compile and boost bandwidth
by up to 126% for MPI Tile I/O. In addition, experiments
show reduced CPU utilization with NFS/RDMA. There is
also improvement for other benchmarks and applications.
Finally, with multiple threads, PCI-Express can scale IO-
zone aggregate Write bandwidth better than PCI-X. With
PCI-Express at 16 threads on NFS/RDMA, there is a 24%
improvement in IOzone Write bandwidth compared to PCI-
X.

As part of the future work, we would like to explore
design enhancements to the NFS/RDMA implementation.
These include enhancing the design to make better use of
RDMA Read and Write operations at both the client and
the server. This would potentially boost performance in ad-
dition to reducing the load at the server and enhancing se-
curity.

References

[1] General Information and References for the NFSv4
protocol. In http://www.nfsv4.org/.

[2] IOzone Filesystem Benchmark. In
http://www.iozone.org.

[3] MPI over InfiniBand Project. In
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/.

[4] OpenIB Consortium. In http://www.openib.org.

[5] The Open Solaris Project. In
http://www.opensolaris.org.

[6] Vnodes: An Architecture for Multiple File System
Types in Sun UNIX. In 1986 Summer USENIX Con-
ference.

[7] PostMark: A New File System Benchmark. Tech.
Rep. TR3022, october 1997.

[8] A. Ching, et.al. Efficient Structured Data Access in
Parallel File Systems. In IEEE Cluster Computing,
2003.

[9] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach,
and O. Asad. NFS over RDMA. In Proceedings of the
ACM SIGCOMM Workshop on Network-I/O Conver-
gence: Experience, Lessons, Implications, 2003.

[10] B. Callaghan and T. Talpey.
RDMA Transport for ONC RPC.
http://www1.ietf.org/proceedings new/04nov/IDs/draft-
ietf-nfsv4-rpcrdma-00.txt, 2004.

[11] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The Direct Ac-
cess File System. In Proceedings of Second USENIX
Conference on File and Storage Technologies (FAST
’03), march 2003.

[12] B. Goglin and L. Prylli. Performance Analysis of Re-
mote File System Access over a High-Speed Local
Network. In Workshop on Communication Architec-
ture for Clusters, in Conjunction with International
Parallel and Distributed Processing Symposium ’04,
April 2004.

[13] Infiniband Trade Association. http://www.
infinibandta.org.

[14] J. Liu, A.Mamidala, A. Vishnu and D. K. Panda. Per-
formance Evaluation of InfiniBand with PCI Express.
Hot Interconnect 12 (HOTI 04), August 2004.

[15] R. P. Martin and D. E. Culler. NFS Sentivity to High
Performance Networks. In ACM Sigmetrics, 1999.

[16] P. Radkov. A Performance Comparision of NFS and
iSCSI for IP-Networked Storage. In FAST, 2004.

[17] P. Wong. NAS Parallel Benchmarks I/O Version 2.4.
In Technical Report NAS-03-002, Computer Science
Corporation, NASA Advanced Supercomputing (NAS)
Division, 2004.

[18] G. Peng, S. Sharma, and T. Chiueh. A case for
network-centric buffer cache organization. In Hot In-
terconnect 11, August 2003.

[19] R. Ross. Parallel I/O Benchmark Consor-
tium. In http://www-unix.mcs.anl.gov/rross/pio-
benchmark/html/.

[20] W. Gropp, et.al. Using MPI-2: Advanced Features of
the Message-Passing Interface. In MIT Press, 1999.

[21] Y. Xu and B. D. Fleisch. NFS-cc: Tuning NFS for
Concurrent Read Sharing. The International Jour-
nal of High Performance Computing and Networking
(IJHPCN), 3, 2004.

6

