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Abstract

In this paper, we study deployment of sensor networks using limited mobility sensors, where the maximum

distance that sensors are capable of moving to is limited. Given an initial deployment of limited mobility sensors

in a field that is clustered into multiple regions, our deployment problem is to determine a movement plan for

the sensors to minimize the variance in number of sensors among the regions, and simultaneously minimize

the sensor movements. Our methodology to solve this problem is to transfer the non-linear variance/movement

minimization problem into a linear optimization problem through appropriate weight assignments to the regions. In

our methodology, the regions are assigned weights corresponding to the number of sensors needed. During sensor

movements across the regions, larger weight regions are given higher priority compared to smaller weight regions,

while simultaneously ensuring minimum number of sensor movements. Following the above methodology, we

propose a set of algorithms to our deployment problem. Our first algorithm is called the Optimal Maximum Flow

based centralized (OMF) algorithm. In this algorithm, the optimal movement plan for sensors is obtained based

on determining the minimum cost maximum weighted flow to the regions in the sensor network. We then propose

an alternate algorithm called the Domain-based OMF (D-OMF) algorithm extending from the OMF algorithm that

trades optimality with computational complexity and messaging overhead. Finally, we propose the Simple Pit-Peak

based distributed (SPP) algorithm that uses local requests and responses for sensor movements. Using extensive

simulations, we demonstrate the effectiveness of our algorithms from the perspective of variance minimization,

number of sensor movements and messaging overhead under different initial deployment scenarios.
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I. INTRODUCTION

Mobility assisted sensor networks deployment has received significant attention recently [1], [2], [3]

and [4]. In this realm, after initial deployment, sensors detect lack of desired deployment objectives. The

sensors then estimate new locations to move to, and make the resulting movement. Since mobility is a

power consuming operation, apart from deployment objective, a related objective in the above works is

to also reduce the overall movement distance of sensors.

While the deployment objectives and corresponding methodologies are different in each of the above

works, one assumption is that sensors are capable of unlimited movement distance. Specifically, if a

sensor chooses to move to a desired location, it can do so without limitations in the movement distance.

However, this may not be always feasible. For example, consider sensors that are battery powered. Clearly,

the available power is a limited resource, and has to be shared for sensing, data-processing, transmission

etc. Since mobility is a power consuming operation, the overall movement distance of the sensors thus

cannot be unlimited. In some cases, external launching agents (that contain sensors inside them) are

deployed in a field. Here, the mobility in sensors is realized by means of the external agents launching

out sensors to new locations in the deployment field. Although in the case of launchers, the mobility does

not depend on the battery power, the restriction on the mechanical features of the launchers will limit

the movement distance. The launching process can be accomplished by means of spring activation, fuels

and propellers etc. The limited mobility constraint means that; even if a sensor wants to move to a new

location, it may be unable to do so if the distance to be traversed is beyond the movement capability of

the sensor.

As a validation of our above claim, we briefly discuss two limited mobility sensor models already

designed and realized in practice. Lymberopoulos and Savvides in [5] have recently designed a motion-

enabled and power aware sensor node platform. The motion capability for the sensors comes from a

battery enabled miniature geared motor that actuates the motion. The maximum movement distance of

sensors in this design was determined as �������
	��	���� . In another development, as part of the self-healing

minefield program, DARPA has already designed a class of sensors with limited hop-by-hop mobility to

detect and repair breaches in a battlefields [6]. Basically, the sensors are powered by fuels and a propeller,

and the sensors can make up to about ����� hops. While the internal mobility semantics may be different

in both sensor models, the fact is that the maximum movement distance is limited.

In this paper, we address an important sensor networks deployment problem under limited mobility
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sensors. The sensor network we consider is a square field that has been clustered into multiple regions.

The deployment objective is for each region to have a certain number of sensors, denoted by �� . At the

time of initial deployment, not all regions will have �� sensors. The sensors deployed are limitedly mobile.

If a sensor moves from one region to any of its adjacent neighboring regions, we consider that as ����	
hop made by the sensor. We denote � as the maximum number of such hops that a sensor is capable of

making. In this context, our problem statement is; Given an initial deployment of sensors in the field, our

problem is � ) to minimize the variance in the number of sensors among the regions in the network, and�
) simultaneously minimize the overall number of hops of the limited mobility sensors.

In this paper, we propose three algorithms to the above problem. The methodology of our algorithms is

to transfer the non-linear variance/movement minimization problem into a linear optimization problem by

means of weight assignments to the regions. By appropriately setting weights for the regions, we formally

prove that maximizing sensor movements to regions with larger weights (under our weight assignment),

will minimize the variance among the regions. The number of sensor movement hops is minimized by

treating each sensor movement as a cost, and finding sensor movement paths with minimum costs.

Our first algorithm is called the Optimum Maximum Flow based centralized algorithm (OMF algorithm).

In the OMF algorithm, the movement plan for sensors to optimize variance and sensor movement hops

is obtained based on the minimum cost maximum weighted flow to the regions. Note that the maximum

weighted flow problem is similar to the maximum flow problem except that each target (vertex) has a

weight and the objective of the problem is to maximize the summation of the amount of flows through

each target multiplied with the weight associated with each target. The maximum flow problem is its

special case, where the weight of each target is one. In the OMF algorithm, we first construct a graph,

called virtual graph (denoted by ��� ) using global information on initial sensor network deployment,

required number of sensors per region and sensor mobility capacity. In ��� , sinks for each region are

created and appropriate weights are assigned to them. The maximum weighted flow to the multiple sinks,

with minimum cost is determined in ��� . The corresponding flow plan in ��� is translated as a movement

plan for sensors in the network. We subsequently prove the optimality of this movement plan in terms of

minimizing variance and sensor movement hops.

We then propose an alternate algorithm, extending from the OMF algorithm. We call this algorithm as

the Domain-based OMF (D-OMF) algorithm that trades optimality with global information exchange,

computational complexity and messaging overhead. In the D-OMF algorithm, the sensor network is

divided into domains, where each domain consists of multiple regions, and the OMF algorithm is executed
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independently in each domain (without exchanging global information), and a movement plan for each

domain is independently determined. Our third algorithm is called the Simple Pit-Peak based distributed

algorithm (SPP algorithm). It is local, light-weight and purely distributed. In this algorithm, regions with

less than the desired number of sensors locally send requests to their neighboring regions asking for

sensors. The requests contain weights depending on number of sensors needed. Requests are served in a

descending order of weights, along with minimizing sensor movement hops in serving them. Finally, we

propose multiple approaches that can be used to combine and execute our above algorithms in practice,

depending on application requirements and initial deployment scenarios.

We conduct an extensive performance comparison of our algorithms using simulations. We observe

that in general the OMF algorithm (being optimal), achieves better variance minimization compared to

the D-OMF and SPP algorithms. However, when sensors are deployed initially in groups throughout the

network, the performance (variance minimization) of the D-OMF algorithm is close to that of the optimal

OMF algorithm, if the size of the domain is carefully chosen. Also, under certain deployment conditions

( �� is small, uniform initial deployment), the performance of the SPP algorithm compares favorably with

the OMF algorithm. We also study the overhead (in terms of sensor movements and messages) as a result

of our algorithms. While the overhead in the SPP algorithm is generally lower than that of the OMF and

D-OMF algorithms, we observe that when initial deployment is highly concentrated, the overhead in the

OMF and D-OMF algorithms is close to the SPP algorithm, while even being smaller in some cases.

The rest of our work is organized as follows. In Section II, we formally define our deployment problem.

In Section III we detail the methodology of our proposed algorithms. In Section IV, we present our OMF

algorithm, and proofs of its optimality. In Section V, we present our D-OMF and SPP algorithms, and their

features. Our performance evaluation is presented in Section VI. We provide some discussions in Section

VII. Related work is presented in Section VIII, and we conclude our paper with some final remarks in

Section IX.

II. OUR SENSOR NETWORK DEPLOYMENT PROBLEM

A. Problem Definition

The sensor network we study is a square field of size � . It is clustered into
�
-dimensional square

regions, where each region is of size  . The number of regions is denoted as ! ( !#"%$�&')(+* ). We denote

the number of sensors in region , at time of initial deployment as �.- . The deployment objective is for

each region to have a certain number of sensors, denoted by �� . At the time of initial deployment, not
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all regions will have �� sensors. The sensors deployed are limitedly mobile. If a sensor moves from one

region to any of its adjacent neighboring regions, we consider that as ����	 hop made by the sensor. We

denote � as the maximum number of such hops that a sensor is capable of making. In this context, our

problem statement is; Given a sensor network with ! regions each of size  , an initial deployment of/
limited mobility sensors, our goal is to determine a sequence of sensor movements such that � ) at the

conclusion of movements, the variance in the number of sensors from �� among all the regions in the

network with less than �� sensors is minimized, and
�
) the overall number of hops of the limited mobility

sensors is simultaneously minimized. Denoting
� - as the number of sensors in a region , at the conclusion

of sensor movements, the variance 0213� is,

0413�4" �!
56-87:9 $ ���; �<,=�)$ � -?> �� (@( *�A (1)

Denoting BC- as the number of hops made by sensor , (where, BD-FEG� ), and denoting
/

as the number

of sensors initially deployed, the overall number of sensors movement hops is,

H " I6-87:9 BC- A (2)

Our problem is to simultaneously minimize two objectives, namely 0�13� (a non-linear function) and
H

.

Our problem is general, since we place no restriction on the value of �� . The value of �� is application

decided. If �� "J� , then it means a requirement of ����	 sensor per region. For applications where redundancy

is important (surveillance, mission critical, military applications), �� can be set larger than � . If �� is a very

large number, then our problem translates to load balancing the number of sensors among all regions in

the network. An important feature of our problem is that we do not minimize the variance of number of

sensors among all regions from �� . We minimize it among only the regions that have less than �� sensors

at final deployment, which is captured by the term �<,K�L$ � -M>��� ( in equation (1). In many cases, sensors are

over-deployed. When the deployment objective is only �� sensors per region, the nature of our problem

will not let extra sensors move, when the requirement of at least �� sensors among all regions has been

met. This is to preserve the mobility of sensors in such cases. Eventually, when some sensors fail (due to

faults, power losses etc), the deficiency in �� requirement can be met by the spare sensors whose limited

mobility was initially preserved, effectively complementing the motivations for over-deployment.

We make the following assumptions in this paper. We assume that �<,K�FN 5PORQTSU * > 5WVYXU ZC[2\  , where  is the

region size, !.]_^=` and !:acb are sensing and transmission ranges of the sensors respectively. If each region
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has �� sensors at final deployment, then the assumption
5PORQRSU * \  implies that every point in each region is

covered by �� sensors, and the assumption
5PVYXU Zd\  implies that a sensor in any region can communicate

with �� sensors in each of its four adjacent regions. We assume that each sensor can know which region

it resides in. To do so, sensors can be provisioned with GPS devices, or methods proposed in [7] can be

applied, where location of sensors is determined by using sensors themselves as landmarks. For simplicity,

we first assume that the regions to which a sensor can move to, are regions in its adjacent left, right,

top and bottom directions only (denoted as neighboring regions). After discussing the above case for

movement direction, the general case where a sensor can move in any arbitrary direction is discussed

subsequently. Also, we assume that the network is not partitioned. The issue of partitions is discussed

later.

B. An Example of our Problem and Challenges

We illustrate our problem further with an example. Consider an instance of initial deployment in the

sensor network as shown in Figure 1 (a). The number inside circles denotes the number of sensors in that

region. The number in the upper left corner denotes the corresponding region ID. Let maximum number

of hops � "e� , and �� " �
. There are f � sensors initially deployed. At the time of initial deployment,

regions
�
, f , g , ��� , ��� , ��h , ��� have less than �� sensors. An intuitive way to minimize the variance from�� is to let neighboring regions locally synchronize for movement. Using local information exchanges,

it is very likely that the sensors move according to the sequence shown in Figure 1 (a). The arrows

indicate direction of movement, and the numbers beside arrows indicate number of sensors moved from

the corresponding region.
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Fig. 1. An instance of initial deployment and an intuitive movement plan to minimize variance (a), and the resulting deployment (b).

Let us denote regions that have at least one sensor at initial deployment as source regions (or sources).

Let us denote regions that do not have any sensor at initial deployment as holes. Region h is a source

and moves sensors to region f , since region f is close to it, and needs sensors. With local information
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exchange, region i will not move sensors to region f , rather it will move sensors to region ��� , after

synchronizing with regions h and � . Similarly, since region ��f has four sensors, and since regions g and��h do not have any sensor, a sensor moves from region ��f to fill each of the regions g and ��h . But since

region � has two sensors, and it receives two sensors from region � , two sensors move from region � to

region g . Other regions also follow the same intuition and synchronization to move sensors. The resulting

deployment is shown in Figure 1 (b). Note that regions ��h , ��� and ��� have only one sensor. In fact with

this movement plan, minimum variance (equal to � ) can never be achieved. Consider region ��h . The only

way region ��h can get a sensor is from regions ��f , ��� or ��� . However, regions ��� and ��� initially did not

have any sensor. Thus, no sensor can move to region ��h via regions ��� and ��� since � is � . Similarly, no

sensor can move to region ��f via region g . Besides, region ��f has no extra sensor now. Consequently all

paths to region ��h are blocked in this movement plan. A pertinent question to raise at this point is, whether

there exists an optimal plan that can make the variance � . If so, what is the plan, or more importantly,

what are the challenges that need to be addressed in determining such a movement plan. We discuss both

issues in detail below.
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Fig. 2. An instance of initial deployment and an optimal movement plan (a), and the resulting deployment (b).

There are two key challenges to our problem. The first challenge is due to our objective of simultaneously

minimizing variance and the number of sensor movement hops. Consider the movement plan in Figure

1 (a). Region � that has six sensors in it, wishes to fill regions
�

and ��� . The intuition is because both

regions are empty and region � is close to them. But this plan, that attempts to minimize hops, cannot

minimize variance. There is thus a conflict that may be present in minimizing variance, and the number

of hops using local information. For optimum deployment, region � should move sensors to regions ���
and ��� (in Figure 2 (a)). The path to region ��� may appear long, but it is the one that makes the global

variance � , shown in Figures 2 (a) and (b).

The second challenge is; due to limited mobility, if a sensor in one region wishes to move to some far

away region, then depending on � , there must be mobile sensors in one or more intermediate regions
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(like a chain) in the corresponding path (if �j"J� , then all intermediate regions in the path need to have

a mobile sensor). If there is no mobile sensor after a sensor has traveled � hops to a particular region,

no sensor can move beyond that region, resulting in blocked paths. For instance in Figure 1 (b), although

region � still has extra mobile sensors, all paths from region � to region ��h are blocked. The challenge is

in determining such optimal chains for sensor movements. Such a path may traverse many intermediate

regions as shown in Figure 2 (a), where the path from region � to region ��� traverses five regions, and

a chain of movements is possible in each intermediate region. Determining such a chain of movements

for optimal variance and sensor movement hops is not trivial. If sensors make purely local decisions,

then optimality cannot be achieved. Also, it is preferable for sensors to make a movement plan (which

sensors should move, and where) prior to their movement, in order to avoid erroneous movements, and

compensating such errors later on.

III. METHODOLOGY OF OUR ALGORITHMS

Our sensor network deployment problem has two objectives; � ) minimizing variance and
�
) minimizing

overall number of movement hops of the limited mobility sensors. In the following, we discuss our

methodology to achieve both objectives. Consider any two regions , and k in a sensor network. Let the

number of sensors in region , be less than that of region k , both of which are less than �� . If one sensor

is available to move to one of these two regions, the contribution to global variance minimization in the

network is larger if the sensor moves to region , than if it moves to region k . Our methodology to capture

this notion of priority is by lm	�,_nCBo� assignment to regions. When sensors move, larger weight regions are

given priority compared to smaller weight regions with the objective of global variance minimization. In

the above example region , will have larger weight than region k to prioritize sensor movements to region, . We discuss our methodology in further detail below.

The overall variance is minimized (equal to � ), when each region has at least �� sensors. Thus, for

each region , in the sensor network, we first create �� virtual sinks (or simply sinks) in order to allocate

a position (virtually) for each of the �� sensors that are needed in each region. Let each sink in region ,
be denoted by � 9- , ��*- , ��p- , . . . , ��qr- . For each sink � 9- , ��*- , ��p- , . . . , ��qr- , we assign weights to them denoted byl 9- , ls*- , lsp- , . . . , l qr- respectively to prioritize movements towards larger weight sinks. The weights for the

sinks are given by, lut- " �sv k ; �w$�xEykzE �� ( A (3)

Note that sink ��{- has more weight than � `- , if �}|~� . Also note that ls{- "�l�{t for any two regions ,
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and k .
After sensors move towards sinks (according to their weights), some sinks will have sensors, while

some do not. In order to capture the presence of a sensor in each sink among the multiple regions (after

sensors move), we define the following function.

� t - " �� � ��>�,M����,=� � � t - B�1���1���	��.����� ,�C>�����B�	���ls,?��	 . (4)

There is a constraint for the function
�

. If
� t - "�� , then

� {- "�� for all ��|�k . We are in effect saying

here that if sink � t - in region , has a sensor, then each sink � {- in region , with larger weights (i.e., ��|#k )
should have a sensor. The function

�
captures whether a sink contains a sensor. We define a new metric

here called Score as follows, !)�P����	s" �! $
56-87:9 q

r6
t 7:9

� t -�� lut- ( A (5)

The Score function is the summation of weights of those sinks (for all regions) that contain a sensor

in them. Clearly, the Score is larger when there are more sinks containing a sensor. The Score function

also considers the weight of a sink. As such, in the event that a sensor can move to more than one

sink, the Score is larger, when the sensor moves to the sink with the largest weight. Therefore during

sensor movements, when we attempt to maximize the Score, we are in effect ensuring that as many sinks

as possible contain a sensor, while also ensuring that larger weight sinks always have higher priority

compared to smaller weight sinks. We now have the following Theorem.

Theorem 1: A sequence of sensor movements that maximizes !)�W����	 will minimize the variance 0213�
and vice versa.

Proof: Consider two arbitrary sequences of sensor movements � and � , with functions N�� t- [ andN�n t- [ respectively. Assume there are �
- and �:- sinks in region , that have a sensor at the end of sequences� and � respectively. Recalling the constraint of
� t - in (4), we have,

� t- " �� � ��>�kz| ���; ��- ,�C>�kzEJ���; ��- , (6)

n�t- " �� � ��>�kd| ���; �:- ,��>�kdE ���; ��- . (7)
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The gain of !)�W����	 for sequence � compared with !)�W����	 for sequence � ( !��W����	�$_��( ; !)�W����	�$=�2( ) is

" �!
56 -87:9 q

r6
t 7:9 $K� t-

v l t - ( ; �!
56 -c7:9 q

r6
t 7:9 $�n t-

v l t - (�" �!
56 -c7:9 $@$���- ; �:-_( v $ � ���; ��- ; ��-�(@( A (8)

The loss of variance 0�13� of � compared with that of � ( 0�13�C$=�2( ; 0213�C$=�2( ) is

" �!
56-87:9 $ ���; ��-_( * ; �!

56 -87:9 $ ���; ��-_( * " �!
56 -87:9 $�$_��- ; �:-�( v $ � ���; ��- ; �:-�(@( A (9)

We can see that the amount of gain in !)�P����	 for � is the same as the amount of loss in 0213� . Thus,

the sequence of sensor movements that maximizes !��W����	 simultaneously minimizes 0�13� , and vice versa.

From the above theorem, we can see that our original non-linear variance objective can be translated

to a linear objective. In this paper, we propose three algorithms for our deployment problem, following

the above methodology. In our algorithms, we create sinks for each region depending on the number of

sensors needed. Each sink has a weight associated with it, such that when sensors move, sinks with larger

weights have higher priority compared to sinks with smaller weights. The goal of our algorithms is to

maximize Score, which according to Theorem 1 minimizes the variance 0213� .
The second objective of our problem is minimizing total number of sensor movement hops. We achieve

this goal by treating sensor movement hops as costs, and minimizing such costs in our algorithms. When

there are multiple sinks in other regions with same weights, our algorithms will ensure that sensors move

to sinks in those regions that are closer in terms of distance to be traversed. Clearly, larger weight sinks

are still given priority compared to smaller weight sinks. However, with such movements, the resulting

number of overall sensor movement hops is minimized, along with maximizing Score. If a sensor in a

region does not need to move to another region we treat the sensor as virtually moving to a sink in the

same region. Such a movement incurs � cost.

IV. THE OPTIMAL MAXIMUM FLOW BASED CENTRALIZED ALGORITHM

A. Overview

Our first algorithm is the Optimal Maximum Flow based centralized algorithm (OMF algorithm). In the

OMF algorithm, the sensor network at initial deployment is translated as a graph structure. The algorithm

then determines the minimum cost maximum weighted flow in the graph. The corresponding flow plan in

the graph is translated as a movement plan for the sensors in the network. In the following, we describe
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our OMF algorithm from the perspective of a Base-station executing the algorithm. An alternate approach

to execute the OMF algorithm is presented in Section V-A.

Algorithm 1 Pseudocode of the OMF algorithm
1: Collect the information on the number of sensors in each region in the sensor network.
2: Construct a graph ���: ¢¡���£�¤:�C¥ using the above region information, desired number of sensors per region ¦§ and the sensor mobility

capacity ¨ . ��� models the sensor network at initial deployment time.
3: Determine the minimum cost maximum weighted flow from source regions to weighted sinks in �©� .
4: Determine a movement plan for the sensors in the sensor network based on the above flow plan in �F� .
5: Forward the movement plan to sensors in the network.

Algorithm 1 shows the sequence of steps in the OMF algorithm. In Step � , each sensor in the network

identifies which region it resides in. Sensors then forward information on the number of sensors in their

region towards the Base-station. For routing packets towards Base-station, protocols like [8], [9], [10] can

be used, where the protocols route packets towards intended destinations in the network (Base-station in

our case) using shortest paths. The Base-station thus obtains information on the number of sensors in all

regions in Step � . As pointed out before, for determining which region a sensor resides in, sensors can

be provisioned with GPS devices or methods proposed in [7] can be used where location of sensors is

determined by using sensors themselves as landmarks. Also, we assume the network is connected without

partitions. The issue of partitions is discussed later.

In Step
�
, the Base-station constructs a virtual graph ( ��� ), which is a graph structure whose vertices and

edges model the regions and sensor movement ability between regions respectively at initial deployment.

In Step f , the Base-station determines the maximum weighted flow to the sinks in ��� (that maximizes

equation 5) with minimum cost. In Step h , the flow plan in the ��� corresponding to the minimum cost

maximum weighted flow is translated as a movement plan for the sensors. In Step � , the Base-station

forwards the movement plan (which sensors should move and where) to the sensors in the network.

We subsequently prove that this movement plan minimizes the variance, and overall number of sensor

movement hops in the sensor network. Each of Steps
�
, f , h and � in our OMF algorithm is discussed in

detail below.

B. Constructing the Virtual Graph ���
We now discuss Step

�
, that involves the construction of the virtual graph denoted by ���ª$K0D�L>¬«�©( .

Before we discuss ��� , we introduce the notation of reachability between regions. For any region , in

the sensor network, we denote its reachable regions as those regions to which a sensor from region , can

move to. Obviously, the reachable regions depend on the maximum movement hops � . We first assume
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that the regions to which a sensor can move to, are regions in its adjacent left, right, top and bottom

directions only. Thus, if �j"�� in Figure 1, then the reachable regions for region � are regions
�

and � .
If ��" �

, the reachable regions are regions
�
, f , � , � and g .

The construction of ��� involves � ) The establishing of vertices and edges for each region in the sensor

network and creation of sinks for each region,
�
) The establishing of reachability relationship between

the regions, f ) Adding weights to sinks following our discussions in Section III and h ) Adding costs to

edges to capture sensor movements across regions. The objective of this construction is to ensure that �d�
models the sensor network, identifies sources, sinks, and reachability relationship among regions. Figure

3 (a) shows an instance on initial deployment for a
� � � network with h regions and � � sensors, and

where �� "®f and � "¯� . Its corresponding virtual graph ��� is shown in Figure 3 (b). The numbers

inside the circles in Figure 3 (a) denotes the number of sensors in the corresponding region in the sensor

network. In the following, we describe the virtual graph construction process in detail. Let us first describe

the establishment of vertices and edges assignment in ��� for one arbitrary region in the sensor network.

Without loss of generality, consider region , with initially ��- sensors. For this region, we create a vertex

called as the base vertex of region , (denoted by °C±- ) in �4� . We create vertex °³²K´ a- to keep track of the

number of sensors that can move out from region , . We then create �� sink vertices for region , (due to

deployment requirement of �� sensors per region). The sink vertices for region , are denoted by °C� 9- , °���*- ,°���p- , . . . , °���qr- . We also create vertex ° -Y`- as a proxy for the �� sink vertices.

The next step is adding edges between vertices for this region. An edge of capacity �©- is added from° ±- to ° ²K´ a- . This means that up to �:- sensors can move from region , . Since ° -Y`- is a proxy for the sink

vertices, the capacity from ° ²=´ a- to ° -Y`- is also �:- . From ° -Y`- , an edge is added to each of the vertices °�� 9- ,°���*- , °���p- , . . . , °�� qr- with capacity � . Since the deployment requirement is �� sensors per region, we allow up

to one sensor to move to each sink (for �� such sinks). All other regions are treated similarly in ��� . For

example, for region � in ��� in Figure 3 (b), we create six vertices corresponding to the base vertex ( ° ±9 ),
in vertex ( ° -Y`9 ), out vertex ( ° ²=´ a9 ) and �� "µf sink vertices ( °�� 99 , °���* 9 and °���p 9 ). Edges between the vertices,

and their capacities for region � are also shown. All other regions are treated similarly.

The second step is establishing reachability relationship among the regions into ��� . Let us consider

two arbitrary regions , and k that are reachable from each other. In ��� , edges are added from ° ²K´ a- to° -Y`t , with edge capacity �¶- , which is the number of sensors in region , . This is to allow up to �.- sensors

to move from region , to region k . Correspondingly, edges are added from ° ²K´ at to ° -Y`- , with capacity � t .
For example in Figure 3 (b), there is an edge from °�²K´ a9 to ° -Y`* with capacity �F9�"Jh , and an edge from
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°�²K´ a* to ° -Y`9 with capacity � * " �
since regions � and

�
are reachable from each other.

The next steps are weight assignment to sinks, and cost assignment to edges. Consider region , again.

For sinks °�� 9- , °���*- , °C��p- , . . . , °���qr- in region , , we denote their weights as l 9- , ls*- , lsp- , . . . , l4qr- . Following

from the discussions in Section III, the values for the weights are � , f , � , . . . ,
� ���; � respectively. Since�� "~f in the example in Figure 3, we have weights � , f and � for the sinks (shown along side the sink

vertices). Note that, ls{- is larger than l t- , if �j|#k . We now discuss costs for edges between regions in�4� in order to capture number of sensor movements. If a sensor moves from its region to its adjacent

region, then it denotes one hop made by the sensor. Let us consider two regions , and k in the sensor

network that are reachable from each other. Let the distance between them in terms of number of hops

be ·�-T¸ t . That is, ·3-T¸ t denotes the minimum number of hops required for a sensor in region , to move to

region k (or vice versa). For instance, in Figure 1 (a), ·D9M¸ p "J· p ¸¹9u"º� . Obviously ·3-T¸ t E»� , if regions ,
and k are reachable from each other. To incorporate this in ��� , between any two reachable regions , andk , the costs of edges from ° ²K´ a- to ° -Y`t , and the costs of edges from ° ²=´ at to ° -Y`- are assigned as ·3-T¸ t . Apart

from the above, the only remaining edges in ��� are the ones from ° ±- to ° ²K´ a- , from ° ²K´ a- to ° -Y`- , and from° -Y`- to °�� 9- , °�� *- , °�� p- , . . . , °���qr- (for all regions , ). These edges denote internal movements within a region,

and the cost for these edges is set as � . The costs of edges in ��� are not shown in Figure 3.

At this point, Step
�

of our OMF algorithm is completed. The Base-station has constructed ��� that

models the sensor network at initial deployment. Before proceeding to Step f , we define a flow plan¼
in �2� and a metric ½ .

¼
is the sequence of flows (in ��� ) that meets the following condition;½ "¿¾ 5-87:9 ¾ qrt 7:9 $K� t- v l t- ( is maximized, where � t- is the subflow to sink °�� t - in flow plan

¼
. We call¼

as a maximum weighted flow plan in ��� . If the cost of
¼

is minimized,
¼

is called as a minimum

cost maximum weighted flow plan. With sinks in ��� having weights associated with them, a maximum

weighted flow plan must maximize the number of sink vertices that receive a flow, and prioritize flows to

larger weight sinks first compared to smaller weight sinks in ��� . Since the capacity of the edge from ° -Y`-
to °��Àt - in �4� is � , �Ct- meets the constraint of function

�
defined in (4). Since ��� is a translation of the

sensor network, the flow plan
¼

in ��� can be translated as a corresponding movement plan for sensors in

the sensor network (exactly how this is done is discussed in Section IV-D). From the definition of Score

in (5) and ½ above, the corresponding sensor movement plan maximizes the Score with minimum cost,

which in turn minimizes 0213� (from Theorem 1) with minimum cost. To summarize, with the construction

of �4� in place, the variance/movement minimization problem now becomes one, where the weighted flow
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to sinks in �2� is to be maximized with minimum cost.
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Fig. 3. An instance of the initial network deployment (a) and the corresponding virtual graph �©� (b).

C. Computing the Minimum Cost Maximum Weighted Flow in the Virtual Graph ���
We now proceed to Step f in the OMF algorithm, where determine the minimum cost maximum

weighted flow in �2� . In the following, we present our algorithm to determine the minimum cost maximum

weighted flow in �2� . Our approach to maximize the weighted flow is to translate larger weight sink

vertices, as lower cost sink edges. Thus, prioritizing flows to large weight sinks now becomes prioritizing

flows through lower cost edges. This is the crux of our algorithm described below.

Algorithm 2 Pseudocode for computing the minimum cost maximum weighted flow in �d�
1: Input: � �  ¢¡ � £_¤ � ¥ , ¨ , Á and ¦§
2: Output: Graph ��Â�  Ã¦¡L£�¦¤©¥ and Minimum Cost Maximum Weighted Flow Plan Ä in � �
3: Å ¤ � Å = No. of Edges in � � , Å ¡ � Å = No. of Vertices in � �
4: Å+¦¤�ÅÃÆ<Å ¤ � ÅMÇxÁ4È�  ¦§ Ç�É+¥
5: ÅR¦¡�ÅÃÆ<Å ¡ � Å?Ç4Ê
6: Add vertices Á3ËOÍÌ=ÎX�ÏRQ and Á�ËORÐÑSÃÒ to � � to create graph ��Â�
7: for each region Ó do
8: for Ô from É to ¦§ do
9: Add edge from sink ÕWÖ_× Ð to Á3ËOTÐØS@Ò

10: Assign corresponding edge capacity as É
11: Assign corresponding edge cost as Ù� ¢Ê=Ô�Ù4É+¥oÈu¨�ÈsÅ¦¤ªÅ
12: end for
13: Add edge from Á ËOTÌ_ÎX�ÏRQ to ÕÀÚÐ
14: Assign corresponding edge capacity as Û
15: Assign corresponding edge cost as Ü
16: end for
17: Determine the maximum flow value Å ¦Ä©Å from Á ËOTÌ_ÎX�ÏTQ to Á ËORÐÑSÃÒ in � Â �
18: Determine the minimum cost flow plan Ä (for flow value Å?¦Ä�Å ) from Á ËOÍÌ=ÎX�ÏRQ to Á ËORÐÑSÃÒ in � Â �

Algorithm 2 is the pseudocode to determine the minimum cost maximum weighted flow in the virtual

graph �2� . The input is �2��$K0D�)>¬«�©( , � , number of regions ! and �� . We first create a new graph from�4� called �x{� $ �0d> �«�( as follows. We first create two new vertices called Super Source and Super Sink,
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denoted by !LÝ] ²K´ bMÞ�^ and !ßÝ]�-Y` r respectively. Edges are added from each sink vertex to !ªÝ]_-Y` r , with capacity� to allow only one sensor to move from each sink towards ! Ý]_-Y` r . The cost of the edges from sinks °�� 9- ,°���*- , °C��p- , . . . , °���qr- to ! Ý]_-Y` r (for all regions , ) are set as
; � �Gà �« à , ; f � � �Gà �« à , ; � � � �Gà �« à , . . . ,; $ � ���; ��( � � �áà �« à respectively, where à �« à is defined in Algorithm 2 1. Finally, edges are added from! Ý] ²K´ bMÞ�^ to all base vertices (i.e., ° ±- for all , ), with capacity â to allow any amount of flow from ! Ý] ²K´ bMÞ�^ .

The costs for these edges are set as � , since the flow through such edges are not actual sensor movements.

At this point (Step ��� in Algorithm 2), � { � has been constructed. Determining the flow plan to maximize

weighted flow to sinks with minimum cost in �2{� is a two-step process (Steps ��i and ��ã in Algorithm

2). The Base-station will first determine the maximum flow value ( à �¼ à ) from ! Ý] ²K´ bMÞ�^ to ! Ý]�-Y` r in �ä{� . The

maximum flow value à �¼ à indicates the maximum number of sinks that can get a sensor in ��{� . However,

this only indicates the maximum number of sinks. The determination of the maximum flow value does

not consider the fact that sinks have different weights and larger weight sinks need to be accorded higher

priority. Our objective however, is to determine the flow plan
¼

(the actual flow among the edges) in ��{�
such that weighted flow to sinks is maximized with minimum cost. We do this in Step ��ã by determining

the minimum cost flow plan
¼

(for maximum flow value à �¼ à ) in � { � , discussed further below.

We know that when executing the minimum cost flow algorithm on any graph, flow is prioritized

through edges with lower cost. By setting the edge costs from sinks to ! Ý]_-å` r as the negative of weights of

the corresponding sink, we will achieve our objective of prioritizing flow to sinks with larger weights in

determining the minimum cost flow to ! Ý]_-Y` r . There is one issue we have to resolve during cost assignment.

Recall that sensor movements between reachable regions are considered as costs in ��{� . Clearly, these

costs will affect the minimum cost flow plan when determining flows to sinks with minimum cost in�ä{� . To prevent this from happening, the costs from sinks to ! Ý]_-å` r is assigned as the negative of the sink

weights multiplied by a large constant (namely, � �æà �« à ). This constant is large enough to ensure that the

flow plan (
¼

) to maximize weighted flow in �2{� is not affected by the costs between reachable regions,

while still minimizing costs between reachable regions (that denote sensor movements). Before discussing

how to translate this flow plan
¼

into a sensor movement plan, we state the following theorem showing

the relationship between �4{� and �4� .

Theorem 2: The flow plan corresponding to the minimum cost maximum flow in ��{� is the flow plan

corresponding to the minimum cost maximum weighted flow in ��� .

Proof: We first prove that the flow plan corresponding to the minimum cost maximum flow in ��{�
1The interpretation of Å+¦¤ªÅ is discussed subsequently.
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is the flow plan corresponding to the maximum weighted flow in ��� . We will prove this by contradiction.

Let the minimum cost maximum flow plan in �2{� be
¼

. Suppose
¼

does not yield the maximum weighted

flow in �2� . This means there exists a flow plan ç that has a higher weighted flow than that of
¼

. Let us

denote the weighted flow values of
¼

and ç to sinks in ��� by ½éè and ½éê respectively. We then have½æê ; ½éè \ � . Denoting ë4������è and ë4�����+ê as the cost values of
¼

and ç in �4{� respectively, we have,

ë2�����è " ; ½éè v à �« à v �íìáë2�����Mîè (10)

ë4�����+ê " ; ½æê v à �« à v �ºìáë2�����Mîê (11)

in which ë4����� î è and ë4����� îê denote the sum of the edge costs from ° ²K´ a- to ° -Y`t for all regions , and k in
¼

and ç respectively. Since
¼

applies minimum cost flow algorithm, we have ë4�����¬èðïñë4�����+ê . However,

we can also obtain,ë4�����è�" ; ½éè v à �« à v �íìáë2����� î è \ ; ½éè v à �« à v � \ ; ½æê v à �« à v �ºì à �« à v �| ; ½éê v à �« à v �òìáë2����� îê "óë4�����+ê ,

which is a contradiction. Therefore, flow plan
¼

yields the maximum weighted flow in ��� . Since
¼

is the plan after executing the minimum cost algorithm in � { � , the costs of flow among edges between

reachable regions is minimized in � { � . �2� is made of exactly the same edges (edges between reachable

regions). Therefore, flow plan
¼

corresponds to the minimum cost maximum weighted flow in ��� .

D. Determining the optimal movement plan from the virtual graph ���
Once the minimum cost maximum weighted flow to each sink in ��� (and the corresponding flow plan

in all edges in �2� ) is obtained, we proceed to Step h in Algorithm 1. In Step h , we translate the flow

plan from Step f into actual sensor movements as follows. Let
¼ � denote the flow plan (a set of flows)

corresponding to the minimum cost maximum weighted flow algorithm in ��� , where the capacity of each

flow is � . Each flow ô � $�° ±- >Ã°���õt (�ö ¼ � is a flow from ° ±- to °���õt in �2� . The flow ô � $�° ±- >Ã°���õt ( is of the

form ÷=° ±- >Ã° ²K´ a- >Ã° -Y`t >Ã°�� õt3ø . Thus, for the flow plan
¼ � , we can map it to a corresponding movement plan

¼ 5
(set of movement sequences for sensors) in the sensor network. That is for each ô � $�° ±- >Ã°�� õt ( ( ö ¼ � ) of

the form ÷_° ±- >Ã° ²K´ a- >@° -å`t >Ã°���õt ø , the corresponding ô 5 $_,@>?k�( ( ö ¼ 5 ) is of the form ÷=,�>Mk ø . Physically, this means

that one sensor should move from region , to region k . The sensor movement plan
¼ 5

(consisting of the

set of all such ô 5 , obtained from ô � ) is our output. This movement plan that indicates which sensors

should move, and their corresponding destinations are forwarded by the Base-station to the sensors in the

network.
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E. Optimality of our OMF Algorithm

Before discussing optimality of our algorithm, we first introduce the concept of feasible flows and

movement sequences. We call a flow ô � $�°�±- >Ã°�� õt ( of the form ÷=°³±- >Ã°�²K´ a- >Ã° -Y`t >Ã°�� õt > ø feasible in �2� if there

exists positive edge capacities from vertices °C±- to °�²K´ a- , °�²K´ a- to ° -Y`t , ° -Y`t to °�� õt . We call a movement

sequence ô 5 $_,�>Mk³( of the form ÷=,�>Mk ø feasible in the sensor network if there is at least one mobile sensor

in region , that can move to region k . We have the following lemma for a flow in ��� and a movement

sequence in the sensor network.

Lemma 1: A flow ô � $�° ±- >Ã°�� õt ( in �4� is feasible if and only if the corresponding movement sequenceô 5 $�,@>Mk�( is feasible in the sensor network.

Proof: We first prove if ô 5 $_,@>?k�( is feasible, then ô � $�° ±- >Ã°�� õt ( is feasible. If ô 5 $_,�>Mk³( is feasible, then

there is at least one mobile sensor in region , , and regions , and k are reachable from each other. That is,

the capacities of the edges from ° ±- to ° ²K´ a- , and from ° ²=´ a- to ° -Y`t are \ � , and there exists an edge from° -Y`t to °�� õt , whose capacity is � (from Section IV-B). Thus, ô � $_° ±- >Ã°�� õt ( is feasible.

We now prove if ô � $_° ±- >@°C� õt ( is feasible, then ô 5 $_,�>Mk³( is feasible. If ô � $_° ±- >@°C� õt ( = ÷=° ±- >Ã° ²K´ a- >@° -å`t >@°C� õt ø is

feasible, then the capacities of the edges from ° ±- to ° ²K´ a- , from ° ²K´ a- to ° -Y`t and from ° -Y`t to °�� õt are all \ � .
This implies that there is a sensor in region , , and regions , and k are reachable from each other. So a

sensor can move from region , to region k . Thus ô 5 $�,@>Mk³( is feasible.

We obtain the following corollary from Lemma 1.

Corollary 1: For a feasible flow plan �¼ � (set of all ô � ) in �2� , a corresponding feasible sensor

movement sequence plan �¼ 5 (set of all ô 5 ) can be found in the sensor network and vice versa.

Proof: We first prove that for a feasible flow plan �¼ � in �4� , a corresponding sensor movement

sequence plan can be found in the sensor network. Consider an arbitrary feasible flow ô � in �¼ � . By

Lemma 1, a corresponding feasible sensor movement sequence ô 5 in the sensor network can be found

for the flow ô � in �2� . The set of such sensor movement sequences is �¼ 5 in the sensor network.

We now prove that for a feasible sensor movement sequence plan �¼ 5 in the sensor network, a

corresponding flow plan can be found in ��� . Consider an arbitrary feasible sensor movement sequenceô 5 in �¼ 5 . By Lemma 1, a corresponding feasible flow ô � in �2� can be found for the sensor movement

sequence ô 5 in the sensor network. The set of such flows is �¼ � in �4� .

The following Theorem shows that the movement plan obtained by our OMF algorithm optimizes both

variance and the number of sensor movement hops.
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Theorem 3: Let
¼ �²Rù a be the minimum cost maximum weighted flow plan in ��� . Its corresponding

movement plan
¼ 5²Rù a will minimize variance and the number of sensor movement hops in the sensor

network.

Proof: We first prove that our OMF algorithm is optimal in terms of minimizing variance. We

prove this by contradiction. Consider a sensor movement plan
¼ 5²Rù a that corresponds to a flow plan

¼ �²Tù a
determined by executing the minimum cost maximum weighted flow algorithm on ��� . Let this movement

plan be non-optimal in terms of variance. This implies that there is a better movement plan,
¼ 5õ that can

further minimize variance in the sensor network. By Corollary 1, a corresponding flow plan
¼ �õ can be

found in �2� . The amount of weighted flow in this plan is larger than the weighted flow achieved using

plan
¼ �²Rù a , which is a contradiction. Hence

¼ 5²Tù a is the optimal movement plan for sensors that minimizes

variance.

We now prove that our OMF algorithm is optimal in terms of minimizing the number of sensor

movement hops. We prove this by contradiction. Consider a sensor movement plan
¼ 5²Rù a that corresponds

to a flow plan
¼ �²Rù a determined by executing the minimum cost maximum weighted flow algorithm on ��� .

Let this movement plan be non-optimal in terms of the number of sensor movement hops. This implies

that there is a better plan,
¼ 5õ that can that can reduce at least one movement in the sensor network.

By Corollary 1, a corresponding flow plan
¼ �õ can be found in �2� . The number of movement hops (or

overall cost) in this plan is less than the number of movement hops (or overall cost) achieved using
¼ �²Tù a ,

which is a contradiction. Hence
¼ 5²Rù a is the optimal movement plan that minimizes the number of sensor

movement hops.

We now discuss the time complexity of our algorithm. There are three phases in our algorithm while

determining the optimal movement plan. The first is the construction of ���ª$K0D�L>¬«��F( and �x{� $ �0�> �«�( , the

second is determining the maximum flow in � { � , and the third is determining the minimum cost flow in�ä{� . The time complexity is dominated by determining the maximum flow and the minimum cost flow

in �x{� . Our implementations of the maximum flow algorithm is the Edmonds-Karp algorithm [11], and

minimum cost flow algorithm is the one in [12]. The resulting time complexity using our implementations

is ú�$��
13ûü$ à �0 àÍà �« à *�> à �0 à * à �« à¹ý ��n à �0 à (@( . Here à �0 à and à �« à denote the number of vertices and edges in �2{� ,

and are given by, à �0 à "Jú�$ �� $�þ¬&'ßÿ *W(@( , and à �« à "�úz$ �� � *�$�þÀ&'ßÿ *¬(@( , in which � is the sensor network size

and  is the region size.
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F. Balancing Sensor Deployment and Movements

We now discuss how to extend the OMF algorithm to optimally solve two representative deployment

problems that fall within the framework of our above general deployment problem.

a). Balancing Sensor Deployment: In some applications, the deployment goal is to ensure that the

number of sensors among all regions is balanced [2]. In this problem, we have to minimize the global

variance in the number of sensors among all regions from �� � Ý ^ , where �� � Ý ^ is the average number of

sensors per region. We now discuss how to modify ��� for this problem. The key issue here is how many

sinks per region need to be created in ��� . Intuitively, it may appear that �� � Ý ^ sinks per region need to be

created. However, due to limited mobility, at final deployment, it may happen that some regions will have

more than �� � Ý ^ sensors. Creating �� � Ý ^ sinks per region is not enough. On the other hand, the following

Lemma shows that the final deployment plan that minimizes the global variance in the number of sensors

among all regions from an arbitrary constant (
� � b ± ), will minimize the global variance in the number of

sensors among all regions from �� � Ý ^
Lemma 2: Let

� � b ± be any arbitrary constant. The final deployment plan that minimizes the global

variance in the number of sensors among all regions from
� � b ± , will minimize the global variance in the

number of sensors among all regions from �� � Ý ^ .
Proof: At final deployment, let regions ��9À>Ã� * >@� p > A�A�A >Ã� 5 contain

� 9W> � * > � p > A�A�A > � 5 sensors respectively.

The number of sensors
� 9W> � * > � p > A�A�A > � 5 , correspond to the final deployment that minimizes global variance

in the number of sensors among all regions from
� � b ± . Clearly, the number of sensors in the network,/ "¿¾ 5-87:9 � - . The final deployment variance from
� � b ± is given by 0 � b ± " 95 ¾ 5-87:9 $ � - ;G� � b ± ( * . By our

assumption, this is minimum. Therefore,
� *9 ì � ** ì � *p A�A�A ì � *5 ; � � � b ± $ � 9.ì � * ì � p A�A�A ì � 5 (�ì ! � *� b ± is

minimum. That is,
� * 9 ì � ** ì � *p A�A�A ì � *5 ; � � � b ± $ / (�ì<! � *� b ± . That is,

� * 9 ì � ** ì � *p A�A�A ì � *5 is minimum, since! ,
/

and
� � b ± are constants. This implies that

� *9 ì � ** ì � *p A�A�A ì � *5 ; � �� � Ý ^�$ � 9Cì � * ì � p A�A�A ì � 5 (Cìé!��� *� Ý ^
is also minimum, since �� � Ý ^ is a constant. That is, global variance in the number of sensors among all

regions from �� � Ý ^ is also minimum.

With the above Lemma, we create � { � õ sinks for each region in �2� , where � { � õ is the number of

sensors in the region with the maximum number of sensors at initial deployment. All other construction

rules for �2� remain the same. The following theorem shows the optimality of our solution to the problem

of balancing sensor deployment.

Theorem 4: The deployment plan after executing the OMF algorithm with � { � õ sinks for each region

in �4� will minimize the global variance in the number of sensors among all regions from �� � Ý ^ .
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Proof: We first prove that executing the OMF algorithm with � { � õ sinks will minimize the variance

in the number of sensors among all regions from � { � õ . We prove this by contradiction. Let
¼ ²Rù a be the

movement plan after executing the OMF algorithm that is optimum. optimum. Assume region , has more

than � { � õ sensors after execution of OMF algorithm. That is,
� -©| � { � õ . Since �:-©ï" � { � õ , at least one

of the
� - sensors in region , comes from another region. Let this region be denoted by k ( , �"ük ). Let us

denote the sensor moving from region , to region k as ���9 . If
� t ï�� { � õ , then we can construct a new

movement plan, where sensor ���9 stays in region k . Clearly this plan reduces the variance compared to¼ ²Rù a , which is a contradiction. Therefore
� t \ � { � õ . Now, since region k initially had E»� { � õ sensors,

and since it now has \ � { � õ sensors, and since a sensor has moved out of region k , this means that some

other sensor �� * has moved from some region � to region k . Using the above argument, we can show that� { \ � { � õ . Therefore a sensor moves from some region � to region � .

From the above argument, we can see that there must be a path of the form ï ,@>?k�>Ã�æ>��.> A�A�A | , where

each sensor has \ � { � õ sensors, and at least one sensor moves from region k to region , , region �
to region k and so on. Since the number of regions is finite, there must exist a circular path in such a

movement. Let us construct a new movement plan, where the sensors that moved across such a path do

not move. Clearly, the variance remains the same, while movement hops is minimized in the new plan,

which is a contradiction. Therefore, � { � õ sinks suffices for all sensors to move to some sink. By Theorem

1, the global variance from � { � õ is minimized in the corresponding plan (since we have � { � õ sinks).

Clearly, � { � õ is a constant. By Lemma 2, a deployment plan that minimizes variance in number of

sensors from � { � õ among all regions, also minimizes the variance in number of sensors from �� � Ý ^ among

all regions. The theorem in hence proved.

b). Balancing Sensor Movements: In some cases, apart from the objectives of minimizing deployment

variance and minimizing movement hops, it may be necessary to balance the remaining movement

capability of the sensors in the network (especially if sensors are expected to move later). This is more true

if the movement is a function of energy. Balancing the remaining mobility among sensor will translate

to balancing remaining energy after final deployment. We propose a new cost assignment rule to ��{�
that ensures that apart from minimizing variance and movement hops at final deployment, the remaining

movement distance among all sensors is also balanced. Between any two reachable regions , and k in�ä{� , the new cost of the edge from ° -Y`- to ° ²K´ at is ·3-Í¸ t � à « à�� � *Dì ·3*-T¸ t . The cost of edges from sink � in

region , , °�� {- to !ßÝ]�-Y` r for all � is assigned as
; $ � � ; ��( �áà « à3� $ à « à�� � p ìá� * ( . Other construction
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rules for � { � remain unchanged.

Theorem 5: The movement plan after executing the OMF algorithm with the modified ��{� will minimize

the deployment variance, number of movement hops, and variance in terms of remaining movement

distance among all sensors in the network.

Proof: Basically, the cost between reachable regions includes � � ·�-T¸ t ì ·�*-Í¸ t . The large value of �
will ensure that ¾ ·�-T¸ t and ¾ ·3*-T¸ t are simultaneously minimized, which means overall movement distance,

and the variance in movement distance among all sensors is minimized. The costs of edges from °C� t - to! Ý]�-Y` r is assigned such that weighted flow is still maximized, with the above cost assignment rule. The

proof as such is very similar to the proof of Theorem 2.

V. DISTRIBUTED ALGORITHMS

In the above, we presented a centralized and optimal algorithm to our deployment using our weight-based

methodology. We now present two algorithms to our problem that are distributed in their implementation

using the weight-based methodology. Our first algorithm is called the Domain-based OMF (D-OMF)

algorithm, and it extends from the OMF algorithm. Our second algorithm is called the Simple Pit-Peak

based distributed (SPP) algorithm. While our distributed algorithms cannot produce optimal solutions in

all circumstances, under certain deployment scenarios, solutions close to optimality can be produced as

we discuss later. We first describe the D-OMF algorithm, followed by the SPP algorithm below.

A. The Domain-based OMF algorithm

In simple terms, the D-OMF algorithm is one, where the sensor network is divided into multiple do-

mains, and each domain contains multiple regions. We let each domain obtain region information (number

of sensors) only in their domain. The movement plan for variance minimization in each domain is indepen-

dently determined with this information (without exchanging information with other domains) using the

OMF algorithm. The Base-station can do this for each domain, or a special sensor in each domain can do

so. The resulting time complexity of the algorithm for each domain is ú�$��
1�ûy$ à �0 àÍà �« à *�> à �0 à * à �« à¹ý ��n à �0 à (@( .
Here à �0 à and à �« à denote the number of vertices and edges in the virtual graph constructed for each

domain, and are given by, à �0 à "µúz$ �� $�þ�� ' ÿ *W(�( , and à �« à "µú�$ �� � *�$�þ�� ' ÿ *W(@( , in which � is the domain size

and  is the region size. Note that the number of domains is $ &� (* for network size � .

An illustration of the D-OMF algorithm is shown in Figures 4 (a) and (b). In Figure 4 (a), the sensor

network has ã � ã2"µ��h regions. We divide the network into domains of size h � h (denoted as Domain size
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� "ñh ). There are thus four domains, �<9W>	� * >
� p >	��� that are shaded and shown within dark borders in

Figure 4 (b). Each domain will obtain their region information only, and the OMF algorithm we proposed

above will be executed by each domain independently to determine the movement plan for variance

minimization in the particular domain. This approach can only achieve local optima within each domain

and cannot guarantee global optima in the sensor network. Nevertheless, it reduces the computational

computational and messaging overhead, as the computations and messaging are done for each domain

independently. In fact, when the Domain size is chosen carefully (based on initial deployment), solutions

close to optimality can be obtained, as discussed below.

(a) (b)

D1 D2

D3 D4

Fig. 4. The initial sensor network deployment (a) and after dividing the network into four domains (b)

In the following, we discuss the relationship between domain size � and the bias in the initial sensor

deployment (denoted by  ). Let us for now assume that a large  means more concentrated (biased) sensor

deployment, while the deployment is more uniform for small  . We highlight the issue of exploiting bias

in the D-OMF algorithm with a specific type of deployment, called group deployment. In general, for

large scale sensor networks deployment (especially in hostile/ in-accessible zones), it is likely that sensors

are dropped from an airplane, targeted at chosen landmarks in the deployment field. That is, a group of

sensors are launched in each landmark as the airplane flies over the landmarks. Such a deployment is

called group deployment [13], [14]. Here, the ensuing deployment is biased (concentrated) in and around

the landmarks. Intuitively speaking, if the deployment is optimized in each group independently (without

global synchronization), then the resulting deployment will not be very different from the optimal case.

Hence, we can see that the domain size is closely related to the group size. The important issue here is

how to choose optimal domain size � . Deriving an analytical expression for optimal � , group size and

 for a general deployment scenario in the presence of limited mobility sensors is very difficult, if not

impossible. We study this issue using extensive simulations in the next section.
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B. The Simple Peak-Pit based Distributed algorithm

In the above, we proposed a distributed way to execute the OMF algorithm among multiple domains

in the sensor network. We now propose the Simple Pit-Peak (SPP) based algorithm to our deployment

problem, that is local, light-weight and purely distributed. In the SPP algorithm, regions request sensors

from adjacent regions, with weights attached to each request. As before, requests with larger weights are

given higher priority when compared to requests with smaller weights, while simultaneously preferring

shorter movement hops to satisfy requests. We first discuss some important notations used in the algorithm

description. Regions in the network are classified into three types: �o,=��� , �D	�1 � � and �¶����lm13��·�	���� . A �o,=�
is a region whose number of sensors is less than �� and not more than any of its neighboring regions. A

��	�1 � is a region whose number of sensors is larger than any of its neighboring regions. All other regions

are �¶����ls13��·�	���� . We define an over- �� �¶����lm13��·�	�� as a �¶����ls13��·�	�� with more than �� sensors, and denote

the ��,?�PB�	���� neighbor of a region as a neighbor with the largest number of sensors.

In the SPP algorithm, a ��,=�s, will request ���; ��- sensors in its request (  ä«�� ). The ��,=�s, will assign

different weights to each of the ��F; �:- requested sensors as, l t- "»��>¬fC>À�³> A�A�A > � k ; � , where �4Eyk EJ$ ��F; ��-�(
(as before). Here, we let only ��,=��� send  ä«��2� , so that non-pit regions will not compete with ��,_��� during

requests to ensure that more deficient regions will be given priority. A  ä«2� generated will be forwarded

towards progressively richest neighbors to increase likelihood of  ä«��2� arriving at over- �� �¶����ls1���·�	����
or ��	�1 � � on shorter paths. Recipients receiving  ä«2��� will sort all the requested sensors in the  ä«2���
by lm	�,=nCBC��� and serve those with larger ls	�,=nCBC��� first. Ties are broken by fulfilling requests with shorter

paths first. We call the neighbors chosen for the next hop as �+��,K	�· neighbors.

Algorithm 3 shows the pseudocode of our SPP algorithm. It is executed by each region , independently

and is driven by several events. Using inter-region communications, a region leader will be elected for co-

ordination. Each region leader obtains the number of sensors in its region, and its four adjacent neighboring

regions. The region leader of each pit will send an  ä«�� to its richest neighbor, requesting the number

of sensors needed. If multiple richest neighbors exist, ties are broken randomly. If some regions have no

sensors, they can be assisted by neighboring region leaders in sending our requests. We discuss this issue

in further detail later.

Due to limited mobility, when requests are sent out, it is important that path feasibility should be

maintained during the selection of next hop �¶����lm13��·�	�� . This means there should exist at least one

mobile sensor on any continuous � hop segment of the path a  ä«�� traverses. Otherwise, mobile sensors
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Algorithm 3 Pseudocode of the SPP algorithm run by region ,
1: Region leader selection
2: while TRUE do
3: switch type of event
4: case region - becomes a ù -Ya :5: ]=^_`�� '�� & a ² b?-YÞ��À^K]_a ´ `Pacb?-c^��¶`�^_-���� ±�² b ;6: case receive '�� & :
7: ù¬´ a '�� & -å`�a ² & ´ ^ ´ ^��å-�� ;8: if region i is an over- qr forwarder, then
9: ]=^��Ø^=Þ�a '�� & ]o-Y` & ´ ^ ´ ^��Ø-���a ² ]=^=b Ý ^ ±�� ^_-����¬a¢] � `!� ù � a��"�Ñ^=`#�a��W] ;10: ]=^_`��%$'&)()]+¸ { ²KÝ ^:]=^_`�] ² b+] � `!��* ² b,+ ² b  '� b-�'�� & ] � Þ_Þ ² b-�+-å`!��� � ;

11: else if bM^��+- ² `ª-�-8] � ù ^ � r ¸ then
12: ]=^��Ø^=Þ�a '�� & ]o-Y` & ´ ^ ´ ^��Ø-���a ² ]=^=b Ý ^ ±�� ^_-����¬a¢] � `!� ù � a��"�Ñ^=`#�a��W] ;13: ]=^_`��%$'&)()]+¸ { ²KÝ ^:]=^_`�] ² b+] � `!��* ² b.]_^=`��. $'/�0�] � Þ�Þ ² b1�M-Y`#�2� � ;
14: else
15: + ² b  '� b1� '�� & a ² bK-cÞ3�W^K]_a�`�^_-���� ±�² b ;16: case receive $4&)( for ù -åa t :17: + ² b  '� b1�,$'&)(
a ² t -�+ß-657 t ;18: case receive

. $'/�0 for ù -Ya t :19: bM^K]=^=`!� '�� & a ² b?-cÞ3�À^?]�a ´ `Pacb?-c^���`�^=-���� ±�² b ;20: case detect hole neighboring region t :21: if bM^��+- ² `�-�Þ � ` ù b ²KÝ -7�+^¶]_^=`�] ² b?¸ then
22: { ²KÝ ^ � ]=^_`�] ² bDa ² t � +¬a8^_b¶b � `�� ² { �+^�� � � ;
23: end switch
24: end while

on the other side of the segment will not be able to move back to the requesting ��,_� due to limited

mobility. In case there is not enough mobile sensors in a certain segment with � hops on the path, the

requested number of sensors in the  ä«�� message should be adjusted since we can never move enough

sensors back on the path. All the intermediate �:����lm13��·³	���� will reserve enough number of mobile sensors

to guarantee the feasibility of the path.

When  ä«��2� are forwarded to over- �� �¶����lm13��·�	���� or �D	�1 � � , some of them may or may not get served.

Considering that the  ä«�� with largest ls	�,=nCBC� requested sensor may not always come first, the over- ���:����lm13��·³	�� or �D	�1 � will put the  ä«��2� into its queue and serve them in periodic intervals of time. When

serving multiple requested sensors with the same lm	�,=nCBC��� , those with shorter paths will be served first. An

over- �� �:����lm13��·³	�� will send 8më:9é� back to the ��,=��� whose  ä«��2� contains sensors that will be served,

and forward the  ä«��2� if not all sensors can be served. Those forwarded  ä«2��� will be updated if part

of the requested sensors are served eventually. A �D	�1 � will send 8së;9é� back to the ��,_��� whose  ä«2���
contains sensors that will be served, and send �:8=<�> � back to �o,=��� if not all requests can be served 2.

Sensors will start moving after 8më:9é� are sent, following the reserved paths of the corresponding  ä«��2� .
After receiving the 8më:9y$K��( and mobile sensor(s), each �o,=� will inform its neighbors its new sensor

number, and  ä«2��� are generated if need be. After a ��,=� or �:����lm13��·³	�� receives a �:8=<�> , it will release

the reserved path and resend  ä«2��� to its ��,?�PB�	����@?D���+��,K	�· neighbor and so on. The algorithm stops when

each �o,=� has either obtained �� sensors or a certain number of  ä«2��� have been sent out.
2We do not let recipients of requests choose shortest return paths as such paths may be blocked due to limited mobility sensors.
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It may happen some regions have no sensors in them (denoted as holes) after initial deployment. A hole

can be filled by one of its neighbors with extra mobile sensors, after coordination with other non-empty

neighbors. In case a hole cannot be filled directly due to none of its neighbors being able to provide an

extra sensor, one of its neighbors can become its proxy region via the same mechanism discussed above.

In the extreme case when all of a hole’s neighbors are empty, the hole may be filled by sensors, or have

a proxy region leader later when some of its neighbors obtain sensors during the execution of the SPP

algorithm.

VI. PERFORMANCE ANALYSIS

In this section, we report our experimental data to study the performance of the OMF algorithm, the

D-OMF algorithm, and the SPP algorithm. We also study sensitivity of performance of our algorithms to

various sensor and network parameters.

A. Performance Metrics and Evaluation Environment

1) Performance Metrics: We have three major performance metrics in this paper. The first is the

Variance Improvement (denoted by VI) at final deployment after sensors have finished movements. It is

defined as 0;<z" $ � � b ÐØSBA � � b Ì_Î�V� � b ÐÑS ( � ����� , where, 0�13��-Y` is the variance at initial deployment and 0�13� ²K´ a is

the variance at final deployment. Our second metric is the number of sensor Movement Hops per percent

variance improvement (denoted by MH). It is defined as
H �¯" C�)/ , where

H
denotes the total number

of sensor movement hops. The reason we define
H � as a ratio is because, it is more fair to compare

number of hops per improvement in variance, than just the number of hops.

Our third metric is the messaging overhead incurred by our algorithms, which is defined as the Packet

Number per region (denoted by PN). Denoting D as the total number of packets (or messages) sent,

and denoting ! as the number of regions, we have D / " E 5 . Physically speaking, 0F< captures the

improvement in deployment as a result of our algorithms, while
H � and D / reflect the overhead in

terms of sensor movement hops and messaging overhead. The packet number for our OMF algorithm is

calculated based on a simple protocol. After initial deployment, an elected region-head in each region

sends a packet to Base-station (located in the center of the network) with information on the number of

sensors in its region. The packets are forwarded along shortest paths through other regions towards the

Base-station. After the Base-station receives all packets and determines a movement plan, it sends one

packet to each region in the reverse path, informing regions of its movement plan. A similar protocol is
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Fig. 7. Sensitivity of J,K to ¨
assumed for the D-OMF algorithm, where the regions in each domain will forward packets to a special

sensor in the domain, which executes the algorithm and forwards a movement plan to each region in the

domain. Note that, there can be other versions of the above protocols, like direct relaying of messages,

row-wise (or column wise) message delivery etc.

2) Evaluation Environment: We denote the number of regions in the network as � � � (represented

in the figures as simply � ). Our default value is ã � ã . The default desired number of sensors per region

is �� "µf and maximum number of hops a sensor can move is ��"óf . By default, the number of sensors

initially deployed is � � � � �� . For the D-OMF algorithm, we choose the domain size � as �®" ` * . In

the SPP algorithm, a �D	�1 � and over- �� forwarder will batch up the coming  ä«��2� in a time period to

serve. In our simulation, the time period is given by � ´ � � , in which � ´ is the message transmission delay

between two neighboring regions.

We conduct our simulations on a custom simulator. For initial deployment, our simulator uses a topology

generator for 2D-Normal distribution. We use  to denote the degree of concentration of initial sensor

deployment in the center of the deployment field. Larger values of  implies more concentrated deployment

in the center of the field. When é"~� , the deployment is uniform. The default value is ð"ñh . All data

reported here were collected across ��� iterations, and averaged. Our implementations of the maximum

flow algorithm is the Edmonds-Karp algorithm [11], and minimum cost flow algorithm is the one in [12].

B. Performance Results

1) Performance comparison of the OMF, D-OMF and SPP algorithms: We first study the sensitivity

of 0;< ,
H � and D / to mobility capacity � for OMF, D-OMF and SPP algorithms, when sensors are

initially deployed once, targeted at the center of the sensor network. The configuration is our default one.

From Figure 5, we observe that the OMF algorithm (being optimal) performs best in terms of 0:< . We

observe that the D-OMF algorithm performs quite close to the OMF algorithm in all cases, while the
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performance of the SPP algorithm is quite good for smaller values of � . Figure 5 also shows the effects

of limited mobility on 0;< . When � increases, 0:< increases in all algorithms as increased movement

ability in general helps move sensors to needy regions farther away. However, the increasing trend is only

upto a point. When � \ h , OMF can achieve the maximum improvement of �����NM¯0:< , while the 0:<
in D-OMF and SPP algorithms shows a constant trend with increasing � . For the OMF algorithm the

upper bound of �����NM is reached, because enough movement choices can be optimally determined by the

OMF algorithm with large � . For the D-OMF algorithm, since we execute our algorithm independently

in each domain, some mobility choices will be prevented from being exploited unlike in the case of the

global OMF algorithm. Hence 0;< cannot be �����NM , and 0;< will reach an upper bound (below �����OM ) for

the D-OMF algorithm. In the SPP algorithm, the upper bound on 0:< below �����OM is due to non-optimal

requests and responses during sensor movements in the algorithm.

Figure 6 shows that for small � ,
H � also increases when � increases. This is because more movement

hops are incurred with more � , consequently increasing
H � . However, we also observe that

H � shows

a constant trend for large values of � in all our algorithms. This is because of the upper bound in 0:<
discussed earlier. Since 0:< does not increase beyond a certain value, the total number of movements

H
(for a particular algorithm) is a constant. Since

H ��" C�P/ , there is thus a constant trend of
H � for all

algorithms for large � . When comparing the
H � of the algorithms, we see that the D-OMF algorithm

has less
H � than that of the OMF algorithm. This is because in the D-OMF algorithm, we execute

the algorithm independently in each domain. Since the algorithm only optimizes 0:< in each domain, the

possibility of long movement paths (between domains) is avoided here. However, the OMF algorithm

will exploit all available paths throughout the network to optimize 0;< . Consequently, there will be paths

in the OMF algorithm that are long, which makes the total number of movement hops
H

in the OMF

algorithm much larger than that of the D-OMF algorithm, resulting in the
H � for the D-OMF algorithm

being less than that of the OMF algorithm. For the SPP algorithm the high value of
H � is due to the
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lower 0:< that the SPP algorithm achieves compared to the other two algorithms. In Figure 7, we can see

that D / in the OMF and D-OMF algorithms are constant, since packet number does not depend on �
for these algorithms. D / in the SPP algorithm is larger than that of the OMF and D-OMF algorithms due

to many local requests and responses. D / increases with � in the SPP algorithm, because the  ä«��2�
can be forwarded further due to the feasibility of longer paths when � increases.

Figures 8, 9 and 10 show the sensitivity of our performance metrics to  for our algorithms. In Figure 8,0:< decreases when  increases for the OMF and SPP algorithms. Since larger  implies more concentrated

initial deployment, it is harder for regions near the boundary to find sensors under mobility constraints,

which decreases 0F< for the OMF and SPP algorithms. We also see that 0;< of the D-OMF and SPP

algorithm become closer to that of the OMF algorithm as  increases. This is because, the amount of

mobility choices that the OMF algorithm can exploit is not significantly more than that of the other

algorithms, when deployment is highly concentrated.

We wish to emphasize on the interesting trend of 0;< for the D-OMF algorithm. Note that 0;< is not

monotonically decreasing with  (unlike other algorithms). Recall from Section V-A that the feature of the

D-OMF algorithm is how to effectively exploit bias (  ). Figure 8 demonstrates this feature. From Figure

8, the important trend to observe is the difference in 0;< between the OMF and D-OMF algorithms. The

difference becomes smaller as  increases, and both algorithms have same 0F< when ü"òã . The non-

monotonic decrease in 0:< is due to this difference (which monotonically decreases). In our experiments

here, we set domain size �í"µh for the default ã � ã network. As we can see, this is not the best choice

under all  , since for small  , the difference in 0:< is quite large. We study the issue of the sensitivity of

domain size � and  in further detail in the next sub-section.

In Figure 9, we see that
H � increases as  increases for our algorithms. This is mainly because of

the reduction in 0;< with increasing  . Note here that
H � is lower for the SPP algorithm when  is

small. This is because, when deployment is more uniform (smaller  ), more ��,_��� can find enough over- ���:����lm13��·³	���� or �D	�1 � � nearby, which causes a reduction in overall sensor movements. In Figure 10, we see

that the D / for the OMF and D-OMF algorithms decreases with  , since the number of sensors farther

away from the center of the network decreases with increased  . On the other hand, D / increases with 
in the case of the SPP algorithm, since the increase in  means that the bias increases, resulting in more

requests and responses. We also observe that when  is less, the D / in the SPP algorithm is lower than

that of the OMF and D-OMF algorithms. This is because, more pits can find enough ��°³	�� ; �� �¶����ls1���·�	����
or peaks in the SPP algorithm when the deployment is more uniform, further highlighting the fact that
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the distributed SPP algorithm achieves less overhead under favorable deployment conditions.

We now study the sensitivity of our performance metrics to �� for our algorithms. In order to compare

the sensitivity to �� fairly, the number of sensors initially deployed is fixed as ã � ã � f2"���g � for all cases

(other parameters are default values). From Figures 11 and 12, we can see that an increase in �� causes

a decrease in 0F< and an increase in
H � in our algorithms. When �� increases, the objective becomes

harder, which causes this trend. We can also see that the D-OMF algorithm performs quite close to the

OMF algorithm in all cases. An interesting observation here is that, when �� is small, the performance

of the SPP algorithm in all metrics compares quite favorably with the other algorithms. This is because,

when the deployment objective is relatively mild (less �� ), local requests and responses suffices for good

performance. Once again, the D / for the OMF and D-OMF algorithms in Figure 13 is independent of�� and hence is constant. The D / of the SPP algorithm is similar to the other algorithms for less �� , and

increases with increasing �� since more requests and responses are generated when �� increases.

In Figures 14, 15 and 16, we can see that as � increases, 0:< decreases and both
H � and D / increase

for our algorithms. A larger � implies a larger network, which makes more regions near the boundary of

the network unable to get sensors, and thus 0;< decreases. Also, sensors need to travel longer distances,

which increases
H � and D / .
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2) Sensitivity of � to  , n and � in the D-OMF algorithm: Here, we report our observations on the

sensitivity of the domain size � (in the D-OMF algorithm) to  under group deployment with different

group sizes n and different � in our default ã � ã network with �� "µf . Recall that, the group deployment

is one, where the sensor network (containing � � � regions) is divided into many groups, and sensors are

deployed at the center of each group. Each group in the sensor network contains n � n regions (denoted

as group size n ). For example, in our ã � ã network; when group size nd" � , there are ��� groups; whenn "íh , there are four groups; and when næ"íã , there is only one group. In all simulations, the term 
once again denotes degree of concentration at the center of each group during initial deployment.

Our goal here is to study the sensitivity of performance (in terms of Variance Improvement 0;< ) of the

D-OMF algorithm to initial deployment bias. Specifically, we want to divide the network into multiple

domains and study the sensitivity of domain size � to  , n and � in order to obtain optimum values of

the domain size � for acceptable performance. Towards this extent, we define a new metric, namely the

Minimum domain size ( � { -Y` ). � { -å` for the D-OMF algorithm is the minimum domain size � such that,

error from optimality in 0F< at final deployment can be tolerated. The Error Tolerance ( «:T ) is defined

as, «:Tó" �U/ Ì�V A �U/�W�U/ Ì�V , where 0;< ²Rù is the optimal 0;< and 0F< � is the 0;< obtained with domain size � in

the D-OMF algorithm. The minimum domain size � { -Y` is the smallest domain size � such that Error

Tolerance «:T~EYX for an appropriately chosen X that is decided by the application. In our simulations we

set X "ó� A � . Physically, this means that the domain size � { -Y` is the smallest domain size such that error

in 0;< from optimal case is E~���OM .

In Figure 17, we see the sensitivity of � { -Y` to  under different n , when � is fixed as f . First, we see

that in all instances a domain size equal to the group size performs acceptably well (i.e., «FTºE ���NM ).

For example, in Figure 17, � { -Y`z" �
, � { -Y`z"�h and � { -Y`z" ã are the minimum domain sizes needed

for acceptable performance for groups sizes
�
, h and ã respectively when á"º� A � � . This validates our

earlier claim made in this realm in Section V-A that smaller domain sizes will suffice if we can effectively
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exploit bias deployment. Interestingly, we observe that as  increases, a domain size � { -Y` smaller than the

group size (specifically, � { -Y`�" � * ) also performs acceptably well. For example, for larger  , � { -Y`�"»h
performs acceptably well when n�"óã , and � { -Y`2" � performs acceptably well when n�" h in Figure 17.

The reason behind this trend is the following. When  is large, more sensors are likely to be concentrated

in the center of the group at initial deployment. In this case, it is very likely that sensors are uniformly

balanced in all directions surrounding the center of each group, in which case � { -Y`�" � * will suffice to

acceptably exploit this bias. When  is very small, the initial deployment is scattered over a larger area.

Dividing the area into domains when the deployment is scattered over a large area will not acceptably

exploit the bias (when compared to global OMF algorithm). Hence, � { -Y` decreases as  increases. Recall

from our discussions earlier on the trend of Figure 8 for the D-OMF algorithm (where the domain size

was set as � " h ). When  was small, the difference in 0:< between the D-OMF and OMF algorithm

was quite large when ��"Jh in Figure 8. However, when  increases, the difference became quite less

as the same domain size ( �ò" h ) can better exploit the bias with increasing  , as explained above.

In Figure 18, we study the sensitivity of the domain size � { -Y` to  under different � , when n is fixed

as h . Here again, we see that domain size equal to group size ( � { -Y`�" nd" h ) performs acceptably well

for smaller  . We also see that � { -Y` " �
performs acceptably well for nð"òh when  increases. It is

interesting to note that � { -å` is not sensitive to � for fixed  and n . This is because, the performance of

the D-OMF algorithm depends on how to exploit deployment bias such that solutions for local optimum

are acceptable. When  and n are fixed, the deployment bias is not sensitive to � . Consequently, � { -Y`
is also not sensitive to � when  and n are fixed.

VII. DISCUSSIONS

In the following, we provide discussions on two issues: 1 ) combinedly executing our algorithms and
Z
) some implementation issues in our algorithms.

a). Combined execution of our algorithms: Although each of our algorithms can execute independently,

they can also be combined in practice. We first discuss how to combine the OMF and D-OMF algorithms.

Consider a situation when sensors are over deployed. In case, we want to execute the D-OMF algorithm,

it is reasonable to first balance the number of sensors in each domain to be fair to all domains. The

OMF algorithm can be executed first in the whole network under the consideration of each domain as

one region, with the objective of optimally balancing the number of sensors in each domain. After this,

the D-OMF algorithm is executed in each domain independently. If sensors die eventually and have to be
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redeployed, the above process can repeat over time.

Similarly, the OMF and SPP algorithm can be combined as follows. After optimizing deployment with

the OMF algorithm, as time goes on, some sensors may die due to faults, energy losses etc. To replace

such sensors, we do not have to re-execute the OMF algorithm. The light-weight SPP algorithm suffices

here to request closer sensors. Over longer periods of time, when many sensors die (or under sensor re-

deployment), the OMF algorithm can be executed. The principle of the above approach is to periodically

optimize deployments in longer intervals of time, while between intervals, local requests and responses

will be taken care of by the SPP algorithm.

An approach to combine the D-OMF and SPP algorithms is the following. The key shortcoming of

the D-OMF algorithm is that, there may not enough sensors per domain (e.g., the OMF algorithm cannot

balance number of sensors per domain). In such cases, the light-weight SPP algorithm can be executed near

the borders of domains to locally request sensors from other neighboring domains. Once enough sensors

are obtained in each domain, the performance of the D-OMF algorithm can be dramatically improved.

b). Arbitrary sensor movement directions and Network partitions: In Section II, we assumed that sensors

can move only to regions in its adjacent left, right, top and bottom directions only. We now discuss how to

extend to the case where sensors can move to regions in any arbitrary direction. For our OMF and D-OMF

algorithms, only the construction of the virtual graph ��� changes. In �2� , we now have to add new edges

(with corresponding costs and capacities) from a region to all newly reachable regions corresponding to

arbitrary directions of sensor movements. In the SPP algorithm, there are now more neighbor choices to

forward a request, and extra feasible paths can be reserved while sensor move back to satisfy requests.

In Section II, we assumed that the sensor network is not partitioned. In some situations it is likely that

the network is partitioned, whereby, sensors in one part of the network may not be able to communicate

with sensors in another part. In such cases, we have to repair such partitions, while still being constrained

by mobility distance. In the approach proposed by Wu and Wang [2], empty holes are filled by placing

a seed from a non-empty region to a hole. We can apply the algorithms in [2] to repair partitions in

our case. However, we are still constrained by the mobility in sensors. Addressing the issue of repairing

network partitions optimally using limited mobile sensors is a part of our on-going work.

c). Failures in Sensor Networks: In some situations sensors can fail or become faulty. For example,

a sensor may be physically damaged preventing it from moving, or the sensors could make erroneous

movements. Recall that in our algorithms, when sensors are over-deployed, the extra sensors will not

move. Such extra sensors can help to correct sensors failures and faults eventually. This can be done
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by periodic execution of our algorithms or suitably combining their execution (as discussed above). In

some cases, there can also be communication failures among sensors in the network. Examples could be

a packet from a sensor not reaching the base-station in the OMF algorithm, or requests/ responses getting

lost in the SPP algorithm. A rigorous study of limited mobility sensor networks deployment under failures

will be part of our future work.

VIII. RELATED WORK

In this paper, we addressed a sensor networks deployment problem using limited mobility sensors. In

this section, we discuss some important related work in the areas of general sensor networks deployment

and works where sensor mobilities are used for deployment. In the simplest case, sensors are deployed

randomly [15], [16]. Extending random deployment further, some recent work like [13], [14] have

appeared, where sensors are randomly deployed in groups in the deployment field. The distribution

pattern of group deployment is exploited for localization purposes. Another type of deployments follows

incremental strategies, where sensors are deployed iteratively after making some measurements on the

quality of previous partial deployments [17], [18], [19], [20]. However, the key shortcoming is that such

approaches need to be conducted by an external mobile robot or a human being and as such are restrictive,

especially in large-scale or hostile zone deployments.

More recently, mobility is sensors has been leveraged for deployment [1], [2], [3] and [4]. In works like

[1], [3] and [4], the goal is uniform coverage of the network. The coverage here means that every point

in the network is covered by at least one sensor. The approach used in [1], [3] and [4] is balancing of

sensor virtual forces for uniform deployment. Two sensors may repel or attract each other based on their

distance. At each iteration, sensors move to achieve a better force balance, and sensors stop moving, when

a force equilibrium is reached. However, the virtual force approach introduces unnecessary movements

during force balance, which cannot be tolerated by limited mobility sensors. Another difference is that

all of the above works focus on ����	 -coverage of the sensor network, while we are addressing a general

variance minimization problem. Another mobility assisted deployment work is [2], where the objective is

load balancing sensor deployment. In [2], the sensor network is initially divided into
�
-D clusters. The

problem is to ensure that starting from an initial deployment, the number of sensors in all clusters in

the sensor network be the same. Based on efficiently scanning the clusters in two stages (row-wise and

column-wise), sensors determine to which cluster they have to move. One drawback of [2] is that the

ratio of number of hops in their algorithm and the optimal case is bounded by a factor of
�
. Limited
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mobility sensors cannot tolerate so many unwanted moves. Also, the problem in [2] is just a special case

of a general deployment problem addressed in our paper.

There has also been some other work in utilizing sensor movements for desired deployment. In [21],

algorithms are proposed in order to let sensors relocate to new positions in a
�
-D dimensional grid based

sensor network. The relocation process can be triggered by events, or when existing sensors in other

points in the network become non-functional. However, such relocation is done such that it should not

compromise existing functionality of the network. In [22], a set of algorithms are designed that enable

sensor to move to events in the deployment field. The algorithms are designed to be less energy consuming

and computationally mild for the sensors. In [23], the deployment problem is for sensors to maintain a

regular hexagonal structure. In [23], sensors periodically detect errors in network invariants, and move to

correct the violations of invariants. More recently, a new paradigm of mobility called parasitic mobility

has been proposed in [24] and [25]. In this paradigm, sensors themselves are static, but utilize the mobility

of external agents to relocate themselves. The sensors here selectively engage and disengage from external

mobile agent(s) (that move in the network) whenever the sensors need to relocate themselves, to attain

desired deployment.

We summarize the differences of our work from the above mobility assisted deployment work here.

The first major distinguishing feature of our work from all the above works is that we focus on limited

mobility sensors. In all of the above works sensor mobility is unlimited. Under limited mobility sensors, we

are fundamentally constrained by the movement choices available to us (compared to unlimited mobility)

during deployment. The consequence is increased importance that needs to be accorded during each sensor

movement. Given this, the fact that our problem is to optimize both the final deployment and sensor

movements makes our problem quite different and more challenging. Second, our problem is different

from the above, in that we minimize the variance among the regions in the network. In this paper,

we proposed a novel weight-based methodology, and an optimal centralized algorithm and distributed

algorithms following from the weight-based methodology for our deployment problem.

We have done some preliminary work in limited mobility deployment in [26]. There, we addressed a

problem of maximizing number of regions in the network with at least ���¶	 sensor, with limited mobility

sensors. The problem we address in this paper is minimizing variance, which is a non-linear objective

problem. Another difference is that, the sensors were capable of only moving only once to a fixed distance

in [26]. Here, we have a more general mobility model, where only the maximum sensor movement distance

is limited. This paper proposes a distributed algorithm while our work in [26] did not.
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IX. FINAL REMARKS

In this paper, we defined a general sensor network deployment problem under limited mobility sensors

and proposed three algorithms to solve the problem. Our methodology was to transfer the non-linear

variance/movement minimization problem into a linear optimization problem through appropriate weight

assignments to the regions. During sensor movements across the regions, larger weight regions are given

higher priority compared to smaller weight regions, while simultaneously minimizing cost of movements.

Based on the above methodology, we proposed three algorithms, namely the OMF algorithm, the D-OMF

and the SPP algorithm for our problem. Using analysis and extensive simulations, we demonstrated the

performance of our algorithms.

Our on-going work addresses the issue of repairing network partitions with limited mobility sensors.

Secondly, we plan to study the issues of limited mobility sensors in other applications. As part of our future

work in this realm, we are investigating the applications of limited mobility sensors in sensor tracking

systems. The challenge is how to design algorithms that can exploit the limited mobility in sensors, and

algorithms for provisioning sensors in the network such that tracking efficiency throughout the network

and some specific hot spots in the network can be improved.
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