
Specifying and Reasoning About Design Patterns

Neelam Soundarajan
Computer Sc. & Eng. Dept.
Ohio State University
Columbus, OH 43210, USA

Jason O. Hallstrom
Computer Science Dept.
Clemson University
Clemson, SC 29634, USA

Tech Report: OSU-CISRC-8/05-TR54

Abstract

Design patterns are valuable both for designing and
for documenting software systems. Patterns are usu-
ally described informally, in the style introduced by [9].
While such informal descriptions are certainly useful, in
order to ensure that designers use the patterns correctly,
and to reliably predict the behaviors that systems built
using specific patterns will exhibit, we also need ways
to reason precisely about patterns, and about the systems
built using them.

This paper makes two contributions. First, we de-
velop an approach to specifying patterns precisely. Sec-
ond, we develop an approach which can be used by a
designer to establish whether his or her system meets
the requirements contained in the specifications of the
patterns used in its design; and if it does meet the re-
quirements, to arrive at conclusions about the behavior
of the system. We illustrate the approach in the context
of a detailed case study built using theObserverpattern,
and an extended version of the system that also uses the
Chain of Responsibilitypattern.

A key aspect of many design patterns, the aspect that
makes them applicable to a variety of systems, is their
flexibility. Our approach, while allowing us to specify
patterns precisely, also enables us to retain this flexibil-
ity. Indeed, the approach often enables us to identify
additional dimensions of flexibility that are missing in
the standard informal descriptions of patterns.

1 Introduction

Design patterns[2, 3, 30, 9, 19, 27] have, over the last
decade, fundamentally altered the way we think about
the design of large software systems. The use of patterns
not only helps system designers exploit the collective
wisdom and experience of the community as captured
in the patterns, it also enables others studying the sys-
tem in question to gain a deeper understanding of how
the system is structured and why it behaves in particular
ways. As Buschmannet al. [3] put it, “patterns sup-
port the construction of software withdefined properties
[emphasis added]”. But if we are to fully realize these
benefits, we must have ways to specify patterns formally

so that the requirements that must be met when using a
particular pattern, as well as the behavior that the system
built using the pattern is guaranteed to exhibit, are pre-
cisely defined. We must also have techniques to show
that a given system does meet the requirements defined
in the specifications of the patterns underlying its design,
so that we can rely upon the behaviors that the correct
use of the patterns guarantees. Our goal in this paper is
to develop an approach to reasoning about patterns and
systems built using them that serves these purposes.

Let us first consider how patterns may be specified
precisely. Typically, a pattern can be thought of as con-
sisting of a number ofroles, with one or more objects
playing each role. For example, the Observer pattern,
which we will consider in detail, has two roles,Sub-

ject andObserver. When a group of objects is inter-
acting according to this pattern, one object will be en-
rolled to play theSubject role, and others will be en-
rolled asObservers. Using the pattern as intended re-
quires the enrolled objects to interact with each other in
ways that satisfy certain conditions in terms of the order
in which various methods are called on particular ob-
jects, the conditions under which the calls are made, the
effects the calls should have on the objects, etc. In order
to express such requirements, a pattern specification or
pattern contractin our approach consists of a role-level
portion corresponding to each role of the pattern, and
a pattern-level portion. The role-level portion specifies
conditions that the classes playing the particular roles
of the pattern must satisfy with respect to the behaviors
that relevant methods must exhibit, potentially includ-
ing conditions on the method calls that they must in turn
make during their execution. The pattern-level portion
includes aninvariant, an assertion over the various role
states that represents the behavior that a system built us-
ing the pattern is guaranteed to exhibit.

The standard informal description [9] of the Observer
pattern makes it clear that theSubject must include a
Notify() method that invokes theUpdate() method on
each of the objects enrolled asobservers1 of the sub-

1We use names starting with uppercase letters such asSubject for
roles; and the corresponding lowercase names such assubject to re-
fer to the individual objects that play these roles. We also use names
starting with uppercase letters for patterns and classes. Occasionally,
we also use the name of a pattern for one of its roles, as in the case of

1

ject. When is theNotify() method itself called? This
question is addressed in the commentary in the informal
description of the pattern: “. . .subject notifies itsob-

servers whenever a change occurs that could make its
observers’ states inconsistent with its own.” What is
not clear is how thesubject will know when its state
has become inconsistent with that of anobserver. In-
deed, what does it mean to say that thesubject state is
inconsistentwith that of anobserver? The informal de-
scription ofObserver also suggests that if the pattern
is applied as intended, the view of eachobserver will
remain consistent with thesubject’s state – but again,
consistentin what sense? Our contract for the pattern
will provide precise answers to these questions. In the
absence of such precision, there is a danger that differ-
ent members of a design team working on the same sys-
tem may have different, mutually incompatible notions
of what it means for thesubject state to be consistent
with that of a givenobserver’s state. This, in turn, may
well lead to the system exhibiting unexpected behaviors.

But there is an inherent risk in formalizing design pat-
terns in thatflexibility, which is the hallmark of many
design patterns, may be lost [26]. For example, in the
case of Observer, if we adopt one definition for the no-
tion of consistency, the pattern may not be usable in sys-
tems that have a different notion of this concept. As we
will see, our approach, while allowing us to provide a
precise characterization of the pattern, also enables us to
retain the flexibility contained in the pattern. One key
to preserving this flexibility is based on the notion of
an auxiliary concept, which is a central element of our
approach. An auxiliary concept is essentially a relation
on the states of one or more objects playing roles in a
given pattern. Thus,Consistent(s1, o1), a relation on
the states1 of the subject and the stateo1 of an ob-

server, will be one of the auxiliary concepts declared
in our contract for Observer. Flexibility is achieved by
allowing the definitions of the auxiliary concepts to be
tailored to the needs of the particular systems built us-
ing the pattern. Precision is achieved by expressing the
contract in terms of the auxiliary concepts, and by re-
stricting the application-specific definitions that may be
supplied. These restrictions are imposed usingconcept
constraints. We will see the importance of these con-
straints when we consider particular pattern contracts.

We will see in the next section that in addition to aux-
iliary concepts, there are a number of other aspects of
our approach that contribute to retaining the flexibility
of design patterns. Indeed, the very process of formal-
izing a pattern in our approach occasionally enables us
to identify additionaldimensions of flexibility that may

theObserver role of the Observer pattern. In such cases, the context
will clarify which is intended.

be missing from the standard informal descriptions. We
will see several examples of this in the paper.

Let us now turn to the question of how a designer may
reason about a given system built using a particular pat-
tern to show that it satisfies the requirements specified
in the pattern contract, and how he or she may draw ap-
propriate conclusions about the behavior that the system
may be expected to exhibit as a result of using the pattern
correctly. We will use the termpattern specializationto
refer to the manner in which a given pattern is adapted
for use in a particular system. We will consider a sim-
ple system,SimSickCity, with three classes,Patient,
Nurse, andDoctor. This system will use the Observer
pattern. Instances ofPatient will play theSubject role,
and instances ofNurse andDoctor will play the Ob-

server role. In reasoning about this system, the designer
will be required to define apattern subcontractthat cap-
tures the precise manner in which the pattern is special-
ized for use in this system. For this, the subcontract will
specify the exact manner in which the classes,Patient,
Nurse, andDoctor, map to their respective roles. It will
also provide definitions, appropriate to this specializa-
tion of the Observer pattern, for the auxiliary concepts
used in the pattern contract. The designer will then have
to demonstrate, given the mappings in the subcontract,
that the requirements specified in the pattern contract are
satisfied. This will involve showing that the constraints
imposed on the auxiliary concepts, the requirements im-
posed on the methods of the classes playing the individ-
ual roles, and other requirements whose details we will
see in the next section, are satisfied. The designer may
then appeal to the invariant and other properties guaran-
teed by the correct use of the pattern, again specialized
on the basis of the mappings and concept definitions in
the subcontract, to arrive at conclusions about the behav-
ior that the system can be expected to exhibit.

Thus, the pattern contract specifies the aspects of the
pattern that are common across every use of the pattern,
and a subcontract specifies a particular specialization.
Note also that at any given time during a system’s execu-
tion, there may be several sets of objects interacting ac-
cording to the particular pattern contract, specialized ac-
cording to the particular subcontract. Thus in theSim-

SickCity system, at any given time, we may have sev-
eral groups of objects, each group containing apatient

object and a number ofnurse/doctor objectsobserving
thepatient. We will call such a group of objects anin-
stanceof this pattern specialization. Note further that a
system may also use several specializations of a given
pattern. In such a case, each group of objects interact-
ing according to a particular specialization (i.e., each in-
stance of that specialization) will satisfy the pattern con-
tract specialized according to the mappings provided in

2

Pattern Contract
(Pattern P)

Pattern
Subcontract (Si)

Pattern
Subcontract (Sii)

Specialization
(Sii)

Specialization
(Si)

......

specializessp
ec

ial
ize

s

specifies

specifies

specifies

Possible Instances of Pattern P

...

Fig. 1. Patterns, Specializations, Instances

the subcontract for that specialization. This is illustrated
in Fig. 1. The figure represents a patternP and two spe-
cializations ofP , Si and Sii. The subcontracts forSi
andSii are represented asspecializingthe contract forP .
In the lower part of the figure, between the two dashed
lines, we have a representation of the runtime picture.
We have two ovals corresponding respectively toSi and
Sii. Inside each oval, we have small circles representing
the individualinstancesof theSiandSii specializations.
Each of these small circles essentially represents the var-
ious objects interacting according toP as specialized by
Si/Sii. The requirements listed inP ’s contract apply to
each of these instances.P ’s contract, as specialized by
the subcontract forSi/Sii applies to the instances in the
oval corresponding toSi/Sii, respectively.

Moreover, practical systems are often built using sev-
eral different patterns. The figure could be extended to
show this by depicting another patternQ, its specializa-
tions, with instances of those specializations added to
the lower part of the figure inside ovals corresponding to
Q’s specializations. The reasoning approach we develop
in the rest of the paper is designed to handle such situa-
tions. To illustrate this, we will extend the functionality
required of theSimSickCity system as follows. We will
require that there be a particularnurse object to which
inquiries concerning the current state ofanypatient ob-
ject may be sent. If thisnurse object is able to provide
the requested information –which will be the case if this
nurse is currently anobserver of this patient– it will
return the information; otherwise, it will forward the re-
quest to anothernurse object in the system; thisnurse

object, in turn, will return the requested information if it
is able to do so, i.e., is currently anobserver of thepa-

tient, else will forward it to anothernurse; and so on.
This implementation strategy corresponds to an appli-
cation of theChain of Responsibility (CoR)pattern [9]
with the initialnurse object at the head of the chain. We
will see how our approach allows us to reason about this

extended system.

Patterns are usually classified into three groups,
structural, creational, and behavioral [9]. But often,
patterns classified as behavioral have structural aspects
to them, and, conversely, patterns classified as structural
have important behavioral aspects associated with them,
etc. Buschmann et al. [3] also note this; in describing
how a pattern provides a way to solve a recurring prob-
lem, they note “. . . such a solution includes two aspects.
Firstly, . . . a certain structure, a spatial configuration of
elements. . . . Secondly, every pattern specifices run-
time behavior.” Thus, for example, the Observer pat-
tern requires theSubject role to maintain a set of refer-
ences to the objects playing theObserver role, and this
state component is essential in implementing the behav-
ior that the correct use of Observer ensures. But, at the
same time, there is a structural element to this. Simi-
larly, theComposite pattern, while it is classified as a
structural pattern, ensures, if used correctly, important
behavioral characteristics in the systems built using the
pattern. Indeed, this is usually a key consideration in us-
ing any pattern. Thus while our focus is on specifying
the behavioral requirements associated with using par-
ticular patterns, and the behavioral guarantees that the
correct use of those patterns ensure, our work is impor-
tant for all types of patterns, whether they are classi-
fied as behavioral, structural, or creational. We should
also stress that our intent is to complement, not replace,
informal descriptions and UML diagrams that are cur-
rently used in describing patterns.

During the past few years, several authors have con-
sidered the question of formalizing design patterns. We
present a detailed analysis of related work in Section 5.
At this point, however, it is worth mentioning Reen-
skaug’s work onrole models[25]. Reenskaug describes
a role model as a projection of a class with respect to
a particular area of concern. This projection allows us
to focus only on those aspects of an object collaboration
that are relevant to an area of concern under considera-
tion. For example, an area of concern for a system could
be the question of how a group ofobserver objects keep
track of the changes in asubject. An important point is
that a given object playing the role of anObserver may
have other aspects to it that are not relevant to this area
of concern, and will therefore be excluded from the cor-
responding role description. Although Reenskaug is not
concerned with formal specifications, his concept of a
role model had an important influence on our approach
to formalizing patterns. In a sense, some of the informa-
tion in a pattern contract in our approach can be consid-
ered as a formalization of a role model.

In an earlier paper [32], we considered the formal-
ization of design patterns, and provided a preliminary

3

foundation for the more complete results presented here.
There are a number of important differences, however.
First, although [32] focused on design pattern specifica-
tions, we did not consider the development of a formal
specification language. Second, in [32], we did not con-
sider the specialization of design patterns, and by con-
sequence, did not consider the notion of a pattern sub-
contract. Third, [32] only briefly considers the question
of how to reason about a system using a set of contracts,
and does so under the requirement that the system code
is appropriately instrumented using a specialized pattern
meta-language. Finally, the concepts discussed in [32]
do not support multiple instances of the same pattern.
Even so, although the work presented here is a signif-
icant extension of the ideas presented in [32], it builds
upon some important principles outlined in that paper.

The rest of the paper is organized as follows. In the
next section, we develop the key specification language
constructs, and describe the details of pattern contracts
and subcontracts. We also introduce notations that are
useful in the expression of pattern contracts. In Sec-
tion 3, we present a case study in which we consider
a simple system built using the Observer pattern, and
an extension of that system built using the Chain of
Responsibility pattern. We develop the complete pat-
tern contract and subcontract for Observer, and discuss
the key portions of the contract and subcontract for the
Chain of Responsibility. We show how to use these con-
tracts and subcontracts in determining whether the pat-
terns have been applied correctly, and in reasoning about
the resulting system behaviors. In Section 4, we briefly
discuss our experiences applying the specification and
reasoning approach to other design patterns. Section 5
presents a discussion and analysis of related work. In
the final section, we summarize our results, and discuss
the incorporation of our specification and reasoning ap-
proach in apattern-centricsoftware process. We also
discuss initial results in using runtime monitoring to de-
tect pattern contract violations. We conclude with point-
ers to future work.

2 Pattern Contracts and Subcontracts

We begin by reviewing some of the terminology in-
troduced in the preceding section, and introduce some
additional terms that will be important in describing our
formalism. Consider a systemS built using a patternP.
Let SP be thespecializationof P used inS. At any par-
ticular time during the execution ofS, we may have sev-
eral distinct groups of objects, with the objects in each
group interacting according toP (as specialized inSP).
Each such group is aninstanceof SP. Where there is no
possibility of confusion, for example if there is only one

specialization under discussion, we will also refer to the
group as an instance of the pattern.

Each object in a specialization instance is enrolled
to play a particular role of the corresponding pattern.
Thus, in theSimSickCity system, anyNurse objects in
a given specialization instance will be enrolled to play
the Observer role, whereas thePatient object will be
enrolled in theSubject role. During execution, addi-
tional objects may join a given instance. For example,
a newnurse may be assigned to watch a particularpa-

tient. In this case, we say that the objectenrolls in the
given instance. Note that a given object may simultane-
ously be enrolled in several instances of the same or sev-
eral distinct patterns. Thus, anurse may be assigned to
watch severalpatients, and would therefore be enrolled
in each of the corresponding instances. In the extended
version of the system that we will consider, thenurse

will also be enrolled in an instance of theChain of Re-

sponsibility pattern. Note, however, that a given object
cannot be enrolled more than once in a given specializa-
tion instance, either in the same role or in distinct roles.
An object may alsodisenroll from a pattern instance.
Thus in theSimSickCity system, anurse assigned to
watch a givenpatient may be unassigned by invoking
theremoveNurse() operation on thepatient, and will
then no longer be enrolled in that instance. Note, how-
ever, that thenurse in question will continue to be en-
rolled in other instances of the pattern.

The contract for the patternP and the subcontract
corresponding toSP will together specify how new in-
stances of the specialization are created. The contract
will specify a particular role method or constructor that
must be called, and the conditions that must be satisfied
at that point, for a new instantiation to occur. The sub-
contract will provide the mapping that will identify the
actual method (of the class playing the role) that maps to
the specified role method. The pattern contract will also
specify, for each role, the role method or constructor that
must be called, and the conditions that must be satisfied
at that point, for an object to enroll to play the role in
an existing specialization instance. The subcontract will
specify the actual class method that corresponds to the
specified role method.

When specifying a pattern, we will identify one of
the constituent roles as thelead role. The instantiation
action specified by the contract will be a method or con-
structor call to an object that will play this role upon
instantiation. When this action is performed, and the ap-
propriate conditions are satisfied, a new pattern instance
will be created with only this particular object enrolled
in that instance. We call this object thelead object. The
lead object serves as a convenient handle to refer to the
corresponding specialization instance. Thus, for exam-

4

ple, when specifying how an object enrolls to play a par-
ticular role in an existing pattern instance, we identify
the instance in question by specifying the correspond-
ing lead object. To prevent ambiguous instance handles,
we require that the same object not be the lead object of
more than one instance of a given pattern.2

We should also note that for particular patterns, ad-
ditional objects may be allowed to enroll in the lead
role. Whether or not this is possible depends on the cor-
responding enrollment condition. If, for example, the
role enrollment condition is specified asfalse, or equiv-
alently, the enrollment clause is altogether omitted, an
object may enroll in the lead role only at the point of pat-
tern instantiation, and additional objects may not enroll.
In the Observer contract, for example, theSubject role
will be specified as the lead role, and theSubject enroll-
ment clause will be omitted, indicating that exactly one
subject object will be enrolled in any given instance of
the pattern, and that object may be used to identify the
instance. Note that even if additional objects are allowed
to enroll in the lead role, only the object that enrolled at
the point of pattern instantiation serves as the lead ob-
ject.

The rest of this section is organized as follows. In
Section 2.1, we introduce our formalism for specifying
pattern contracts. In Section 2.2, we consider subcon-
tracts corresponding to pattern specializations. In Sec-
tion 2.3, we introduce some notations that simplify the
expression of pattern contracts and subcontracts.

2.1 Pattern Contracts

The partial grammar for specifying pattern contracts
appears in Fig. 2. The contract for a pattern specifies
(i) the name of the pattern (〈pId〉3), (ii) an auxiliary con-
cept block, (iii) a contract for each role, (iv) an instan-
tiation clausethat specifies how a new instance of the
pattern is created, and (v) an invariant for the pattern.

The 〈auxConceptBlock〉 declares the auxiliary con-
cepts used throughout the pattern contract. Note that
we have omitted some simple productions. Thus,
〈auxConcepts〉 represents any number of repetitions
of the 〈auxConcept〉 production; 〈roleContracts〉 rep-
resents repetitions of the〈roleContract〉 production;
etc. For eachauxiliary concept, we specify its name
(〈auxId〉) and the list of role names over which the con-
cept is defined. The same role name may appear multi-
ple times in this list. For example, in the contract for the
Observer pattern, we will use theModified() auxiliary

2It would be possible to extend the formalism to remove this re-
quirement but it is satisfifed in the case of all the standard design pat-
terns we have considered.

3We use〈pId〉 to stress that this is the name of a pattern; similarly,
〈rId〉 will be the name of a role; etc.

〈patternContract〉 ::= pattern 〈pId〉 contract {
〈auxConceptBlock〉
〈roleContracts〉
〈instantiation〉
〈invariant〉 }

〈auxConceptBlock〉 ::= auxiliary concepts:
〈auxConcepts〉
〈auxConstraints〉

〈auxConcept〉 ::= 〈auxId〉 (〈rIds〉);
〈auxConstraints〉 ::= constraints:

. . . predicate on aux. conc. . . .
〈roleContract〉 ::= [lead] role 〈rId〉 contract {

〈roleStateSpec〉
〈namedMethodSpecs〉
〈othersSpec〉
〈enrollment〉
〈disenrollment〉 }

〈roleStateSpec〉 ::= . . . role fields . . .
〈namedMethodSpec〉 ::= . . . standard method specs.

with requires, preserves,
andensuresclauses . . .

〈othersSpec〉 ::= others:
. . . method spec. with

only preservesand
ensuresclauses . . .
. . . see discussion . . .

〈enrollment〉 ::= . . . see discussion . . .
〈disenrollment〉 ::= . . . see discussion . . .
〈instantiation〉 ::= . . . see discussion . . .
〈invariant〉 ::= invariant:

. . . assertion on roles and
concepts. . .

Fig. 2. Grammar of Pattern Contracts

concept, which represents the notion of whether a par-
ticular state of thesubject contains the same essential
information as some other state of thesubject. Hence,
this concept will haveSubject listed twice among its
argument role names. On the other hand,Consistent(),
the other auxiliary concept used in theObserver con-
tract, will involve the state of thesubject and the state of
an observer. This concept corresponds to whether the
states of the two objects are consistent with one another.
Each auxiliary concept is a boolean function over its ar-
guments. The various auxiliary concepts will be used
throughout the specification, including (i) in specifying
the method contracts for each role, (ii) in specifying the
enrollment and disenrollment clauses, (iii) in specifying
the instantiation clause for the pattern, and finally, (iv)
in specifying the pattern invariant.

Next we have theconstraintsthat must be satisfied

5

by any definitions supplied for the auxiliary concepts.
As mentioned in the introduction, and as we will see in
theObserver contract in the next section, if the concept
definitions corresponding to a particular specialization
do not satisfy certain constraints, the intent of the pat-
tern may be violated even if the system satisfied all of
the other requirements specified in the contract. The re-
lations that must be satisfied apply toall specializations
of the pattern, and therefore belong in the pattern con-
tract, rather than in each of the subcontracts. We refer
to these relations asconcept constraints, predicates over
the relevant auxiliary concepts.

Next let us consider the details of the〈roleContract〉
production. Each role contract specifies the name of the
role (〈rId〉), with exactly one role being labelled as the
lead role of the pattern. The first part of the role contract
specifies therole state, which consists of a list of typed
field declarations. The syntax is the same as for standard
field declarations, and we omit the details. We should
note that the fields listed in the role state need not be
explicitly present in the class that ultimately plays the
role in a given specialization. Instead, as we will see,
the subcontract for the specialization will include a map
that specifies how the actual variables of participating
classes map to the role-fields.

Following the specification of the role state, we have
the specifications of the “named” methods. Thenamed
methods are the ones that an object playing this role
must include in order to support its part in the pattern.
For example, theObserver role of the Observer pat-
tern must provide anUpdate() method; theSubject

role must include anAttach() method; etc. Suppose,
as specified in a subcontract of a given patternP , the
classC plays the roleR. C will then be required to
provide each of the named methods listed in the role
contract ofR. Or more accurately, as in the case of
the role-fields, the subcontract must map each of the
named methods inR to the appropriate methods of the
class whose instances will play the role. These methods
will be required to satisfy the corresponding specifica-
tions listed in the role contract. Each method specifi-
cation consists of (i) a requiresclause corresponding to
the method’s pre-condition, (ii) a preservesclause that
identifies those state components and method arguments
that must be unaffected by an invocation of the method,
and (iii) anensuresclause corresponding to the method’s
post-condition.

C will often provide additional methods beyond
those used to support the pattern. These “non-role”
methods areC ’s “other” methods. If theseothermeth-
ods were not suitably designed, the intent of the pattern
could be compromised. For example, if the class playing
the Subject role in a specialization of Observer were

to include a method that changed or destroyed the in-
formation about the set of attachedobservers, the sys-
tem would clearly violate the intent of the pattern. This
would be true even if all of the methods explicitly listed
in the Subject role contract were implemented cor-
rectly. Theothers specification imposes conditions to
prevent such problems, and these conditions must be met
by all non-role methods. Note, however, that these con-
ditions involve only preserves and ensures clauses since
these clauses capture the changes the methods effect. No
conditions are imposed on their requires clauses.

Next we have the〈enrollment〉 clause. In the case of
the Observer pattern, an object enrolling as anobserver

in a particular pattern instance will do so by invoking
theAttach() method on thesubject object playing the
lead role for that instance. In general, in specifying how
an object enrolls in a pattern instance, we must specify
the object to be enrolled, the method or constructor that
must be called, the pattern instance into which the ob-
ject is enrolling (by specifying the corresponding lead
object), and the enrollment conditions that must be sat-
isfied. The syntax for enrollment is:

〈enrollment〉 ::=
enrollment: 〈rId〉.〈mId〉(〈args〉)

lead: (target | source | 〈arg〉 | . . . code. . .)
enrollee: (target | source | 〈arg〉 | . . .code. . .)
pre-cond: . . . assertion onlead, enrollee, etc. . . .
post-cond: . . . assertion onlead, enrollee, etc. . . .

| enrollment: new 〈rId〉(〈args〉)
lead: (source | 〈arg〉 | . . . code. . .)
enrollee: (newOb | source | 〈arg〉 | . . .code. . .)
pre-cond: . . .
post-cond: . . .

The first alternative in the production corresponds to
the case when enrollment is associated with the invo-
cation of a particular role method.〈rID〉 denotes the
name of the role,〈mID〉 denotes the name of the role
method, and〈args〉 denotes the list of arguments passed
to the method. Thelead clause identifies the lead object
of the pattern instance. There are several possibilities
here. First, the object may be thetarget of the method
call (i.e., the object on whichmId() is invoked). Sec-
ond, the object may be thesource of the method call
(i.e., the object whose method initiated the method call).
Third, the object may be one of the arguments passed to
the method call. Finally, the object may be some other
object, perhaps one that thesourceobject has a refer-
ence to. In this case, a segment ofcodewill return the
particular object that is to serve as thelead object. An
alternative approach would have been to use a mathe-
matical map that gives us thelead object. Theenrollee
clause, which specifies the enrolling object, is defined

6

analogously. Note, however, that thelead object must
be distinct from theenrollee object. As we noted ear-
lier, no object may play multiple roles in the same pat-
tern instance.

The enrollment pre-condition is an assertion that
must be satisfied at the point an object enrolls to play
the role. Note, however, that the method in question
will necessarily have a corresponding specification in
the relevant role contract. This specification may in-
clude a non-trivial pre-condition. That pre-condition,
however, as well as the rest of the pattern contract, only
applies to objects that havealreadyenrolled in a pattern
instance. It is for this reason that we specify a pre- and
post-condition as part of theenrollment clause. (The
same is true of theinstantiation clause.) An alternative
would have been to use the role method specification in-
cluded in the role contract in place of the enrollment pre-
and post-conditions. However, having a separate set of
conditions allows us to cater to systems in which differ-
ent requirements need to be imposed when the method
is used for enrollment as compared to when it is invoked
by an object that is already participating in a pattern in-
stance.

An object may also enroll at the time of its creation,
or at the time of another object’s creation. This pos-
sibility is captured by the second alternative within the
production. We are again required to specify thelead
object and theenrollee object. And again, there are sev-
eral possibilities. Theenrollee object may be the object
just created (newOb), thesource of the call to the con-
structor, one of the arguments to the constructor, or some
other object specified by the appropriatecodefragment.
Similarly, thelead object may be thesource, one of the
arguments to the constructor, or another object specified
by the appropriatecodefragment. Note that the newly
constructed object cannot be thelead object since the
pattern instance, and hence the lead object, must already
exist for an object to enroll in it.

The syntax for thedisenrollment clause is similar,
except that it cannot be associated with the creation of a
new object.

〈disenrollment〉 ::=
disenrollment: 〈rId〉.〈mId〉(〈args〉)

lead: (target | source | 〈arg〉 | . . . code. . .)
disenrollee: (source | target | 〈arg〉

| . . . code. . .)

Note that unlike the enrollment case, the object in ques-
tion is already enrolled in the pattern instance at the
time of the call to〈rId〉.〈mId〉(). Hence, it must satisfy
the pre-condition specified for this method in the appro-
priate role-contract. We therefore do not need to spec-
ify a pre-condition as part of thedisenrollment clause.

Moreover, once the object disenrolls, it is no longer part
of the pattern instance, and is therefore not required to
abide by the pattern specification. Consequently, we do
not need to specify a post-condition.

Note further that a role contract need not include a
disenrollment clause. This is the case if an object, once
enrolled to play a particular role, remains enrolled un-
til either the object or the pattern instance is destroyed.
The latter case occurs when the lead object for that in-
stance is destroyed or disenrolls. Again, the enrollment
clause may also be omitted, but only in the case of the
lead role. As we noted earlier, this case applies when
the only way for an object to enroll in a particular role
is at the point of pattern instantiation. In that case,
the〈instantiation〉 clause, which we consider next, also
serves as the〈enrollment〉 clause.

〈instantiation〉 ::=
instantiation: 〈rId〉.〈mId〉(〈args〉)

lead: (target | source | 〈arg〉 | . . . code. . .)
pre-cond: . . .
post-cond: . . .

| instantiation: new 〈rId〉(〈args〉)
lead: (newOb | source | 〈arg〉 | . . . code. . .)
pre-cond: . . .
post-cond: . . .

The instantiation clause is similar in structure to the
enrollment clause. The first production alternative cap-
tures the case where a new pattern instance is created
by invoking a specified role method. Pattern instantia-
tion can also be associated with the creation of an ob-
ject, as in our case study where an instance of the pat-
tern will be created each time apatient object is cre-
ated. This possibility is captured by the second alterna-
tive of the production. In either case, we must specify
the lead object that will be used to identify the new pat-
tern instance. This object must of course be an instance
of the role that has been marked as thelead role. The
instantiation pre- and post-conditions are analogous to
theenrollment pre- and post-conditions.

It may seem that by specifying the role methods as-
sociated with pattern instantiation and role enrollment,
we run the risk of compromising pattern flexibility. The
argument for this position would be that the formal-
ism cannot handle systems in which the instantiation
method, for example, has a different name or signature
than the one listed in the pattern contract. However, this
is certainly not the case. As we will see in Section 2.2,
themethod mapsthat appear as part of the subcontracts
for individual specializations of the pattern will allow us
to cater to such variations. We will see examples of this
customization in our case study.

The final item in the pattern contract, following the

7

instantiation clause, is thepattern invariant, a predi-
cate defined over the states of the various roles, and ex-
pressed in terms of the auxiliary concepts listed in the
auxiliary concept block. In general, within the same pat-
tern instance, multiple objects may be enrolled in the
same role, and the invariant will have to refer to the
states of all of these objects. The notations that we intro-
duce in Section 2.3 will allow us to express such condi-
tions conveniently. The invariant is guaranteed to be sat-
isfied whenever control is not inside one of the methods
acting on an enrolled object. This is of course true only
if the various requirements listed in the role contracts,
constraints, etc., are satisfied. In effect, the invariant is
the formal version of the “defined properties” described
in [3] that the correct use of the pattern ensures.

2.2 Pattern Subcontracts

The grammar for subcontracts corresponding to pat-
tern specializations appears in Fig. 3. A subcon-
tract specifies (i) the name of the pattern specialization
(〈sId〉), (ii) the name of the pattern (〈pId〉) it specializes,
(iii) a set of role maps, one corresponding to each role of
the pattern, and (iv) a set of definitions for the auxiliary
concepts declared in the corresponding contract.

〈subContract〉 ::= specialization 〈sId〉 : 〈pId〉
subcontract {
〈roleMaps〉
〈auxConceptDefBlock〉 }

〈roleMap〉 ::= rolemap 〈cId〉 as 〈rId〉 {
〈leadObjRel〉
〈stateMap〉
〈interfaceMap〉 }

〈leadObjRel〉 ::= lead relation:
. . . relation on lead object and

role object . . .
〈stateMap〉 ::= state: 〈fieldMaps〉
〈fieldMap〉 ::= 〈rfId〉 = {. . . code . . .}
〈interfaceMap〉 ::= methods: { 〈methodMaps〉 }
〈methodMap〉 ::= 〈rmId〉(〈rmArgs〉) :

〈cmId〉(〈cmArgs〉) {〈argMaps〉}
〈auxConceptDefBlock〉

::= auxiliary concepts: 〈auxConceptDefs〉
〈auxConceptDef〉 ::= 〈auxId〉 (〈cArgs〉) {. . . code . . .}

Fig. 3. Grammar of Pattern Subcontracts

A role mapis specified for each class (〈cId〉) whose
instances may play the role (〈rId〉) in an instance of the
specialization. Each role map specifies how objects that
are instances of the corresponding class can, in effect,
act as instances of the role when participating in the pat-

tern. Note, however, that a given instance of the class
(〈cId〉) maysimultaneouslyplay this role in multiple in-
stances of this specialization. In our case study, for ex-
ample, a givennurse object may be simultaneously ob-
serving multiplepatients, thus playing theObserver

role in the instances corresponding to each of thosepa-

tients. Each role map must therefore specify how ob-
jects of type〈cId〉 act as instances of the role〈rId〉 in
eachof their respective specialization instances. Again,
each specialization instance will be identified by its cor-
responding lead object. We use the keyword “lead” to
refer to the current specialization instance under con-
sideration (via the lead object used as a proxy for the
instance). This is somewhat analogous to the keyword
“ this” used in OO languages when referring to an object
instance from within its corresponding class implemen-
tation.

Let us first consider thestate mapportion of a role
map. The state map consists of a set offield maps. Each
field map corresponds to a role-field specified in the role
contract for this role in the corresponding pattern con-
tract (〈pId〉). A field map identifies the name of a partic-
ular role-field (〈rfId〉), and specifies acodefragment that
takes the current state of the〈cId〉 object and returns the
value of this role field when the object isviewed asan in-
stance of〈rId〉 in a particular pattern instance. In simple
cases, we will have a corresponding field in the class for
each field of the role, and this code fragment will simply
return the value of that field. In general, however, more
complex relations may be expressed in our formalism.
The reason we chose to express this relation as a piece
of code, and the reason we chose to use code fragments
elsewhere in the subcontract, is because of our desire
to make the formalism more usable to practitioners who
are likely to prefer expressing the required maps in the
form of code rather than in the form of mathematical
relations. This is especially important in a subcontract
since a subcontract corresponds to the specialization of
the pattern used in a particular system, and will have to
be developed by the team responsible for the system. By
contrast, the contract for any pattern is a one-time effort
by the community; we will return to this point in the
final section. We should note, however, that the code
fragments corresponding to these elements in the sub-
contract must not, of course, result in anyside-effects
when they are executed. That is, the code fragments are
intended to substitute for mathematical expressions, and
must not modify any of the objects in the system.

When a participating object may be simultaneously
enrolled in multiple specialization instances, it must be
possible to differentiate those portions of the object’s
state relevant to each instance. To achieve this, the lead
object corresponding to each specialization instance will

8

be used as anindex into the state of the role object, to
project out those portions of the object’s state relevant
to the corresponding instance. Consider, for example, an
object playing theObserver role in multiple instances
of the Observer pattern. When evaluatingconsistency
in the context of a particular pattern instance – say, at
the termination of theObserver.Update() method –
we will require that theobserver in question be con-
sistent with itssubject. Note, however, that this re-
quirement only involves the portion of theobserver’s
state that records information aboutthis subject – not
the portions concerning othersubjects that this object
may beobserving. Therefore, when reasoning about the
consistencyof anobserver in the context of a particular
specialization instance, thesubject serving as the lead
object for that instance will be used to project out the
relevant portion of theobserver’s state. We will see an
example of this in our case study. There, apatient ob-
ject will serve as the lead object in each specialization
instance, and this object will be used to index into the
state of a givennurse or doctor object to project out
the state information relevant to a particular instance.
To ensure the correctness of the indexing, we must be
sure that the state of theobserver in question contains
information relevant to thepatient in question. Sim-
ilar conditions will be required in any system where a
given object may be simultaneously enrolled in multi-
ple instances of the same specialization. This type of
condition is captured by the〈leadObjRel〉 clause, which
defines a suitable relation over the lead object and the
role object under consideration. In our case study, this
relation will simply state that the givenpatient must be
included in the list ofpatients that the particularnurse

or doctor object stores references to.

The interface mapdefines the mapping between the
namedmethods of the role and the corresponding class
methods. For each named role method (〈rmId〉), its
method mapspecifies the corresponding class method
(〈cmId〉) that serves as the role method in instances of
the specialization. The method map also provides an
argument mapthat specifies how the class method’s ar-
guments (〈cmArgs〉) map to the role method arguments
(〈rmArgs〉). In some cases, the class method may pro-
vide fewer arguments than the role method to which it
corresponds. In such a case, the designer may specify
an argument mapping from the state of the class to the
relevant role method argument. We will see an example
of this in our case study. The production for〈argMap〉
is similar to that for〈fieldMap〉, and we omit it. And, as
in the case of field maps, these mappings are typically
straightforward, with each argument of the role method
mapping to an argument of the class method. In some
cases, however, a given role method may be mapped to

more than one class method. In our case study, for ex-
ample, theAttach() method of theSubject role will be
mapped to both theaddNurse() and theassignDoc-

tor() methods ofPatient. When we consider the cor-
responding subcontract in Section 3.3, we will see the
slightly extended〈methodMap〉 syntax used to accom-
modate these scenarios.

The final portion of a subcontract defines the appro-
priate auxiliary concept definitions. For each auxiliary
concept (〈auxId〉), and each combination of classes that
play the various roles that appear as its parameters, we
must provide a corresponding definition. As in the case
of the field mapsand method maps, we provide suit-
able code fragments corresponding to each definition.
The code fragments perform the appropriate compar-
isons across instances of the classes mapped to each role,
and returntrue or false to indicate whether the corre-
sponding relation is satisfied. Recall that these defini-
tions must satisfy theconcept constraintsspecified in
the pattern contract.

Pattern Contract

Pattern Level
Auxiliary concept declarations
Auxiliary concept constraints
Pattern instantiation requirements
Pattern invariant

Role Level
Role state requirements
Named method requirements
Other method requirements
Enrollment requirements
Disenrollment requirements

1 *

Pattern Subcontract

Pattern (Specialization) Level
Auxiliary concept definitions

Role(map) Level
State component mappings
Method mappings
Lead object relationship

specializes

1 *

Fig. 4. Pattern Contracts and Subcontracts

Fig. 4 summarizes the information contained in pat-
tern contracts and subcontracts. In essence, a pattern
contract provides aparameterizedformalization of a
given pattern. The parameterization structure includes
(i) a parameterized set of specifications for the individ-
ual role methods, (ii) parameterized enrollment and dis-
enrollment clauses, (iii) a parameterized pattern instanti-
ation clause, and, perhaps most important, (iv) a param-
eterized pattern invariant. The auxiliary concepts de-
clared by the contract serve as the primary parameters,
and the field and method maps serve as additional pa-
rameters. For any particular system that uses the pattern,
the corresponding subcontract defines the actual param-
eters via the definitions of the auxiliary concepts, field
maps, and method maps. Thus, while the pattern con-
tract specifies the pattern precisely, the parameterization
structure ensures that flexibility is not compromised.

9

2.3 Role Players and Call Sequences

When writing pattern contracts and subcontracts, we
often need to refer to the objects playing the various
roles in a given pattern instance. For this purpose, we
introduce a special symbol,players, which denotes a
vectorof all the objects enrolled in various roles, in the
order that they enrolled.players will contain an ordered
pair corresponding to each enrollee, consisting of a ref-
erence to the object playing the role, as well as the name
of the particular role. If an objectxx disenrolls,xx will
be removed fromplayers, and any objects that enrolled
afterxx, and occupying locations inplayers past the one
occupied byxx, will be “moved down” one position.

Individual elements ofplayers can be referred to us-
ing standard indexing notation. Thus,players[0] de-
notes a pair consisting of the first (i.e. lead) object to
enroll and its associated role.players[i:j] denotes the
slice consisting of theith through thejth elements. If
j is missing, the slice consists of all the elements from
theith through the last element. Ifi is missing, the slice
is from the0th element through thejth. We introduce
some additional functions onplayers that will be useful
in writing contracts and subcontracts:

players.objv: Denotes a vector of enrolled objects,
omitting their role names. When the ordering in-
formation is not important, we denote thesetof ob-
jects enrolled asplayers.objs.

players.rolev: Denotes a vector of filled role names,
omitting information about the objects enrolled in
those roles. Again, when the ordering informa-
tion is not important, we denote the set of roles as
players.roles. More precisely, since many objects
may be enrolled to play a given role,players.roles
is not a set, but amulti-set. Note, by contrast,
that since an object cannot play two roles, nor en-
roll in the same role twice in any pattern instance,
players.objs is necessarily a set.

players.Rv (whereR is a particular role name): De-
notes a vector of objects enrolled to play the spec-
ified roleR. players.Rsdenotes the corresponding
set.

R(players[i]) (where R is a particular role name):
An assertion which evaluates totrue if the ith

element ofplayers is enrolled to play the role
R, and falseotherwise.R(players[i:j]) is true if
eachof the elements from theith through thejth

element are enrolled to playR, andfalseotherwise.

Many design patterns require specific methods of
specific roles to be invoked in a specific order under var-

ious conditions. Thus, for example, in theObserver

pattern, when the state of thesubject is modified, the
Update() method of each of theobservers must be in-
voked. Similarly, in theChain of Responsibility pat-
tern, when one of the objects in the chain receives a call
that it cannot handle, it must then invoke an appropriate
method on the next object in the chain, which must, in
turn, act in a similar manner.

Such requirements are conveniently expressed in
terms of methodcall sequencesor methodcall traces.
We will useτ with suitable suffixes as necessary to de-
note such traces. From an operational perspective, one
possibility would be to use a single “global” trace that
recordsall of the calls made on all of the objects in
the system. But from a reasoning point of view, we
will need to reason about the trace of calls made during
the execution of particular methods. Thus, each method
specification will be expressed in terms of the effects of
the method on the variables of its declaring class, as well
as the sequence of calls that the method must make dur-
ing its execution. Note that we associate a separate trace
with eachexecution of a methodm(). This trace will be
empty when the execution ofm() begins, and will record
all of the calls made during that execution; and it must
satisfy the requirements imposed by the specification of
m().

Consider a callxx.m(args) that appears in a method
n() of a classC. This call will be recorded on the traceτ
of the methodn() by appending a tuple that records the
name of the method invoked, the identity of the object
on which the method was invoked, and the arguments
passed to the method. The tuple also includes the state
of theinvokingobject at the time of the call, and its state
at the time of the return. Consider, for example, a sce-
nario in which the state of an object at the time of the
return may be different than at the time of the call. This
is possible if a method that is invoked, in turn, initiates
a chain of calls that result in invocations on the calling
object before the original method terminates. In spec-
ifying patterns involving such method call sequences,
we may need to refer to the state of the invoking ob-
ject at the time of the call and at the time of the return,
and can do so in terms of the appropriate components of
the elements withinτ . But most patterns do not involve
such considerations, and their contracts do not refer to
these components. Thus, although our model of traces
is such that the trace element corresponding to a given
call includes exhaustive information about the call, this
complexity is not reflected in the specifications of most
common patterns.

The following functions and notations are useful in
the expression of trace-based specifications. We should
note again that a separate traceτ is associated with each

10

execution of a given methodn(); and that each call that
n() makes during this execution is represented as a sin-
gle element inτ .

|τ |: Denotes the length ofτ (i.e., the number of calls
recorded inτ).

τ.ob (whereob is an object): Denotes the subsequence
formed by projecting out elements inτ correspond-
ing to method invocations on a particular target ob-
jectob.

τ.m (wherem() is a particular method): Denotes the
subsequence formed by projecting out elements in
τ corresponding to invocations on a particular tar-
get methodm().

τ. σo: Denotes the vector of the ‘outgoing’ states of the
invoking object (i.e., the states of the invoking ob-
ject at the time of each call inτ). Similarly, τ. σi
denotes the vector of the ‘incoming’ states of the
invoking object (i.e., the states of the invoking ob-
ject at the time of the return corresponding to each
method call.)

We will often use these functions in combination. Thus,
|τ.ob.m| denotes the number of invocations recorded in
τ to the methodm() with ob as the target of the invo-
cation. τ.σo[k] and τ.σi[k] denote the ‘outgoing’ and
‘incoming’ states, respectively, of the invoking object
recorded in thekth element ofτ . Suppose thatτ is the
trace corresponding to a methodm() of a classC act-
ing on a particular objectob. In effect, the change in the
state ofob from τ.σi[k] to τ.σo[k + 1] is a result of the
actions thatm() performs between the calls correspond-
ing to elementsk andk + 1.

One other point concerning traces should be noted.
Suppose that in a system built using a patternP , we
have a classC that plays a roleR of P . SupposeC
contains two methods,n() which does not correspond
to a role method ofR andm() which does correspond
to one of the named methods ofR. Suppose further that
m() contains a call ton(). When specifyingC.m(), we
would include in the trace ofm() information about calls
it makes ton(). But such calls will not be explicitly con-
sidered in the corresponding role method specification
of m(). In other words, the call sequence requirements
specified inR’s role contract concerning what should
be in the trace ofm() will generally only concern calls
to namedmethods ofR. Other methods will be ex-
cluded. Thus, when determining whetherC.m() meets
the requirements specified in the role contract forR, we
will exclude fromC.m()’s trace all of the calls toother
methods, and then determine whether the resulting trace
satisfies the appropriate call sequence requirements. In

some special situations, the role contract may impose
general constraints on thetotal trace of m() (i.e., the
trace ofall callsm() makes), including calls toother
methods. In such cases, we will use the notationττ in
the role contract to denote thetotal traceof the method
in question. Of course, when specifying classes (rather
than roles) in our case study, we will be dealing with
total traces, and will therefore useττ in those specifica-
tions.

3 Case Study

We now turn our attention to the case study. In Sec-
tion 3.1, we develop the contract for the Observer pat-
tern. In 3.2, we introduce a typical, if simple, system
built using Observer. In 3.3, we develop the subcontract
corresponding to the specialization of Observer used in
this system. We then demonstrate how a system de-
signer may show that the requirements associated with
a given pattern are satisfied, and, most important, how
the designer may draw conclusions about the resulting
behavior that the system is guaranteed to exhibit. In 3.4,
we consider an extended version of the system that uses
both the Observer and the Chain of Responsibility pat-
terns, and show how our formalism allows us to reason
about the extended system.

3.1 Observer Pattern Contract

The specification of the Observer pattern appears in
Figs. 5, 6, and 7. Fig. 5 includes the pattern-level items,
Fig. 6 includes theSubject role contract, and Fig. 7
includes theObserver role contract. Note that for the
sake of presentation, we have included the instantiation
and invariant clauses in Fig. 5 instead of after the role
contracts as required by the contract grammar.

The pattern contract begins with the declaration of
two auxiliary concepts. The first concept,Consistent,
captures the notion of whether a givensubject state is
consistent with a givenobserver state. The second con-
cept,Modified, captures what it means for a givensub-

ject state to besignificantly differentfrom another state
of the subject. This concept is required because the
subject is obliged to update itsobservers whenever its
state changes in a manner that is significant to itsob-

servers. Since which changes in thesubject state are
significant enough to warrant notification depends on
the system in question, we use an auxiliary concept to
parameterize this notion. In the subcontract, the defini-
tions of these concepts must satisfy the condition stated
in theconstraints clause, which we will consider after
discussing the rest of the contract.

11

pattern Observer contract {
auxiliary concepts:

Consistent(Subject, Observer);
Modified(Subject, Subject);

constraints:
∀s1, s2, o1 :

[[¬Modified(s1, s2) ∧ Consistent(s1, o1)]
⇒ [Consistent(s2, o1)]]

instantiation:
new Subject()
lead: newOb;
pre-cond: true;
post-cond: (newOb. observers = Φ)

invariant:
Subject(players[0])∧
Observer(players[1 :])∧
(players.objv[0]. observers =

players[1:].objs)∧
(∀ob : (ob ∈ players[1:].objs)) ::

(ob. subject = players.objv[0])∧
(∀ob : (ob ∈ players[1:].objs)) ::

Consistent(players.objv[0],ob))

Fig. 5. Observer Contract (part 1)

The instantiation clausespecifies that a new instance
of the pattern is created when an instance of the class
playing theSubject role is created. Note thatSubject

is the lead role for this pattern, as specified in theSub-

ject role contract (Fig. 6). The instantiation clause iden-
tifies the newly created object as the lead object, and
requires that theobservers field be empty since noob-

servers have yet enrolled to observe thissubject.
Next we have the pattern invariant. The first clause of

the invariant states that the first object to enroll in an in-
stance of the pattern will play theSubject role. (This of
course follows naturally from the instantiation clause.)
The next clause states that all other enrolling objects will
play theObserver role. The third clause states that the
value of the observers field of the object playing the
Subject role will be equal to the set consisting of all of
the other enrolled objects4. The final clause states that
the subject field of each object playing theObserver

role will refer to the object playing theSubject role.
The essence of theObserver pattern is that the states

of theobservers will beConsistentwith the state of the
subject whenever none of the objects are being acted

4We should note thatplayers[1:].objs is a mathematical set,
whereasplayers.objv[0]. observers is the value of a variable of the
object in question, and is of a programming language typeSet. A
more precise approach would be to introduce a suitable mathematical
model of the object in question in which this variable would be mod-
elled as a mathematical set, and the clause would be written in terms
of this model. For ease of presentation, however, we omit such details.

upon. This is captured by the final clause of the invari-
ant, which indicates that the states of all of the objects
enrolled, with the exception of the lead object, are con-
sistent with the state of the lead object.

lead role Subject contract {
Set observers;
void Attach(Observer ob):

requires: (ob 6∈ observers)
preserves: ob

ensures:
[(observers = # observers ∪ {ob})
∧¬Modified(#this, this)
∧(|τ | = 1) ∧ (|τ.ob.Update| = 1)]

void Detach(Observer ob):
requires: (ob ∈ observers)
preserves: ob

ensures:
[¬Modified(#this, this) ∧ (|τ | = 0)
∧(observers = # observers− {ob})]

void Notify():
requires: true
preserves: observers

ensures:
[¬Modified(#this, this)
∧(|τ | = | observers|)
∧∀ob ∈ observers : (|τ.ob.Update| = 1)]

others:
preserves: observers

ensures:
[¬Modified(#this, this) ∧ (|τ | = 0)]
∨[(|τ | = 1) ∧ (|τ.this.Notify| = 1)] }

Fig. 6. Observer Contract (part 2)

The state of theSubject role, as specified in its con-
tract in Fig. 6, consists of a single field,observers,
whose value will be the set consisting of references to
all of the objects currently attached to thesubject. The
contract does not include an enrollment clause since the
only way for an object to enroll as aSubject is by being
the lead object in an instantiation of the pattern. Further,
the disenrollment clause is omitted since thesubject re-
mains enrolled as long as it exists.

The role has three named methods:Attach(), De-

tach(), andNotify(). Attach() is invoked when an
object,ob, wishes to become anobserver of the sub-

ject. As specified in therequires clause, this method
may only be called ifob is not already attached to the
subject, and by consequence, not already enrolled in
the pattern instance. Thepreserves clause states that
ob is unchanged by the method, and must therefore re-
fer to the same object at the termination of the method
as it did at the start of the invocation. The first con-

12

junct of theensures clause states that the enrollingob-

server is added to the observers set5. The second
conjunct states that thesubject will not be Modified.
Note that this may seem strange since we just stated that
the observers field must be modified. The key, how-
ever, is that this change has to do with how thesub-

ject keeps track of the objects observing it, and is not
the kind of change theobservers will likely be inter-
ested in. Hence, this kind of change will typically be
ignored by definitions of theModified() concept. In-
deed, definitions of auxiliary concepts commonly ignore
the ‘pattern-portion’ of the states of the participating ob-
jects.

The condition captured by the last two conjuncts of
theensures clause is often overlooked in informal de-
scriptions of the pattern. The key intent of the Ob-
server pattern, as specified by the pattern invariant, is to
keep all of theobserversconsistentwith the state of the
subject. The Attach() method adds a newobserver.
We must therefore invoke the attachingobserver’s Up-

date() method, since it might be inconsistent with the
state of thesubject at the point of the call toAttach().
The first of these two conjuncts states that the length
of the method call trace,τ , is 1, indicating that there is
only one method call recorded on it. The second con-
junct states that this call is to the methodUpdate() on
the attaching object.

Detach() is more straightforward. We require that
the detachingobserver be attached to thesubject be-
fore the method invocation. When the method termi-
nates, the detachingobserver must be removed from
observers, and thesubject state must not be modified

from its pre-conditional value. Again, the determination
of whether thesubject’s state is modified is based on
the definition ofModifed() supplied in the relevant sub-
contract. The call sequence requirement prevents im-
plementations ofDetach() from invoking anynamed
methods.

The purpose ofNotify(), the final Subject role
method, is to update eachobserver with the current
state of thesubject. As we will see in theothers spec-
ification, this method must be invoked by any method
that modifiesthe state of thesubject. The preserves
clause requires thatobservers not be changed. The
first conjunct of theensures clause states thatNo-

tify() must not modify thesubject’s state. The last
two conjuncts require thatUpdate() be invoked on each
attachedobserver. An alternate way to specify this
method would be to replace the conditions involving
τ with a clause that requires thesubject state to be

5Note that when a variable is prefixed with “#” in the ensures
clause, it denotes the value the variable had when the method started
execution. This is equivalent to the “@pre” notation of OCL [36].

consistentwith that of theobservers. While this is cer-
tainly possible, it does not respect the intent of the pat-
tern, which requiresNotify to perform the calls toUp-

date() [9]. This is precisely what our contract specifies.
If, on the other hand, the pattern did not require such
calls, the alternate specification would be appropriate.

The others specification imposes conditions on the
methods provided by the class playing theSubject role,
outside of the named methods required to support the
pattern. These additional methods are required to pre-
serve the observers set. Further, they must either not
modify the state of thesubject, or they must invoke the
Notify() method. As discussed above,Notify() will in
turn invokeUpdate() on each attachedobserver.

Note that there is a potential problem with this spec-
ification because a careless designer could implement a
method that first invokesNotify(), andthenmodifies the
state of thesubject. Such an implementation would,
given that there is a call toNotify(), satisfy our spec-
ification, but violate the intent of the pattern. The pur-
pose of the call toNotify() is to ensure that all of the
observers are updated to become consistent with the
modified state of thesubject. If, however, the call to
Notify() appearsbeforethe modification, theobservers
will not be updated to reflect the post-conditional value
of thesubject’s state. This can be addressed by modify-
ing the second disjunct of theensures clause as follows:

[(|τ.this.Notify| ≥ 1)
∧ ¬Modified(τ.Notify[last].σo, this)]

The first clause asserts that there is at least one call to
Notify() on the current object. The index “last” in
the second clause refers to the rightmost element of the
given vector. This vector is obtained fromτ by retain-
ing only those elements corresponding to invocations of
Notify(). “σo” then gives us the state of the object at
the time the call was made. Thus, this clause requires
that the final state of thesubject be unmodifiedfrom
the value that theobservers were most recently notified
of. For the rest of the discussion, we will ignore this
problem and use the simplerensures clause specified
in Fig. 6.

The Observer role contract in Fig. 7 specifies the
state of the role as consisting of a single field,subject.
As specified in the pattern invariant, this field holds a
reference to thesubject object being observed by the
observer in question. The enrollment clause states that
for an object to enroll in this role, theAttach() method
must be invoked on the appropriatesubject object, with
the enrollingobserver passed as argument. The en-
rollment pre-condition requires that the enrollingob-

server’s subject field reference the particularsubject

object it wishes to observe. This, together with the spec-
ification of Attach() in Fig. 6, ensures that the con-

13

role Observer contract {
Subject subject;

enrollment:
Subject.Attach(ob)
lead: target
enrollee: ob

pre-cond:
(ob. subject = target) ∧ (source = ob)

post-cond: true

disenrollment:
Subject.Detach(ob)
lead: target
disenrollee: ob

pre-cond: (source = ob)
void Update():

requires: true
preserves: subject

ensures: (|τ | = 0) ∧ Consistent(subject, this)
others:

preserves: subject

ensures:
(|τ | = 0) ∧ ∀ss :

Consistent(ss,#this)⇒ Consistent(ss, this) } }

Fig. 7. Observer Contract (part 3)

ditions specified in the pattern invariant (Fig. 5) will
be satisfied when the enrollment action completes, as-
suming they were satisfied before it began. The clause
(source = ob) requires that the object calling theAt-

tach() method be the object enrolling as anobserver.
In other words, nothird-party enrollments are permit-
ted by this specification. If we do want to permit such
enrollments, this clause must be omitted. The disen-
rollment clause is similar. Note, however, that there
is no need for the clause(ob. subject = target),
since the pattern invariant already guarantees this clause,
given thatob is enrolled as anobserver. The specifica-
tion of Update() requires that the method preserve the
subject field so that the reference to thesubject be-

ing observed is not lost. Further, the method must not
invoke any named methods, and must leave the state of
theobserver in a state that is consistent with the state of
thesubject.

The others specification in Fig. 7 requires that the
subject field be preserved. Further, theensures clause

imposes a call sequence requirement that prevents un-
named methods from invoking any named methods. Fi-
nally, if the state of theobserver at the start of an invo-
cation isconsistentwith ss, a possible state of thesub-

ject, then the state of theobserver must beconsistent
with that state at the end of the invocation. Thesubject

field must be preserved since if it were not, theobserver

would lose its reference to thesubject it is observing.
Unnamed methods should not invokeAttach() since
theobserver must already be attached. Nor should they
invokeNotify() since this method must only be invoked
by thesubject — as we saw in the contract for theSub-

ject role. Detach() is more interesting. Although the
specification seems to forbid a call to this method, this
is not the case. If anothers method were to callDe-

tach(), this object would no longer be enrolled in the
pattern at the method’s termination, and therefore, the
requirements imposed by theensures clause would not
apply. Of course, the call toDetach() would have to
satisfy the method pre-condition specified in theSub-

ject role contract, but when control returns to the caller,
the object will no longer be enrolled as an observer in the
pattern. Hence, the pattern contract’s constraints will no
longer apply to that object. Thus, unnamed methods can
indeed detachobservers from theirsubjects.

The final clause captures a critical aspect of theOb-

server role’s behavior. This clause allows unnamed
methods to modify the state of anobserver, as long as
the modifications do not affect theconsistencyof theob-

server with respect to itssubject. Standard informal
descriptions of the pattern suggest that the state of an
observer shouldnotchange except when theUpdate()

method is invoked. But this is unnecessarily restrictive.
Suppose, for example, that theobserver in question is a
type of graphical object that displays information about
the state of thesubject in the form of a pie-chart. Sup-
pose also that thisobserver provides a method to switch
betweeniconified and de-iconifiedimages of the pie-
chart. In going from being de-iconified (with the pie-
chart information being displayed) to iconified, there is
clearly no information lost about thesubject. Indeed,
we could again de-iconify theobserver, and the chart
would again be displayed. Therefore, such a change in
the state of theobserver should be permitted. Our for-
malism allows for this type of flexibility, given an appro-
priate definition of theConsistent() auxiliary concept in
the corresponding subcontract. By contrast, standard in-
formal descriptions of the pattern seem to disallow such
changes in the object playing theObserver role6.

Note that theothers specification in Fig. 7 assumes
that the state of thesubject will not change during the
execution of an unnamed method. While this is likely
a reasonable requirement for most systems, the pattern
is designed to handle situations in which this condition
is not satisfied. Suppose, for example, that an unnamed

6Once we recognize this, we can of course rewrite the informal
description to permit such changes. But the point remains that it was
the process of formalization that allowed us to identify this dimension
of flexibility that is missing in standard informal descriptions.

14

method were to invoke some other method on another
object, and that this second method were to invoke a
method on the originalsubject. Suppose further that
the invocation on thesubject resulted in a significant
change, as defined by the definition ofModified() pro-
vided in the corresponding subcontract. Then, as spec-
ified in theothers clause of theSubject role contract
(Fig. 6),Notify() must be invoked, which must in turn
call update() on each attachedobserver — including
the observer that initiated the call chain. Thus, when
control returns to the original method of the initiating
observer, its state will be different from what it was just
before the call that initiated the chain. Note, however,
that the intent of the pattern will not be violated since
theobserver’s state will beconsistentwith the new state
of the subject. To allow for such changes, we must
suitably modify theensures clause of theothers spec-
ification in Fig. 7. The most interesting modification
involves replacing the second conjunct of theensures
clause with the following:

(|ττ | > 0) ∧
∀ss :

Consistent(ss,#this)
⇒ Consistent(ss, ττ.σo[first]) ∧

∀k : Consistent(ss, ττ.σi[k])
⇒ Consistent(ss, ττ.σo[k + 1]) ∧

Consistent(ss, ττ.σi[last])
⇒ Consistent(ss, this)

Recall thatττ denotes thetotal trace of method calls
made during a method’s execution, including calls to un-
named methods. Recall further thatττ.σi[k] denotes the
post-conditional value of thecaller after thekth method
call, andττ.σo[k + 1] denotes the pre-conditional value
before thek + 1th method call. Hence, this clause re-
quires that if theobserver is consistent with somesub-

ject state at the point control returns to an unnamed
method, theobserver must be consistent with that same
subject state at the point of the next outgoing method
call. Similar conditions are imposed relating the pre-
conditional state of theobserver and the first method
call, and the post-conditional state of theobserver and
the last method call. Note that the clause is expressed
using the total trace because it must handle changes in
state that are initiatedindirectly through unnamed meth-
ods — as in the example presented above. Note further
that in the case whereττ is empty, we must again require
the same consistency condition specified in Fig. 7. It is
interesting to note that our contract formalism brings to
the surface such subtle issues that are easily missed in
informal descriptions.

Let us now turn our attention to theconstraintsim-
posed on auxiliary concept definitions in the pattern
contract (Fig. 5). For convenience, we reproduce the

constraints clause here.
∀s1, s2, o1 :

[[¬Modified(s1, s2) ∧ Consistent(s1, o1)]
⇒ [Consistent(s2, o1)]]

Suppose that a givensubject states1 is consistentwith
a givenobserver stateo1 according to the definition
of Consistent() provided by the appropriate subcontract.
Suppose the state of thesubject changes tos2, and that
Modified(s1, s2) evaluates tofalse according to the def-
inition of Modified() provided in the same subcontract.
Finally, suppose that the new states2 is not consistent
with the observer stateo1, according to the same def-
inition of Consistent(). At this point, the intent of the
pattern will be violated. Thesubject will not update its
observers, since in its view, as captured in the definition
of Modified(), its state has not changed in a significant
way. According to the definition ofConsistent(), how-
ever, the observer’s stateo1 is not consistent with the
new state of thesubject. The problem arises here not
because of the failure of thesubject or theobservers to
interact in a manner intended by the pattern, but rather
because of mutually incompatible notions ofconsistency
andsignificant modification. The concept constraints in
our pattern contracts serve to eliminate such incompati-
bilities. Thus, while the definitions of a pattern’s auxil-
iary concepts may be tailored to the needs of a particu-
lar system, the concept constraints in the contract ensure
that this flexibility is not used in a way that would violate
the intent of the pattern.

3.2 SimSickCity System

SimSickCity, the system used in our case study, im-
plements a primitive simulation of a hospital. The im-
plementation consists of three main classes:Patient,
Nurse, andDoctor. Instances of these classes repre-
sent the corresponding entities in the simulated hospital.
We first consider thePatient class, shown in Figs. 8
and 9. Some of the code has been elided for the sake of
presentation.

The constructor receives a string parameter contain-
ing the name of thepatient object being constructed.
First, it initializestemp and hrtRt to suitable values,
corresponding to thepatient’s temperature and heart
rate, respectively. Next, it initializesnurses, the set of
references to thenurse objects assigned to thispatient,
to the empty set. Finally, it setsdoc, the reference to
thedoctor object7 for this patient, tonull. Theensures
clause expresses this behavior. It also states that the con-
structor does not make any calls to any other methods
during its execution. As we noted in Section 2.3, we use

7At most onedoctor object may be assigned to apatient object at
any time. Any number ofnurse objects may be assigned to apatient.

15

ττ here to denote thetotal trace, which includesall of
the calls made by the method — not just those to named
methods.

public class Patient {
private String name;
private int temp, hrtRt;
private Set nurses;
private Doctor doc;
public Patient(String n) {

/* initialize name, temp, hrtRt */
/* set doc to null, nurses to empty set */}
requires: true
ensures: [(name = n) ∧ (nurses = Φ)
∧(doc = null) ∧ (ττ = 〈〉)]

public int tempInfo() { return temp; }
requires: true
preserves: name, temp, hrtRt, nurses, doc

ensures: [(result = temp) ∧ (ττ = 〈〉)]
public int heartRateInfo() { return hrtRt; }

requires: true
preserves: name, temp, hrtRt, nurses, doc

ensures: [(result = hrtRt) ∧ (ττ = 〈〉)]
public String pname() { return name; }

requires, etc.: similar; details omitted
public void addNurse(Nurse n)
{ /* add n to nurses, n.update() */ }
requires: (n 6∈ nurses)
preserves: name, temp, hrtRt, doc

ensures: [(nurses = # nurses ∪ {n})
∧(|ττ | = |ττ.n.update| = 1)]

public void removeNurse(Nurse n)
{ /* removen from nurses */ }
requires: (n ∈ nurses)
preserves: name, temp, hrtRt, doc

ensures:
[(nurses = # nurses− {n}) ∧ (ττ = 〈〉)]

public void assignDoctor(Doctor d)
{ /* set doc to d */ }
requires: (doc = null)
preserves: name, temp, hrtRt, nurses

ensures:
[(doc = d) ∧ (|ττ | = |ττ.d.update| = 1)]

public void deassignDoctor()
{ /* set doc to null */ }
requires: (doc 6= null)
preserves: name, temp, hrtRt, nurses

ensures: [(doc = null) ∧ (ττ = 〈〉)]

Fig. 8. Patient Class (part 1)

The methodstempInfo() andheartRateInfo() re-
turn the temperature and heart rate information about

public void changeCondition() {
/* set temp, hrtRt to new values *
Notify(); }
requires: true
preserves: name, nurses, doc

ensures: (|ττ | = 1) ∧ (|ττ.this.Notify| = 1)
public void Notify() {

/* call n.update(this) for eachn in nurses */
/* call doc.update(this) if doc is not null */ }
requires: true
preserves: temp, hrtRt, name, nurses, doc

ensures: [(|ττ | = | nurses|+ | doc|) ∧
(∀n ∈ nurses : (|ττ.n.update| = 1)) ∧
((doc 6= null)⇒ (|ττ. doc.update| = 1))]

Fig. 9. Patient Class (part 2)

the patient, respectively. These methods do not
make any changes in the state of thepatient, nor
do they call any methods. Thepname() method
is defined similarly. Thepreserves and ensures
clauses express this behavior.addNurse(n) addsn

to the set ofnurses assigned to thePatient, and
calls n.update(). This call is required to ensure that
the state of thenurse being added to thepatient’s
nurses set is consistent with the state of thepa-

tient at the method’s termination. Therequires clause
states thatn must not be contained innurses; i.e.,
n must not already be assigned to thepatient. The
ensures clause asserts thatn is added to nurses, and
that the only method call made byaddNurse() is to
n.update(). removeNurse(n) removesn from the set
of nurses assigned to thePatient, providedn is cur-
rently assigned to thepatient. assignDoctor(d) and
deassignDoctor() are defined similarly.

The methodchangeCondition(), shown in Fig. 9,
simulates a change in the condition of thepatient. This
method randomly setstemp andhrtRt to new values,
and then invokes thepatient’s Notify() method. The
ensures clause specifies this.

Notify() invokes theupdate() method on each
Nurse object in the nurses set. It also invokes the
update() method on thedoc object, provided that this
field is not set tonull. In the ensures clause of the
method, we use the notation| doc| to denote 0 if doc

is null, and to denote 1 otherwise. Thus, the first por-
tion of the ensures clause asserts that the number of
calls made during the execution ofNotify() is equal to
the number of elements innurses plus 0 or 1, depend-
ing on whether doc is set tonull. The remaining two
clauses state thatupdate() is called on each element of
nurses, and on doc if the field is not set tonull. Note

that these clauses do not constrain theorder in which

16

these calls are made. Thus it is possible thatupdate()

will be invoked on some of thenurse objects, followed
by the invocation ondoc, followed by the invocations
on the remainingnurses.

public class Nurse {
private HashMap pInfo; /* info about patients */
public Nurse() {

/* initialize pInfo to new empty map */}
requires: true
ensures: [(pInfo = Φm) ∧ (ττ = 〈〉)]

public void watch(Patient p){
pInfo.put(p, null); p.addNurse(this); }
requires: (p 6∈ pInfo.keySet)
ensures: [(|ττ | = 1 = |ττ.p.addNurse|)
∧(ττ [0].arg = this)
∧(ττ [0].pInfoO = #pInfo⊕ (p,null))
∧(pInfo = ττ [0].pInfoI)]

public void ignore(Patient p){
pInfo.remove(p); p.removeNurse(this); }
requires: (p ∈ pInfo.keySet)
ensures: [(pInfo = #pInfo	 p)
∧(|ττ | = 1 = |ττ.p.removeNurse|)
∧(ττ [0].arg = this)]

public void update(Patient p){
int t = p.tempInfo();

pInfo.put(p,new Integer(t)); }
requires: (p ∈ pInfo.keySet)
ensures: [(pInfo = #pInfo⊕ (p,p.temp))
∧(|ττ | = 1 = |ττ.p.tempInfo|)]

public string pStatus(Patient p) {
int t = ((Integer)pInfo.get(p)).intValue();

if (t<105) { return(”good”); }
else { return(”bad”); } }
requires: (p ∈ pInfo.keySet)
preserves: pInfo

ensures: [(ττ = 〈〉)
∧((pInfo[p] < 105)⇒ (result = ”good”))
∧((pInfo[p] ≥ 105)⇒ (result = ”bad”))]

Fig. 10. Nurse Class

Let us next consider theNurse class shown in
Fig. 10. Information about thepatients being watched
by a givennurse is stored inpInfo, aHashMap indexed
by thePatient objects. The constructor initializespInfo

to the empty hash map,(Φm), and does not invoke any
methods during its execution. Thewatch(p) method is
used to add aPatient object,p, to the set ofpatients
being watched by anurse, providedp is not already be-
ing watched8. watch(p) addsp with an empty asso-
ciated value topInfo, and then invokesp.addNurse().

8keySet() is a method provided by theHashMap collection of
Javathat returns the set of “keys” currently in the hash map. We use

addNurse(), as specified in Fig. 8, will in turn invoke
update() on theNurse object, passing the newPatient

object being watched as an argument.update(), as we
will discuss shortly, will refresh the current information
about thepatient stored inpInfo. Theensures clause
for watch() first states that theaddNurse() method
will be called with the appropriate argument. It next
states that the value ofpInfo at the point of the call to
addNurse() will be the same as its value at the start
of the watch() method, except for the addition ofp to
pInfo.keySet. (pInfoO denotes theoutgoingvalue of
pInfo.) Finally, it states that the post-conditional value
of pInfo will be the same as its value whenaddNurse()

returns. (pInfoI denotes theincomingvalue ofpInfo.)
We use the notation “⊕” in the ensures clause to de-
note the addition of the specified pair to the hash map.

The ignore(p) method is used to removep from
the set ofpatients being watched by a givennurse.
The method removesp from pInfo, and invokesre-

moveNurse() on p, passing thenurse in question as
the argument. These properties are expressed in the
ensures clause. The “	” notation denotes removal of
the element that hasp as the key from the hash map.

There is an important question that must be consid-
ered here. According to the specification of thePa-

tient class,p.addNurse() requires, as part of its pre-
condition, that thenurse being added not already be in
p. nurses. How can we be sure, at the point of the call
to p.addNurse(this) from within Nurse.watch(), that
this condition is satisfied? There is a similar question
concerning the call top.removeNurse() from within
ignore(p) since this call requires that thenurse be-
ing removed be contained inp. nurses. In general, in
systems that consist of objects that hold references to
other objects which are notencapsulated, a suitable in-
variant is required that expresses thereference relations
among the objects that can be used to show that such re-
quirements are met. We will refer to this invariant as a
reference-relation-invariant (RRI). TheRRI for our sys-
tem is:

[(p ∈ n.pInfo.keySet⇔ n ∈ p. nurses) ∧
(p ∈ d.pInfo.keySet⇔ (d = p. doc))] (RRI)

where p, n, d denote aPatient, Nurse, and Doc-

tor object, respectively. Establishing this invariant for-
mally requires system-wide reasoning. Since our inter-
est is in reasoning about design patterns, rather than
general aliasing issues, we present an informal argu-
ment to justify its validity. Note first that the in-
variant is satisfied trivially at the point of object cre-
ation. Next, note thatPatient. nurses is modified
only by the addNurse() and removeNurse() meth-
ods of Patient, and Patient. doc is modified only

keySet (without “()”) in assertions to refer to this set.

17

by assignDoctor() anddeassignDoctor(). The for-
mer methods are invoked only by thewatch() and
ignore() methods of theNurse class, and the lat-
ter are only invoked by thewatch() and ignore()

methods of theDoctor class9. Thus, given the pre-
conditions of thewatch() and ignore() methods, and
the actions performed by these methods (as expressed
in their post-conditions), we can see that the pre-
conditions of theaddNurse()/assignDoctor() andre-

moveNurse()/deassignDoctor() methods will be met
when those methods are invoked. Given the actions per-
formed by these various methods, the invariant will be
satisfied when control leaves these methods.

Next consider theupdate() method of theNurse

class. This method usesPatient.tempInfo() to ob-
tain the temperature of thepatient object passed as ar-
gument, and uses this value to refresh the information
stored inpInfo about thepatient. Note that we use the
“⊕” notation in theensures clause to indicate that the
patient information stored inpInfo will be replacedby
the new information.

The final method,pStatus(p), returns the “status” of
p as being “good” or “bad”, depending on whether the
temperature recorded forp in pInfo is less than 105. We
should stress that even if this method returns “good”,
we cannot be sure that thecurrent temperature ofp is,
in fact, less than 105. All we can be sure of, based on the
specifications given in theNurse class, is that the tem-
perature recorded forp within pInfo matches the tem-
perature ofp at the pointupdate() was last called with
p passed as argument. But since the state ofp might
have changed since that point, the information stored
within pInfo about the patient might be stale. That this
is not the case, that the information stored withinpInfo

is indeed current, depends on the system being built ac-
cording to theObserver pattern. Showing this fact is
the goal of the reasoning process that we present in the
next subsection. Following that reasoning, we will be
able to conclude that if thepStatus(p) method returns
the result “good”, then the value oftemp in the cur-
rentstate of thepatient p must in fact be less than 105.
More abstractly, we will be able to conclude, following
the reasoning in the next subsection, that the information
stored within eachnurse object about the state of each
patient object that it is watching isconsistentwith the
current state of thepatient.

The Doctor class shown in Fig. 11 is defined anal-
ogously to theNurse class. The only difference is that
instances ofDoctor record information returned by the

9A natural question to ask at this point is, how do we know that
these methods are only invoked from the specified locations? This is
one of the key points that would have to be established during system-
wide reasoning.

public class Doctor {
private HashMap pInfo; /* info about patients */
public Doctor() {

/* initialize pInfo to new empty map */}
requires: true
ensures: [(pInfo = Φm) ∧ (ττ = 〈〉)]

public void watch(Patient p){
pInfo.put(p, null); p.assignDoctor(this); }
requires: (p 6∈ pInfo.keySet)
ensures: [(|ττ | = 1 = |ττ.p.assignDoctor|)
∧(ττ [0].arg = this)
∧(ττ [0].pInfoO = #pInfo⊕ (p,null))
∧(pInfo = ττ [0].pInfoI)]

public void ignore(Patient p){
pInfo.remove(p); p.deassignDoctor(this); }
requires: (p ∈ pInfo.keySet)
ensures: [(pInfo = #pInfo	 p)
∧(|ττ | = 1 = |ττ.p.deassignDoctor|)
∧(ττ [0].arg = this)]

public void update(Patient p){
int t = p.heartRateInfo();

pInfo.put(p, new Integer(t));
requires: (p ∈ pInfo.keySet)
ensures: [(pInfo = #pInfo⊕ (p,p.hrtRt))
∧(|ττ | = 1 = |ττ.p.heartRateInfo|)]

public string pStatus(Patient p) {
int t = ((Integer) pInfo.get(p)).intValue();

if (t>0) { return(”good”); }
else { return(”bad”); } }
requires: (p ∈ pInfo.keySet)
preserves: pInfo

ensures: [(ττ = 〈〉)
∧((pInfo[p] > 0)⇒ (result = ”good”))
∧((pInfo[p] ≤ 0)⇒ (result = ”bad”))]

Fig. 11. Doctor Class

Patient.heartRateInfo() method rather than by the
Patient.tempInfo() method. As in the case ofnurse

objects, we cannot be sure that a givendoctor object
has the correctheart rateinformation about each of the
patient objects that it is currently watching. That con-
clusion can be arrived at only after we perform the rea-
soning process described in the next subsection to show
that the requirements of theObserver pattern are met.

3.3 Reasoning About Patterns in SimSickCity

In reasoning about the patterns used in a system, our
first task is to specify the subcontracts corresponding to
the pattern specializations. Next, given the mappings
specified in the subcontracts, we must check that all of
the requirements specified in the pattern contracts are

18

satisfied. Finally, we can appeal to the invariants pro-
vided in the pattern contracts, as specialized by the cor-
responding subcontracts, to arrive at conclusions about
the system’s behavior.

The subcontract for thePND specialization (for “Pa-
tient, Nurse, Doctor”) appears in Figs. 12 and 13. First

specialization PND : Observer subcontract {
rolemap Patient as Subject {

lead relation: (lead = this)
state: observers = {

Set obss = new HashSet(nurses);

if (doc != null) { obss.add(doc); }
return (obss); }

methods:
Attach(Observer x) :

(Nurse?(x):addNurse(x) ||
Doctor?(x):assignDoctor(x))

Detach(Observer x) :
(Nurse?(x):removeNurse(x) ||
Doctor?(x):deassignDoctor(){x= doc})

Notify() : notify() }

Fig. 12. Subcontract for PND (part 1)

we have the role map corresponding to theSubject role,
which is played by thePatient class. Thelead relation
clause states that an instance of thePatient class plays
the lead role in any instance ofPND. Thestate com-
ponent specifies that theobservers field of the Sub-

ject role is played by a combination ofnurses and
doc. The state map tells us that the set ofobservers of

anyPatient object is the set ofNurse objects currently
watching it, plus theDoctor object, if any, assigned to
it.

Next, we have the method maps. Since, as specified
in the rest of the subcontract, bothNurse andDoctor

play theObserver role, and the argument toAttach()

is anObserver, we have to specify two mappings for
this method. The first states thatAttach() with anurse

as argument is mapped toaddNurse() with the same
argument. The second mapping states that if the argu-
ment toAttach() is adoctor, the method is mapped to
assignDoctor() with the same argument. Note that in
both cases, there are no further argument maps to spec-
ify. Detach() is similar except in the case that the argu-
ment is adoctor. In that case, the method is mapped to
deassignDoctor() (which has no arguments) with the
argument toDetach() being, as specified in the argu-
ment map, the same as thedoctor object referenced by
doc. TheNotify() method of theSubject role maps

to the method of the same name inPatient.
The role map forNurse as anObserver appears in

Fig. 13. Thelead relation states that given a particular

rolemap Nurse as Observer {
lead relation: (lead ∈ pInfo.keySet)
state: subject = { lead
methods:

Update(): update(lead) }
rolemap Doctor as Observer {

/* identical to that forNurse asObserver */ }
auxiliary concepts:

Modified(Patient p1, Patient p2) {
return ((p1.temp != p2.temp) ||

(p1.hrtRate != p2.hrtRate)); }
Consistent(Patient p1, Nurse n1) {

int n1temp =

((Integer) n1.pInfo.get(lead)).intValue();
return (p1.temp = = n1temp); }

Consistent(Patient p1, Doctor d1) {
int d1hrtRate =

((Integer) d1.pInfo.get(lead)).intValue();
return (p1.hrtRate = = d1hrtRate); } }

Fig. 13. Subcontract for PND (part 2)

pattern instance, thepatient playing the lead role in that
instance will be in the set of keys defined withinpInfo.
The state map is required to specify a mapping for the
subject field of theObserver role (Fig. 7). When a

nurse object is viewed as anobserver in the context
of a particular pattern instance, itssubject field will
reference the object playing the lead role for that in-
stance (i.e., theobserver’s subject). Hence, this field
is mapped to thelead object for the pattern instance
under consideration.Nurse.update() maps directly
to the Update() method of theObserver role. The
argument toNurse.update() is identified as the lead
object — the object used to determine the pattern in-
stance under consideration when reasoning about a call
to Nurse.update(). The role map forDoctor as an
Observer is identical.

The last part of the subcontract specifies definitions
for the auxiliary concepts declared in theObserver

pattern contract (Fig. 5). As specified in the contract,
Modified() takes twosubject states as argument. In
the PND specialization, onlyPatient plays theSub-

ject role. Therefore, we need only one definition for
this concept. The definition specifies that the statep2

is modifiedfrom p1, and henceModified() should return
true, if either thetemp values in the two states or the
hrtRate values in the two states are different from each
other.

Two definitions are required for theConsistent() con-
cept since one of the arguments to this concept is anob-

server, which can be either anurse or a doctor ob-

19

ject. In both cases the definitions are straightforward. In
the first case, we define apatient statep1 to be con-
sistent with anurse staten1 if the value ofp1.temp

agrees with the value recorded inn1.pInfo for the pa-

tient playing the lead role in the pattern instance. The
definition of Consistent() when the argument is adoc-

tor, is similar.

The next step in our reasoning process is to check,
given thePND subcontract and the specifications of
the Patient, Nurse and Doctor classes, that the re-
quirements specified in theObserver pattern contract
are satisfied. We will consider the requirements in
the order that they are specified in the pattern contract
(Figs. 5, 6, 7). First, recall the constraint that definitions
of Modified() and Consistent() are required to satisfy:
∀s1, s2, o1 :

[[¬Modified(s1, s2) ∧ Consistent(s1, o1)]⇒
Consistent(s2, o1)]

Since we are considering instances of thePND special-
ization, s1 and s2 must be states of apatient object.
Hence, from the definition ofModified(), it follows that
for the antecedent to betrue, s1.temp ands1.hrtRate

must be equal to the corresponding fields ins2. Fur-
ther, we know thato1 must be either the state of anurse

object or the state of adoctor object. Supposeo1 is
a nurse. From the first definition ofConsistent() in
Fig. 13, we can conclude that for the antecedent to be
true, the temp value recorded for thispatient in o1

must be equal tos1.temp; hence it must also be equal to
s2.temp. We can therefore conclude thatConsistent(s2,
o1) must also be satisfied. The case wheno1 is adoc-

tor object is similar.

Next consider the pattern instantiation condition
specified in Fig. 5. From theensures clause of thePa-

tient constructor in Fig. 8, and the role map specified
in Fig. 12, we can see that the value ofobservers will
be empty when apatient is created, as required by the
instantiation condition.

Next consider the conditions that must be satisfied by
the namedmethods ofSubject, as specified in Fig. 6.
According to thePND subcontract shown in Fig. 12,
there are two methods that map toSubject.Attach():
Patient.addNurse() and Patient.assignDoctor().
Given the definition ofModified() and the mapping of
observers, it is easy to check that these methods satisfy

the conditions imposed onAttach() by the pattern con-
tract. In particular, note that the call sequence require-
ment that requires theUpdate() method to be invoked
on the attachingobserver is satisfied.removeNurse()

anddeassignDoctor() can similarly be seen to satisfy
the requirements imposed onDetach() by the pattern
contract.

The remaining named method ofSubject is No-

tify(). Given the field mapping defined in Fig. 12
that maps the set ofnurse objects inPatient. nurses,
plus the doctor object, if any, referenced byPa-

tient. doc, to Subject. observers, we can see that
Patient.Notify() makes the calls required of it by the
Subject role contract in Fig. 6.

Next consider theother methods: tempInfo(),
heartRateInfo(), pname(), and changeCondi-

tion(). These methods are required to satisfy the
others specification shown in Fig. 6. For the first three
methods, this is immediate since they do not change
the state of thePatient, and do not call any named
methods. Patient.changeCondition(), however,
causes changes in the state of the system. According
to its specification in Fig. 9, it invokesNotify() on the
patient in question, and hence also satisfies theothers
specification.

Before turning to the classes playing theObserver

role, let us consider a possible change in thePatient

class. Suppose we wished to keep track of the num-
ber ofnurses assigned to watch eachpatient. For this,
we could introduce a suitable field in thePatient class,
call it noOfNurses, initialize it to 0 in the construc-
tor, and increment and decrement it by 1 inaddNurse()

and removeNurse(), respectively. We could also add
a get method that returns the number ofnurses cur-
rently watching thepatient. With these changes, we
could consider revising the definition ofModified() in
Fig. 6 to say thatp1 is different fromp2 if the value of
noOfNurses in p1 is different from the corresponding

value inp2 — even if the values oftemp andhrtRate

in the two states are the same. We could similarly revise
the definition ofConsistent() to say thatp1 is consistent
with o1 if and only if the values ofp1. noOfNurses,
p1.temp, andp1.hrtRate are equal to the correspond-
ing values stored ino1 aboutp1. This might reflect
the fact that the hospital system considers the number of
nurses assigned to eachpatient as a critical part of the
patient’s state. Eachnurse might, for example, need
to cross-checkpatient medications with those adminis-
tered by othernurses. But if we did this, it would vio-
late the intent of the pattern! TheaddNurse() method,
for example, would not satisfy the conditions imposed
on Attach(); when the method finishes, the state of the
subject will be modifiedaccording to the new concept
definition. Further, since the original implementation of
addNurse() does not invokeNotify(), previously at-
tachednurse objects will be left in states that areincon-
sistentwith thepatient. These are the kinds of changes
that might be made during system evolution. In making
such changes, the system designers/maintainers need to
ensure that the system continues to befaithful to the pat-
terns used in its design. Our formalism, by pinpointing

20

such problems, can be of considerable help in doing so.
We will return to this point in the final section.

Let us now consider theNurse class to see if it meets
the requirements of theObserver role. TheUpdate()

method of the role is mapped, according to theNurse

role map specified in Fig. 13, toNurse.update().
From the specification ofNurse.update() in Fig. 10,
we can conclude that this method will update the
temp value in Nurse.pInfo associated with thepa-

tient passed as argument to reflect thepatient’s current
temp value. The specification also states that the only
call made during the execution ofNurse.update() is
to Patient.tempInfo(). As discussed previously, this
method does notmodifythepatient’s state. Thus, given
the definition ofConsistent() specified in Fig. 13, for the
case of theobserver being anurse, we can conclude
that Nurse.update() meets the requirements specified
in Fig. 7 for theUpdate() method of theObserver role.

The watch(p) method ofNurse poses an interest-
ing problem. According to the pre-condition and the
reference-relation-invariant(RRI), when the method be-
gins executing, thenurse in question is not observing
p. Hence, thenurse is not enrolled in the instance of
PND for which p is the lead object. But by the time
watch() terminates, thenurse will be enrolled accord-
ing to the post-condition of the method and theOb-

server enrollment clause specified in Fig. 7. Therefore,
we must require the portion ofwatch() following the
completion of the enrollment action to satisfy the con-
dition imposed by theObserver role contract onother
methods. This requirement is satisfied since according
to the post-condition ofwatch(), the post-conditional
value of pInfo will be the same as its value when the
call to addNurse() — which is the enrollment action
— finishes and returns towatch(). Hence, the final
state of thenurse will be consistent with anypatient

state with which thenurse state was consistent immedi-
ately following the enrollment action. Note that this is
an important requirement since in its absence, we could
arbitrarily change the value recorded inpInfo for the
temperature ofp following the return from the call to
addNurse(). This would obviously violate the intent of
the pattern in the same manner as if we were to intro-
duce such a change inpStatus(). The reasoning steps
required to check that theDoctor class meets the con-
ditions specified in theObserver role contract are anal-
ogous; we omit the details.

The final step in our reasoning process is to appeal
to the pattern invariant in Fig. 5, making the appropri-
ate substitutions based on the mappings specified in the
PND subcontract. The most interesting part of the pat-
tern invariant is its fifth clause:

(∀ob : (ob ∈ players[1:].objs)) ::

Consistent(players.objv[0],ob)) (PI)
The remaining clauses in the invariant specify addi-
tional properties. First, the invariant specifies that the
first object to enroll,players[0], plays the roll ofSub-

ject. Hence, given thePND subcontract,players[0]
is the patient object playing the lead role. Second,
the invariant specifies that all additional enrolled ob-
jects, players[1:], are enrolled asobservers. Again,
given thePND subcontract, these objects are thenurse

objects and/ordoctor object assigned to thepatient.
The invariant also specifies that theobservers field of
the subject contains the set of objects enrolled asob-

servers, and that thesubject field of eachobserver is
a reference to thesubject. This information, given the
mappings of these fields in thePND subcontract, and
the lead relations in the subcontract, can be combined
with (PI) to derive the following (n being of typeNurse,
p being of typePatient andd being of typeDoctor):

[(n ∈ p. nurses)⇒
((p ∈ n.pInfo.keySet) ∧ Consistent(p,n))

∧ (d = p. doc)⇒
((p ∈ d.pInfo.keySet) ∧ Consistent(p,d))]

Finally, substituting the definitions ofConsistent() pro-
vided in thePND subcontract, this simplifies to:

[(n ∈ p. nurses)⇒
((p ∈ n.pInfo.keySet) ∧ (n.info[p] = p.temp))

∧ (d = p. doc)⇒
((p ∈ d.pInfo.keySet)) ∧ (n.info[p] = p.hrtRt)]

The first implication states that ifn is anurse object ob-
servingp, thenn will contain information aboutp, and
the information will reflect the actual current state ofp.
The second implication gives us a similar assurance if
d is a doctor object assigned to watchp. These two
implications capture the essentialpattern-centricbehav-
ior of theSimSickCity system. Their validity depends
on the various classes correctly playing the roles of the
Observer pattern. Correspondingly, in our reasoning,
we could not establish these results based solely on the
specifications of the individual classes. Instead, we had
to first establish that the requirements expressed in the
pattern contract were met based on the mappings speci-
fied in the subcontract, and then appeal to the invariant
guaranteed by the pattern contract to arrive at the ex-
pected results.

Before concluding this section, it is worth men-
tioning that the standard informal description of the
Observer pattern [9] includes aSubject.getState()

method. Classes playing theObserver role invoke this
method from withinObserver.Update() to access the
information necessary to update their state. While this
is one way to achieve the desired behavior, it is not re-

21

quired to satisfy the pattern’s intent. In general, the por-
tions of thesubject state that are relevant to a particular
observer will vary on a perobserver basis. Requir-
ing eachobserver to get the entire state of thesubject

is unnecessary. In our case study, for example, anurse

observer is only interested in the temperature of thepa-

tient subject, while a doctor observer is interested
only in the heart rate of thepatient. Our pattern con-
tract makes it clear thatObserver.Update() is respon-
sible for bringing theobserver into a state that is con-
sistent with thesubject. How this is done, in particular
what information about thesubject’s state is needed to
do this, is entirely up to the application. Indeed, this may
vary from oneobserver to another — as in our case
study. The relevant details are captured in the subcon-
tract corresponding to the particular specialization. This
again illustrates how the process of developing pattern
contracts enables us to identify dimensions of flexibility
that may be missing in informal descriptions.

3.4 An Extended System

Consider again theNurse class. Suppose that in
some part of theSimSickCity system it is necessary to
find the status of a particularpatient object p. If we
knew that a particularnurse objectn was watchingp,
we could get this information by callingn.pStatus(p).
Suppose, however, that we do not have information
about whichnurse objects are assigned to whichpa-

tient objects. In that case, one approach would be to
arrange thenurse objects in achain, and to apply the
Chain of Responsibility(CoR) pattern [9]10.

The main behavioral requirement of the CoR speci-
fies that when an object in the chain receives arequest,
it handlesthe request if it is able to do so, or if it is not,
passes it on to itssuccessorin the chain. The last ob-
ject in the chain, if it is not able to properly handle the
request, performs some default action since it does not
have a successor to pass the request to.

The class in Fig. 14 is a simple variation on the orig-
inal Nurse class that chainsnurse objects together dur-
ing construction. Thenext field is used to maintain a
reference to the nextnurse object in the chain. If there
is no successor,next will be set tonull. The main be-
havioral modification is in thepStatus() method. This
method returns the same information aboutp as it did
previously, provided thepatient is being watched by
thenurse. If not, the method forwards the status request
to thenurse’s successor, assuming such an object exists.
If there is no successor, a problem in the chain will be
detected, and a suitable message will be returned. The

10There are of course other alternatives. Since, however, our interest
is in using patterns, we focus on this approach exclusively.

public class Nurse {
private HashMap pInfo; /* info about patients */
private Nurse next; /* successor in CoR */
public Nurse() {

next = null;
/* initialize pInfo to new empty map */}
requires: true
ensures:

[(pInfo = Φm) ∧ (ττ = 〈〉) ∧ (next = null)]
public Nurse(Nurse n) {

next = n;
/* initialize pInfo to new empty map */}
requires: (n 6= null)
ensures:

[(pInfo = Φm) ∧ (ττ = 〈〉) ∧ (next = n)]
/* . . . other methods as before. . . */
public String pStatus(Patient p) {

if (pInfo.keySet().contains(p)) {
int t = ((Integer) pInfo.get(p)).intValue();

if (t<105){ return(”good”); }
else { return(”bad”); } }

if (next! =null) { return(next.pStatus(p)); }
else { return(”Problem in chain!”); } }
requires: true
preserves: pInfo, next

ensures:
[(p ∈ pInfo.keySet)⇒ (original ensures)]
∧ [((p 6∈ pInfo.keySet) ∧ (next = null))⇒

((ττ=〈〉)∧(result=”Problem in chain!”))]
∧ [((p 6∈ pInfo.keySet) ∧ (next 6= null))⇒

((|ττ | = 1) ∧ (|ττ. next.pStatus| = 1)
∧(ττ [0].args = p)
∧(result = ττ [0].result))]

Fig. 14. Nurse Class (extended)

revised specification ofpStatus() captures this behav-
ior. In particular, note that the third implication of the
ensures clause states that if the request is forwarded to
the successor, the result returned by the original call will
be equal to the result returned by the forwarded call.

Note thatcyclesare not possible in the chain ofnurse

objects since thenext link of eachnurse is set when
the objects are constructed. It is, however, possible to
have multiplenurse objects share a successor. Thus, the
structure could be atree, rather than a chain. For conve-
nience, we assume that such structures are disallowed,
and that all of thenurse objects are arranged in a linear
chain. We further assume that themain() method de-
fines a variablehn (for ‘head nurse’) that references the
first object in the chain. AllpStatus() requests are sent
to hn.

22

The key behavioral property exhibited by this sys-
tem is that ifp is apatient object andp. nurses is not
empty, then the callhn.pStatus(p) will return the cur-
rent status ofp. It is worth stressing that the validity
of this property depends on both patterns being applied
correctly. The CoR pattern, in conjunction with the as-
sumption that allnurse objects in the system are in the
chain, starting with the one referenced byhn11, and the
assumption thatp. nurses is not empty, allows us to
conclude that a legal patient status will be returned by
the headnurse object. TheObserverpattern, as we saw
in Section 3.3, ensures that if anurse object returns the
result”good” or ”bad”, the result must indeed reflect
the actualcurrentstatus of thepatient in question. To-
gether, these two results establish the behavioral prop-
erty of interest. To complete the reasoning process, we
must show that the CoR pattern has been implemented
correctly. To do this, we must consider the pattern con-
tract, and the subcontract corresponding to this particu-
lar application. In the rest of this section, we sketch the
broad outline of this reasoning task.

pattern Chain of Responsibility contract {
auxiliary concepts:

CanHandle(Handler, Request);
role Request contract { }
role Response contract { }
lead role Handler contract {

Handler succ;
Response handle(Request r):

requires:
¬CanHandle(this, r)⇒ (succ 6= null)

preserves: succ, r

ensures:
[CanHandle(this, r)⇒ (τ = 〈〉)]∧
[¬CanHandle(this, r)⇒

((|τ | = 1) ∧ (|τ [0]. succ.handle| = 1)∧
(τ [0].args = r) ∧ (result = τ [0].result))]

}
invariant result:
∀h, r, re :
[(re = h.handle(r))⇒
∃h1, . . . , hn : [(h = h1)∧
∀i < n : [(hi. succ = hi+1)
∧¬CanHandle(hi, r) ∧ CanHandle(hn, r)
∧ (re = hn.handle(r))]]]

}

Fig. 15. Chain of Responsibility Contract

11Note that this is essentially a set ofreference relationsabout the
nurse objects in the system. Thus, in a more complete presenta-
tion, we would express this by adding appropriate clauses toRRI, our
reference-relation-invariant.

Key portions of the pattern contract for theCoRpat-
tern are shown in Fig. 15. TheHandler role is the pri-
mary role in the pattern; each object in the handling
chain plays this role. The other two roles,Request and
Response, as their names suggest, represent arequest
to ahandler and theresponsethat thehandler returns.
These roles have no named methods or state compo-
nents, and serve only to identify the type of argument
passed to the handler method and the corresponding re-
turn type. There is one auxiliary concept,CanHandle(),
that captures the notion of whether a givenhandler can,
in its current state, handle a givenrequest.

The role contract forHandler identifies succ as the
only required role field. This field will store a reference
to the nexthandler in the chain, or will be set tonull

if no suchhandler exists. The only named method of
the role ishandle(), which receives arequest as argu-
ment and returns aresponse. The pre-condition of this
method requires that if the currenthandler is not able to
handle the request, as determined by theCanHandle()
concept, there must be a successor to which the request
can be forwarded. Interestingly, the standard informal
description of the pattern doesnot impose such a con-
dition. Instead, “the request can fall off the end of the
chain without ever being handled” [9]. We feel that most
designers will not want such behavior, and have hence
included the requirement of a non-null successor if a
request cannot be handled12. The ensures clause of
handle() asserts that if therequest r can be handled
by the currenthandler, the trace of the method will be
empty. Otherwise, there will be one call to thehandle()

method of the object referenced by thesucc field, with
the samerequest supplied as argument. The result re-
turned by that call will be returned as the result of the
original.

Let us now turn to the the behavior that the use of the
CoRpattern ensures. Unlike the Observer pattern, the
intent of theCoRpattern isn’t to ensure that a particular
state assertion is satisfied. Instead, the pattern guaran-
tees that when ahandle() request is received byh, one
of the enrolled objects,h will handle the request if it
is capable of doing so. Otherwise, the request will be
forwarded tohn, another object that is capable of han-
dling the request, and is reachable fromh in the chain.
Further, the value returned byhn will be returned byh
as the result of the original call toh.handle(). This is
captured by theinvariant resultspecified in our contract.
Note that this assertion also specifies that none of the in-
termediate objects in the chain (betweenh andhn) are

12Note that our contract does not guarantee that the request will ul-
timately be handled since it is possible for thehandler chain to have
cycles. This again could be addressed by adding appropriate clauses
to RRI.

23

capable of handling the request. Indeed, this is the rea-
son the request was ultimately forwarded tohn.

Let us now briefly consider the subcontract corre-
sponding to theCoR specialization applied in the ex-
tendedSimSickCity system. TheNurse class plays
the Handler role, with handle() being mapped to the
pStatus() method. Patient plays theRequest role,
andString plays theResponse role. TheCanHandle()
concept is defined as follows13:

CanHandle(Nurse n, Patient p)
{ return(n.pInfo.keySet().contains(p)); }

This definition simply states that anurse n can handle
a request for status information about apatient p pro-
vided n is currently watchingp. Given this definition,
it is straightforward to see that thepStatus() method
meets the requirements specified in Fig. 15 forHan-

dler.handle(). Therefore, by appealing to the invariant
result that the use of the pattern ensures, we can con-
clude that our system exhibits the result we previously
claimed, thereby completing our reasoning task.

There is one final point concerning ourCoRcontract
that is worth mentioning. Standard informal descrip-
tions of the pattern suggest that requests may be orga-
nized in an inheritance hierarchy, with different han-
dlers in the chain responsible for handling requests of
each type. Our approach handles such cases by al-
lowing designers to provide suitable definitions for the
CanHandle() concept. In such cases, the definition of
the concept will be based on the particular class that the
given request is an instance of, and whether the par-
ticular handler is the one corresponding to that class.
But, as in the case of the extendedSimSickCity sys-
tem, CanHandle() may also depend on more detailed
(and dynamic) information concerning therequest and
the handler. Thus, as in the case of theObserverpat-
tern, the process of formalizingCoRin our approach en-
abled us to identify dimensions of flexibility that were
not evident in the informal description of the pattern.

4 Experiences with Other Patterns

We have applied our specification and reasoning ap-
proach to a number of other common patterns, and have
made the resulting pattern contracts available for down-
load from our web site [33]. In this section, we briefly
summarize our experiences specifying three of these
patterns:Iterator, Memento, andComposite[9].

13Since all thenurse objects are arranged in a single chain, there
is only one instance of the pattern in this scenario. Hence, concerns
regarding the lead object of the pattern instance are not as important
as in section 3.3. If, however, thenurse objects were arranged in
multiple chains, these concerns would again become important.

Iterator : The intent of the Iterator pattern is to allow
a client object to iterate through the elements contained
within an aggregate object without exposing theag-

gregate’s storage representation. This is achieved by
delegating the element traversal strategy to aniterator

object created by one of theaggregate’s methods. The
iterator encapsulates references into theaggregate,
and provides an interface for traversing the elements one
at a time. It is possible for each type ofiterator to sup-
port a different traversal strategy14.

Our Iterator contract is based, in part, on the com-
ponent specifications presented in [37]. The pattern con-
tract includes three role contracts:Aggregate, Itera-

tor, andData. The first two roles correspond to pattern
participants. The third role serves as atype parameter
used to capture the types of objects stored within the
aggregate. The Aggregate role contract defines the
state componentelements, corresponding to theMul-

tiset of objects stored by theaggregate15. The Itera-

tor role contract definesremaining and traversed,
corresponding to theMultiset of objects remaining
in the traversal and those that have already been tra-
versed, respectively. The role contract additionally de-
fines current, corresponding to the current object in
the traversal represented by theiterator.

One important aspect of theIterator pattern is that
an iterator need not traverse every element within
the aggregate; instead, only those items in theag-

gregate that pass a specifiedtest are included. To
allow for this, our pattern contract defines the aux-
iliary concept IncludeInTraversal(i, d), used to fil-
ter the elements included in a traversal. The rela-
tion is defined on aniterator object and adata ob-
ject, and evaluates totrue if and only if d should be
included in the traversal represented byi. The en-
sures clause ofAggregate.createIterator() requires
(i) that a newiterator be returned, (ii) that the ob-
ject’s remaining field contain the elements selected
for traversal from the aggregate’selement field (as
filtered by IncludeInTraversal()), (iii) that the object’s
current field be equal tonull, and (iv) that the object’s
traversed field be empty. TheIterator role contract

specifies methods for controlling the behavior of theit-

erator, and for accessing thecurrent field. The most

14The original pattern description identifies two types ofiterators:
externalandinternal. An externaliterator exposes an iteration inter-
face used to traverse the elements contained within anaggregate. An
internal iterator does not expose an iteration interface, and provides a
single method for applying a particular function, passed as argument,
to the elements contained within anaggregate. In our discussion here,
we focus only onexternaliterators, which, based on iterators that ap-
pear in various commercial class libraries, is, by far, the more com-
monly used kind of iterator.

15We useMultiset in the pattern contract, rather thanSet, since
aggregate objects may contain duplicate values.

24

interesting method isIterator.next(), which removes
thenextelement from remaining, adds the element to
traversed, and sets thecurrent field equal to the el-

ement. But how does the method determine thenextel-
ement? This information is captured by the auxiliary
conceptCanAppearBefore(i, d1, d2), a relation defined
on aniterator object and twodata objects. The rela-
tion evaluates totrue if and only if d1 can appearbefore
d2 in the traversal represented byi. When applied to the
elements in remaining, the resulting ordering makes it
possible to specify theMultiset of objects suitable to
serve as thenextelement in the traversal.

The pattern invariant for theIterator contract is in-
cluded below, and is worth considering briefly.

Aggregate(players[0])∧
Iterator(players[1 :])∧
(∀i : (i ∈ players[1:].objs)) ::

(players.objv[0]. elements⊗IIT =
(i. traversed∪ {i. current} ∪ i. remaining))∧

(∀d1, d2 : (d1 ∈ (i. traversed ∪ {i. current})∧
(d2 ∈ i. remaining))) ::

CanAppearBefore(i,d1,d2)
The first clause of the invariant states that the first ob-
ject to enroll in an instance of the pattern, and there-
fore the lead object for that instance, will be anag-

gregate object. The second clause states that all other
enrolled objects will play the role ofIterator. The
next clause relates the states of theiterator objects and
the state of theaggregate. This clause specifies that
the elements traversed by theiterator, combined with
the current element in the traversal, and those that are
yet to be traversed, are the same elements contained
within the aggregate, less those filtered out by the
IncludeInTraversal() concept. (We use the superscripted
⊗IIT notation to denote the multiset obtained by project-
ing out thedata objects for whichIncludeInTraversal(i,
d) evaluates totrue.) The final clause of the invariant
relates the elements in the traversal represented by each
iterator i. This clause specifies that each of the ele-
ments that have already been traversed, plus the current
element in the traversal, will be allowed, according to
the definition ofCanAppearBefore(), to appearbefore
the elements that are yet to be traversed. Stated another
way, this clause specifies that eachiterator object will
traverse theaggregate elements in the desired order.

An interesting issue that we encountered while de-
veloping this contract is that certain applications of the
pattern require that theaggregate remain unchanged
while its iterators are in use. Hence, whenever an
aggregate object is altered, this variation of the pat-
tern requires that the correspondingiterators created
before that point be marked asdefunct. Defunct iter-

ators may not be used again. To accommodate this

possibility, we introduce a simple auxiliary concept,
AllowAggregateModifications(), that allows subcontract
designers to specify whether modifications to theaggre-

gate are allowed. We then impose suitable conditions
on theglobalcall sequence, which, ifaggregate modi-
fications arenotallowed, prevent accessing the methods
of defunctiterator objects.

Memento: The intent of the Memento pattern is to
allow an object to take asnapshotof anoriginator ob-
ject’s state without violating encapsulation, so that the
snapshot can, if necessary, be used to restore the state of
theoriginator at some later point. Thesnapshotcreated
by theoriginator is amemento object. This pattern is
often used when implementingundooperations, such as
those found in common graph editors.

The Memento pattern contract consists of two role
contracts: Memento and Originator16. The Origi-

nator role contract specifies the methodscreateMe-

mento() andsetMemento(), for creating and apply-
ing memento objects, respectively. TheMemento role
contract does not specify any methods, since the pre-
cise manner in which thememento’s state is accessed
is not essential to the pattern, and will vary from appli-
cation to application. Perhaps more surprising is that
neither of these roles define any state components. In-
stead, the behaviors required of the named and unnamed
methods are expressed using auxiliary concepts. The
MemCopy(o, m) concept, for example, is a relation de-
fined over the state of anoriginator and the state of a
memento, and is used to capture whether the statem

represents avalid snapshotof the stateo. This con-
cept is used in the specification ofcreateMemento()

to require that the newly-createdmemento object con-
tain appropriate information about theoriginator. The
Restored(o1, o2) concept is a relation defined on two
originator states, and captures whethero2 is similar
enough too1 to be aproper restorationof o1. This con-
cept is used in the specification ofsetMemento(m) to
require that theoriginator be restored to a state that is
similar enoughto the state that it was in whenm was
created.

The final concept included in the pattern contract is
SameMem(m1, m2), a relation defined over twome-

mento states. This concept corresponds to the notion
of whether theoriginator information contained in the
statem1 is the same essentialoriginator information
contained in the statem2. This concept is used to
specify the behavior required of unnamedMemento

methods. In effect, unnamed methods are required to
leave thememento in a state that contains the same

16The original pattern description identifies theCaretaker role.
Since, however, there are no implementation responsibilities or behav-
ioral guarantees associated with this role, we omit it from our contract.

25

essential information about theoriginator as the state
it was in when the method was invoked. Note that if
SameMem(m1, m2) evaluates totrue, it doesn’t neces-
sarily mean thatm1 andm2 are identical. The definition
of SameMem() varies from one application to another.
In the design of agraph editor, for example, it might be
the case that the nodes and their connectivity are impor-
tant, but their positions are not. In this case, we would
provide a definition ofSameMem() that allows unnamed
Memento methods to affect the layout of the graph, but
not the nodes or their connectivity. This scenario again
illustrates the additional dimensions of flexibility iden-
tified in our pattern contracts. Whereas standard infor-
mal descriptions of the pattern suggest thatmemento

objects are immutable, our formalization allows modifi-
cations that do not compromise the intent of the pattern.

Composite: The Composite pattern is astructural
pattern, whose intent is to express a series of whole-part
relationships in a tree structure that allowscomposite

objects to be treated in the same manner asleaf objects.
Both types of objects,Composite and Leaf, share a
common interface inherited fromComponent. When
a method is invoked on acomposite object, the object
performs the appropriate actions, and then invokes the
same method on each of itschildren— thecomponent

objects it references.

The Composite pattern contract defines three role
contracts: Component, Leaf, and Composite. To
capture the inheritance relations required by the pat-
tern,Leaf andComposite are required to inherit from
Component. As a consequence, in a subcontract,
classes that map to eitherLeaf or Composite must
inherit from a class mapped toComponent. Some-
what surprisingly, there are no auxiliary concepts de-
fined, and only theComposite role contract defines
state. The children field maintains aSet of com-

ponent objects corresponding to thecomposite’s chil-
dren in the tree. TheComposite role contract specifies
methods for adding and removingcomponents from
children. Both Leaf and Composite defineOper-

ation(), a method inherited fromComponent, which
corresponds to the method that the client is interested in
performing on both kinds of objects. For aleaf object,
how this operation is performed will of course depend on
the particular type of primitive component it is. Hence,
the contract does not impose any conditions on the be-
haviors that must be exhibited by this method. The spec-
ification for theComposite role, however, requires that
the method invokeOperation() on each of thecom-

ponent objects in children, with the same argument
values passed to the original call. The specification does
not, however, impose any additional conditions on the
behavior of the operation. Given the structural nature of

this pattern, specifying such conditions would be overly-
restrictive.

It is worth mentioning that when the Composite pat-
tern is applied in practice, there may be several meth-
ods defined inComponent that should be implemented
by objects playing theLeaf andComposite roles. To
accommodate such scenarios without requiring one sub-
contract for eachComponent method, our contract al-
lows multiple methods to be mapped toOperation().
This presents a problem, however, since the specifica-
tion of Composite.Operation() requires the sameac-
tual method to be invoked on each of thecomposite’s
children — notany method mapped toOperation().
Hence, we introduce theplayerMethod notation, which
allows us to refer in a call sequence condition, to theac-
tual player method in question. This notation is some-
what analogous to the use of thethis and lead key-
words, and allows us to specify in the ensures clause of
Composite.Operation(), that implementations of the
method must invoke the correspondingactual method
on each of their children — notsomemethod mapped to
Operation().

5 Related Work

Much of the design patterns literature focuses on doc-
umenting patterns informally, typically in a style similar
to the one introduced by Gammaet al. [9]. Some au-
thors have also considered the question of how to in-
formally document the ways in which patterns are ap-
plied in particular systems. Vlissides [35], for example,
proposes extensions to the Unified Modelling Language
(UML) [28] based on Venn diagrams. His extensions
identify the patterns used in a system, the classes in-
volved in each of the pattern implementations, and the
roles associated with each class. Schauer and Keller [29]
describe a reverse engineering tool that generates similar
diagrams. Dong [5] proposes additional extensions that
describe how the methods and attributes of a class map
to the methods and attributes required to implement its
role behaviors. In contrast to these approaches, our goal
has been to develop a formalism in which patterns and
their applications can be specified and reasoned about
formally. Other authors have considered similar issues.
In this section, we consider the approaches that are most
directly relevant to our work.

Edenet al. [6, 7, 8] describe an approach in which
design patterns are represented as formulae within a
higher-order logic formalism. Each formula consists of
a declaration of the participating classes, methods, and
inheritance hierarchies, as well as a conjunctive state-
ment of the relations among them. The formalism en-
ables the specification of rich structural properties, but

26

provides only limited support for behavioral properties.
In the specification of theObserver pattern, for exam-
ple, there is no characterization of the precise conditions
under whichNotify() must be called, nor of the con-
ditions that must be satisfied by theUpdate() method.
By contrast, behavioral properties play a central role in
our work — but not at the cost of excluding structural
properties. The role contracts presented as part of the
Observer andCoR contracts, for example, impose re-
quirements on the fields that must be supplied by objects
playing these roles. TheComposite contract captures
more complex structural properties, such as the inheri-
tance relations among the participating objects. At the
same time, all of these contracts capture important be-
havioral properties. Indeed, as we have seen, even pat-
terns that focus on structural properties have important
behavioral components that must be satisfied.

Mikkonen [24] describes an approach in which pat-
terns are specified usingDisCo [22, 18, 17], a speci-
fication language for reactive systems that uses an ac-
tion system model similar to UNITY [4]. Data classes
model pattern participants, and guarded actions model
their interactions. The approach focuses primarily on
behavioral properties. For example, it allows us to spec-
ify the order in which role methods must be invoked.
The specification of the Observer pattern, for instance,
states thatUpdate() must be invoked on each attached
observer following a call toNotify(). Mikkonen also
introduces a notion ofrefinementthat allows us to spec-
ify the classes and class methods corresponding to the
roles and role methods in a particular pattern applica-
tion. However, the specifications seem to omit impor-
tant properties. TheObserver specification, for exam-
ple, does not require thatNotify() be provided by the
subject object; it may be provided byanyobject. Fur-
ther, the specifications are overly-constrained since there
is nothing analogous to our use of auxiliary concepts in
the formalism. Thus, the Observer specification requires
that eachobserver object containexactlythe same state
as thesubject object to which it is attached. Upon com-
pletion of theUpdate() method, theobserver state is
required to be identical to that of thesubject. Simi-
larly, the specification ofNotify() requires this method
to be invoked whenever there isanychange in thesub-

ject’s state. These limitations mean that patternrefine-
mentis essentially a mapping between names, and does
not consider behavioral considerations. Despite these
limitations, however, the use of an action-logic notation
is useful since it allows us to express complex call se-
quence requirements in a natural manner. In our future
work, we will consider adopting similar notations to ex-
press conditions on call sequences.

Helm et al. [12, 16] describe acontract formalism

that shares similarities with our work. In their approach,
each contract specifies pattern participants in a manner
similar to our use of role contracts, and a state invari-
ant that captures the intent of the pattern, similar to our
use of pattern invariants. The formalism also supports
contract specialization, including the ability to tailor the
definitions of certain relations, similar to our use of aux-
iliary concepts. There are, however, a number of impor-
tant differences in our work. The formalism described
by Helmet al. does not, for example, provide a means
of imposing conditions on the definitions that may be
supplied for the various relations used within a contract.
As we have seen, such conditions are required to pre-
vent incompatibilities between definitions, which can ul-
timately lead to the pattern intent being violated. In ad-
dition, their formalism does not provide a construct anal-
ogous to theothersclause used in our role contracts. As
a consequence, unnamed methods provided in a pattern
specialization can perform arbitrary actions, thus again
violating the intent of the pattern. Further, although the
formalism allows us to specify that certain methods be
invoked at particular times to achieve certain conditions,
there is nothing to prevent additional methods from be-
ing invoked that then nullify that condition. In theOb-

server pattern contract, for example, there is nothing to
prevent theNotify() method from making an arbitrary
change to thesubject after having invokedUpdate()

on each attachedobserver. Our use of call sequences
prevents such problems. It is important to mention, how-
ever, that one important idea in their work is that con-
tracts may be composed to construct “higher-level” con-
tracts. A similar idea should be applicable to our spec-
ifications, and we plan to investigate this possibility in
future work.

To an extent, our work is also related to the work
on architecture description languages(ADLs), such as
Rapide[23], UniCon [31] andWright [10]. One impor-
tant idea used in bothUniConandWright is the notion
of a componentconnector. While componentsin these
formalisms correspond to roles in our pattern specifica-
tions, connectorsrepresent the interaction protocol be-
tween two or more components. For example, a connec-
tor in Wrightspecifies the names of the roles that partic-
ipate in the interaction pattern represented by the con-
nector, and specifies the allowed patterns of interactions
using aCSP-like [14] notation.Rapideis also concerned
with interaction patterns between various components of
a system, but does not use a connector-like construct. In-
stead, the interaction patterns between themodulesun-
der consideration are specified in terms ofposets(par-
tially ordered sets) of events. The use of posets makes
it possible to compactly represent a number of different
possible event orderings. Although concurrency-related

27

considerations were the main motivation for the use of
posets inRapide, posets may also be of use in specify-
ing method calls required by a pattern under given con-
ditions. For example, using posets, we can conveniently
state that theSubject.Notify() method is required to
call Update() on each attachedobserver without con-
straining the order of these calls. More important, we
believe that some of the ideas in ADLs, including such
notions as connectors, will be of considerable help in
applying our approach to specifyingarchitectural pat-
terns [3, 30].

Heuzerothet al. [13] describe a static analysis tool
that identifies the patterns used in a system based on a
set of input pattern specifications. The authors use a ver-
sion of Prolog as a specification language. This choice
simplifies the design of the tool since it can leverage the
Prolog interpreter to evaluate potential matches between
classes, class methods, etc., to pattern roles, role meth-
ods, etc. But specifications of this kind are unwieldy.
As an alternative, the authors introduceSanD, a lan-
guage that offers OO constructs, and provides primi-
tives to specify call sequence conditions such as those
imposed onSubject.Notify() in theObserver pattern
contract. Although specifications developed using this
notation are more readable than their Prolog counter-
parts, they still appear to be designed for use by the
tool, rather than by designers. More important, the spec-
ifications are overly-constrained since there is nothing
analogous to auxiliary concepts, general role maps, etc.
Nevertheless, the idea of a reverse engineering tool that
can identify design patterns is an interesting one. We
believe, however, that while such tools are of value in
dealing with legacy code, when designing new systems,
a more useful tool would be one that, given information
about the patterns used in a particular system, can moni-
tor the system at runtime to see if the appropriate pattern
requirements are respected. We will consider this point
further in the next section.

Hanneman and Kiczales [11] take a different ap-
proach to capturing patterns. Rather than providing
reusablespecificationsthat can be specialized to partic-
ular applications, they provide reusable patternimple-
mentationsthat can be specialized. Their approach is
based on the use ofAspectJ[20]. The aspects corre-
sponding to a given pattern implementation encapsulate
the role interactions required ofanyspecialization of the
pattern. These aspects are declared asabstract, and de-
fer the portions of the implementation that vary to one or
more subaspects. In this sense, the abstract aspects are
analogous to our contracts, and the concrete subaspects
are analogous to our subcontracts. Consider, for exam-
ple, the Hanneman and Kiczales implementation of the
Observer pattern. The abstract aspect maintains a map-

ping betweenobserver objects and thesubject objects
to which they are attached, and provides methods for
attaching and detachingobservers. Theafter advice
bound to thepointcutthat capturesSubject method in-
vocations that modify the state of thesubject consists
of a sequence of calls to theUpdate() method of each
attachedobserver. Definitions of this pointcut are pro-
vided in the subaspects corresponding to particular ap-
plications of the pattern. Hence, the notion ofmodifica-
tion can be specialized.

We should emphasize, however, that this is a pattern
implementation, not a specification. Hence, a natural
question to consider is whether the implementation sat-
isfies the requirements specified in ourObserver pat-
tern contract. To answer this, we analyzed the aspect
implementation, focusing on the methods and advices.
Interestingly, it turned out that the implementation of
the Observer pattern in [11] violates a subtle require-
ment: When a new object attaches as anobserver to a
given subject, the implementation in [11] adds the at-
taching object to the set of objects observing the given
subject, but does not invokeUpdate() on the object (as
required by our contract). Hence, between the point of
attachment and the point at which thesubject’s state is
next modified, the attachedobserver may be in a state
that is inconsistentwith the subject. Thus, although
our contract forObserver was designed with standard
class-based implementations in mind, it turned out to be
useful for checking the correctness of an aspect-based
implementation, as well.

Before concluding this section, it is worth mention-
ing that key aspects of our approach are related to im-
portant issues identified by some of the authors who use
an informal approach to document patterns. Buschmann
et al. [3], for example, in summarizing how patterns
should be used in building practical systems, state, “You
should be able to reuse the pattern in many implemen-
tations, but so thatits essence is still retained[empha-
sis added]. . . . After applying a pattern, an architecture
should include a particular structure that provides for the
roles specified by the pattern, butadjusted and tailored
to the specific needs of the problem at hand[emphasis
added].” What is theessenceof a pattern and how do
we ensure that it is retained? The answer, provided by
our work, is that the pattern contract captures its essence
— specifically, the specifications of thenamedmethods
and theothermethods of each role, the constraints on the
auxiliary concepts, and the pattern invariant. Similarly,
the subcontract corresponding to a given application of
the pattern tells us exactly how the pattern has been ad-
justed and tailored to the needs of the particular problem
— specifically, thestate maps andmethod maps corre-
sponding to each class playing a given role, and the def-

28

initions of the auxiliary concepts of the pattern. Thus,
our approach provides clear and precise ways to formal-
ize the key aspects of design patterns and their applica-
tions, and serves as a natural complement to informal
approaches to patterns.

6 Discussion

The contributions of our work have been two-fold.
First, we developed an approach to precisely specifying
the requirements that must be satisfied when applying a
given design pattern, as well as the behavioral guaran-
tees that accrue as a result. Second, we developed a rea-
soning approach that can be used to show that a pattern’s
implementation requirements have indeed been satis-
fied, and to arrive at the system behaviors that should
be expected as a result. While achieving this precision
has been our primary goal, another important goal was
to ensure that pattern flexibility is not compromised as
a result of formalization. We achieved these seemingly
conflicting goals by parameterizing our specifications in
terms ofauxiliary conceptsandrole maps. These struc-
tures allow us to definepattern contractsthat capture the
properties common across all specializations of a partic-
ular pattern, andpattern subcontractsthat capture the
properties specific to particular pattern specializations.
We demonstrated in our case study how system design-
ers can use these formalisms to reason about their sys-
tems in apattern-centricfashion, rather than in the stan-
dardclass-centricfashion, to arrive at the system prop-
erties that will be exhibited as a result of the patterns
used in their design.

Fig. 16 illustrates the pattern-centric software devel-
opment process enabled by our approach. Note that the
figure omits some of the standard phases in the soft-
ware lifecycle, such as requirements analysis, testing,
etc. In the first step,the pattern selection process, a cat-
alog of pattern contracts for the most commonly applied
patterns, along with their usual informal descriptions, is
assumed to be available. Based on the contracts and the
informal descriptions, as well as the requirements of the
system in question, the design team identifies the pat-
terns that will be used in the system’s design. In the
next step, thepattern customization process, the team
determines how the patterns will be customized for use
in the system. Based on these customization decisions,
the team then develops the subcontracts that characterize
the ways in which the patterns will be specialized. Next,
the system implementation processproceeds. This step
is guided by the requirements specified in the relevant
pattern contracts, as specialized by the mappings and
concept definitions defined in the corresponding sub-
contracts. In practice, we can expect these two steps

Pr
oc

es
s

Ti
m

el
in

e

Pattern
Selection
Process

Pattern
Customization

Process

System
Implementation

Process

System
Implementation

Reasoning
Process

Design
Problems

Pattern
Contracts

Pattern
Subcontracts

3

4

3

4

4

2

1

Contract Catalog

Fig. 16. Software Development Process

to be iterated numerous times, since as the implemen-
tation process proceeds, it may be necessary to redefine
parts of the subcontracts and to appropriately modify the
implementation. Finally, once the system is partially or
completely constructed, thereasoning processproceeds,
which includes the types of activities we sketched for the
SimSickCity case study. These reasoning activities are
based on the implementation code, as well as the rele-
vant contracts and subcontracts, and help to ensure that
the system meets the requirements of the pattern, and
to check that the expected system behaviors match the
requirements for the system.

In practice, software projects do not typically go
through formal reasoning phases. So one could reason-
ably ask, how realistic is our proposed development pro-
cess? Note first that the creation of the pattern contract
catalog is, like the creation of informal pattern descrip-
tions, a one-time effort for the community. Individual
designers and design teams must read and understand
the contracts, but they are not responsible for develop-
ing them. The main reasoning activities for designers
consist of defining the subcontracts corresponding to the
pattern specializations used in their designs (step©2),
and applying the reasoning process used to show that
their systems meet the requirements specified in the rel-
evant pattern contracts, specialized appropriately (step
©4). Defining the subcontracts is normally a straight-
forward task since the subcontracts only capture infor-

29

mation about how patterns are applied in particular sys-
tems. Indeed, as we saw in Section 2, portions of each
subcontract are written in the form of code, making the
subcontract language immediately familiar to most de-
signers.

The reasoning task in step©4 poses a greater diffi-
culty for developers who are not trained in formal meth-
ods. This can be considerably mitigated by usingrun-
time monitoringin place of (or in addition to) formal
reasoning. We are currently developing a tool that will
automatically generate, given the contracts for the pat-
terns used in a system and the subcontracts correspond-
ing to their specializations, runtime monitoring code that
can be executed with the system code to detect pat-
tern implementation errors. The monitoring code will
check, at appropriate points during the system’s execu-
tion, that the relevant requirements are satisfied. In the
current version of the tool, we assume that the system
is implemented inJava. The monitoring code generated
by the tool is inAspectJ[21]. An aspect-orientedap-
proach was a natural choice since many of the pattern
contracts are concerned with multiple classes (or more
precisely, roles), and hence involvecross-cutting con-
cerns. This approach is similar to runtime monitoring
approaches that check method pre-conditions, method
post-conditions, and class invariants. The main differ-
ence is that because pattern contracts involve multiple
classes, for example the invariant in theObserver pat-
tern contract (Fig. 5), the assertions that must be checked
cut across the system hierarchy. A preliminary version
of our monitoring approach is described in [34]. When
the monitoring code produced by our tool detects a run-
time violation of the requirements specified in the pat-
tern contracts, it produces a suitable warning message.
This feedback helps developers locate the points where
their system does not abide by the pattern requirements,
and may therefore indicate potential problems. In prac-
tice, we expect designers to do some of the reasoning
called for in step©4 and to fix any problems revealed
through that process, and then to use the monitoring
code to check for additional defects. Thus, step©4 is
perhaps better labelled asreasoning and monitoring pro-
cess.

As we noted earlier, the development process illus-
trated in Fig. 16 omits some of the standard steps in the
software lifecycle. One key step, for example, is that
of maintenance and evolution. The pattern-centric ap-
proach that we have proposed provides additional ben-
efits in this phase. One benefit is that the subcontracts
corresponding to the various specializations of the pat-
terns used in a system are a valuable part of the system’s
documentation. The software engineers responsible for
maintenance and evolution are able to consult this doc-

umentation in determining whether potential changes
would be consistent with the underlying design philos-
ophy of the system. We saw a simple example of this
in Section 3.3 where we considered a possible change
to the Patient class of theSimSickCity system. As
we saw, the change we considered, although reasonable
from the point of view of thePatient class, would vi-
olate the relation implied by the use of theObserver

pattern, between theNurse class and thePatient class.
This would manifest itself as a violation of a contract
requirement. Our arguments in Section 3.3 were based
on reasoning about the system, but the same violation
would also be discovered using a monitoring tool. Thus
our approach will enable the maintenance team to ensure
that any changes made to the system do not violate the
design integrity of the system.

We now turn to possible directions for future work.
One important area is the development of acatalogof
contracts for the most commonly applied patterns. As
we noted in Section 4, we have developed a number of
additional contracts, in addition to those considered in
Section 3. We are currently working on several oth-
ers, includingBridge, Builder, Decorator, Facade,
Mediator, andVisitor. When the contracts for these
and other patterns are complete, we will publish them
on the web for use by the software engineering commu-
nity. The site will also include small and medium-sized
case studies of systems built using the patterns. The case
studies will provide details of the subcontracts corre-
sponding to the pattern applications, and details about
the behavioral results that follow.

A second area of future work considers theadequacy
of our formalism. There are, in fact, two parts to this
question. The first part concerns the adequacy of the lan-
guage for expressing different types of constraints and
invariants that might be appropriate to various patterns.
Consider again theChain of Responsibility. In the (par-
tial) contract for this pattern in Section 3, the invariant
specifies that if a givenhandler objecth returns a result
re in response to ahandle() request that it receives, it
must be the same result returned by an appropriatehan-

dler in the chain beginning ath. While this is accurate, it
doesn’t quite state thath will necessarily pass it on to its
successor if it is not able to handle the request, nor that
this process will repeat at eachhandler. It only states
that if h returns a resultre, then this must be the same
result returned by the first object in the chain beginning
ath that can handle the request. But a more natural state-
ment of the required behavior would be that ifh receives
arequest r, thisrequest will lead to a sequence of calls
along an appropriate chain of objects in whichr is for-
warded from onehandler to the next. Expressing this
would require us to use suitabletemporaloperators or,

30

as noted in Section 5,action logicnotations. The dis-
advantage is that such specifications can be somewhat
more difficult to comprehend and reason about than first
order logic assertions. Nevertheless, for certain patterns,
the added expressivity would be valuable.

The second part of the adequacy question concerns
the efficacy of our approach in dealing with different
types of patterns. To this point we have considered pat-
terns intended primarily for use in sequential systems.
While many of these patterns are generally applicable,
there are also patterns for handling issues specific to
particular system classes. Patterns for networked and
concurrent systems, for example, address issues involv-
ing synchronization, concurrency, etc. Consider, for ex-
ample, theActive Objectpattern [30]. The intent of
the pattern is to improve concurrency while simplify-
ing synchronization by transforming system objects into
threaded servers (oractors[1]). In effect, the pattern de-
couples the invocation of a method from its execution.
A key requirement of the pattern is to perform the de-
coupling in a way that preserves the client’s view of the
invocation as beingnormal. For us to capture this re-
quirement in the corresponding contract, we would have
to extend our formalism to include suitable ways of re-
ferring to processes, threads of control, etc. Similarly,
when considering patterns that dictate specific commu-
nications between processes, the formalism would have
to provide ways to refer to the processes playing par-
ticular roles, the sequences of inter-process communica-
tions, etc. Further, we would have to consider the possi-
bility that the auxiliary concepts in such patterns might
depend on these communications. In our future work,
we will provide suitable extensions to the formalism to
deal with these possibilities. One interesting point to
note is that a natural way to deal with communications
between processes in a distributed system is viacommu-
nication traces[15], which are similar to the traces we
have used for recording information about sequences of
method calls. Another way to deal with the sequences
of communications would, of course, be via action-logic
specifications. We intend to explore both approaches in
our future work.

Another line of future work concerns the develop-
ment of tools that help application developers achieve
the maximum benefit of our approach when dealing with
practical systems. As noted earlier, we have built a pro-
totype system that automates the generation of runtime
monitoring code based on the pattern contracts and sub-
contracts used in a system’s design. The generated code
can be used to detect pattern contract violations as early
in the development process as possible. While this tool
is useful during pattern-centric debugging and testing, it
is of less value for someone — say, a new member of

the design team — who wishes to explore the behavior
of the system with the intent of developing a pattern-
centric understanding of its structure and behavior. To
help address this need, we intend to develop a visual-
ization tool that will present a dynamic, pattern-centric
view of the system’s execution. During execution, in-
formation will be recorded about the various pattern in-
stances that are created, objects that enroll in these in-
stances, method invocations on these objects, invoca-
tions made from within these objects, etc. When the
system terminates, the visualization tool will allow us to
’play-back’ the execution, presenting a pattern-centric
view of the recorded behavior. The tool will allow the
user to focus on particular patterns, particular instances
of those patterns, particular objects enrolled in those in-
stances, particular method invocations, etc. We believe
that such a tool will be of significant benefit, especially
in the development of large systems with correspond-
ingly large teams.

References

[1] G. Agha. Actors: A Model of Concurrent Compu-
tation in Distributed Systems. MITP, 1986.

[2] K. Beck and R. Johnson. Patterns generate archi-
tectures. InProceedings of the Eighth ECOOP,
pages 139–149, 1994.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal.Pattern-oriented software ar-
chitecture: A system of patterns. Wiley, 1996.

[4] K.M. Chandy. Parallel Program Design: A Foun-
dation. Addison-Wesley, 1988.

[5] J. Dong. UML extensions for design pattern com-
positions.Journal of Object Technology, 1(5):151–
163, November / December 2002.

[6] A.H. Eden. Precise Specification of Design Pat-
terns and Tool Support in Their Application. PhD
thesis, Tel Aviv University, 2000.

[7] A.H. Eden. Formal specification of object-oriented
design. InProceedings of the International Con-
ference on Multidisciplinary Design in Engineer-
ing (CSME-MDE ’01), November 2001.

[8] A.H. Eden. LePUS: a visual formalism for object-
oriented architectures. InProceedings of the 6th

World Conference on Integrated Design and Pro-
cess Technology (IDPT ’02), June 2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable OO Soft-
ware. Addison-Wesley, 1995.

31

[10] D. Garlan and R. Allen. Formalizing architectural
connection. InProc. of 16th ICSE, pages 71–80.
IEEE, 1994.

[11] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In C. Nor-
ris and J.B. Fenwick Jr., editors,Proceedings of
the 17th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications
(OOPSLA ’02), ACM SIGPLAN Notices, pages
161–173, New York, November 2002. ACM Press.

[12] R. Helm, I.M. Holland, and D. Gangopadhyay.
Contracts: Specifying behavioral compositions
in object-oriented systems. InProceedings of
the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOP-
SLA/ECOOP ’90), pages 169–180. ACM Press,
1990.

[13] D. Heuzeroth, S. Mandel, and W. Lowe. Generat-
ing design pattern detectors from pattern specifica-
tions. InProc. of the 18th Int. Conf. on Automated
Softw. Eng.IEEE, 2003.

[14] C.A.R. Hoare. Communicating sequential pro-
cesses.Comm. ACM, 21:666–677, 1978.

[15] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

[16] I.M. Holland. Specifying reusable components us-
ing contracts. In Ole Lehrmann Madsen, editor,
Proceedings of the 6th European Conference on
Object-Oriented Programming (ECOOP ’92), vol-
ume 615, pages 287–308. Springer-Verlag, 1992.

[17] H.-M. Järvinen and R. Kurki-Suonio. DisCo speci-
fication language: Marriage of actions and objects.
In Proceedings of the 11th International Confer-
ence on Distributed Computing Systems (ICDCS
’91), pages 142–151. IEEE Computer Society,
1991.

[18] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen,
and K. Sysẗa. Object-oriented specification of re-
active systems. InProceedings of the 12th Interna-
tional Conference on Software Engineering (ICSE
’90), pages 63–71. IEEE Computer Society, 1990.

[19] R. Johnson. Components, frameworks, patterns. In
ACM SIGSOFT Symposium on Software Reusabil-
ity, pages 10–17, 1997.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of aspectj.
In Proc. 15th ECOOP, pages 327–353. Springer-
Verlag, 2001.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of as-
pectj. InProceedings of the 15th European Confer-
ence on Object-Oriented Programming (ECOOP
’01), pages 327–353, London, UK, 2001. Springer-
Verlag.

[22] R. Kurki-Suonio and H.-M. J̈arvinen. Action sys-
tem approach to the specification and design of dis-
tributed systems. InProceedings of the 5th Inter-
national Workshop on Software Specification and
Design, number 14 in ACM Software Engineering
Notes, pages 34–40, 1989.

[23] D. Luckham, J. Kenney, L. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis
of system architecture using rapide.IEEE Transac-
tions on Software Engineering, 21:336–355, 1995.

[24] T. Mikkonen. Formalizing design patterns. InPro-
ceedings of the 20thth International Conference on
Software Engineering (ICSE ’98), pages 115–124,
Washington, DC, 1998. IEEE.

[25] T. Reenskaug. Working with objects. Prentice-
Hall, 1996.

[26] D. Riehle. Composite design patterns. InProc. of
OOPSLA, pages 218–228. ACM, 1997.

[27] D. Riehle and H. Zullighoven. Understanding and
using patterns in software development.Theory
and Practice of Object Systems, 2(1):3–13, 1996.

[28] J. Rumbaugh, I. Jacobson, and G. Booch.The
Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[29] R. Schauer and R. Keller. Pattern visualization for
software comprehension. InProceedings of the 6th
International Workshop on Program Comprehen-
sion (IWPC ’98), pages 4–12, Washington, DC,
1998. IEEE Computer Society.

[30] D. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-oriented software ar-
chitecture: Patterns for concurrent and networked
objects. Wiley, 1996.

[31] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young,
and G. Zelesnik. Abstractions for software archi-
tecture and tools to support them.IEEE Transac-
tions on Software Engineering, 21:314–335, 1995.

[32] N. Soundarajan and J.O. Hallstrom. Responsibil-
ities and rewards: Specifying design patterns. In

32

A. Finkelstein, J. Estublier, and D. Rosenblum, ed-
itors, Proc. of 26th Int. Conf. on Software Engi-
neering (ICSE), pages 666–675. IEEE Computer
Society, 2004.

[33] N. Soundarajan, J.O. Hallstrom, and B. Tyler.
Specifying, monitoring, and visualizing de-
sign patterns. http://www.cs.clemson.edu/ ja-
sonoh/dsrg/smavdp.

[34] N. Soundarajan, J.O. Hallstrom, and B. Tyler.
Specifying and monitoring design pat-
tern contracts. In Proc. of the SAVCBS
2004 Workshop (ICSE), pages 87–94.
www.cs.iastate.edu/SAVCBS, 2004.

[35] J. Vlissides. Notation, notation, notation.C++
Report, April 1998.

[36] J. Warmer and A. Kleppe.The Object Constraint
Langauge. Addison-Wesley, 1999.

[37] B.W. Weide, S.H. Edwards, D.E. Harms, and D.A.
Lamb. Design and specification of iterators us-
ing the swapping paradigm.IEEE Transactions on
Software Engineering, 20(8):631–643, 1994.

33

