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ABSTRACT

In a distributed system, logical time, as opposed to physical time, is used to order

the events of a computation. It orders events by their potential causal relationship:

whether one event may have affected the other. Logical clocks, or time stamping

schemes, are tools for determining the causal order between events. They store time

stamps with each event, and append time tags to each message of the computation.

For an asynchronous system of N processes, the time stamps and time tags of a

logical clock must be of size O(N) in order for the logical clock to be completely

accurate. Typically, this size of O(N) limits the scalability of fully accurate logical

clocks (such as vector clocks).

Plausible clocks are a class of logical clocks that have a smaller size but may be

inaccurate. To date, the time stamps and time tags of plausible clocks have had a

fixed-size, while the clock’s inaccuracy varies from run to run. In this thesis, we define

a new metric, imprecision, that formally characterizes the fidelity of a plausible clock.

We present a new plausible clock that guarantees an arbitrary bound on imprecision.

This bound is maintained by allowing the size of the time tags to grow and shrink

over the course of the computation. We prove this clock’s correctness, present results

of a simulation study, and evaluate its performance.
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CHAPTER 1

Introduction

1.1 Causality

Today, distributed and parallel applications are pervasive. Despite their ubiquity,

designing, implementing, reasoning about, and testing these systems remains a chal-

lenge. A primary source of difficulty is the concurrency and resulting nondeterminism

inherent in distributed programs. In sequential systems, the execution of events is to-

tally ordered. However, in distributed systems, events occurring on separate processes

are both temporally and spatially separated. Actions in the system no longer form a

totally ordered execution, but rather a partial order. Therefore physical time, which

itself is totally ordered, is inappropriate for characterizing and reasoning about the

behavior of a distributed application.

Logical time [9] was introduced to aid in the reasoning and construction of dis-

tributed systems. It is defined by the happens before → relation which orders events

by potential causality: whether one event may have affected the other. The ability

to determine the potential causal relationships between events is fundamental to a

variety of distributed applications. For example, a global snapshot consists of a set of

events such that no pair is causally related [3, 12, 5]. Cache-coherence protocols can

maintain consistency by ordering distributed updates to a shared object by potential
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Figure 1.1: Happens Before in a Sequential System

causality [1, 13, 6]. Resource allocation algorithms can use this relation to resolve

contention for a shared resource [14, 10].

In our model of a distributed system, events may represent any action of interest.

An event could be something as small as an individual machine instruction, or some-

thing as large as a database transaction. A key point is that the details of an event

are abstracted away. Without the details of what an event really is, let us consider

the criteria for a potential causal relationship between events. Figure 1.1 depicts the

execution of a sequential system. The directed line represents the single thread of

execution, and its direction denotes the execution order. Events of the system are

represented by circles on the directed line. For an event e (shown in the figure), the

criteria for a potential causal relationship is simple: an event happens before e if

and only if it occurs before e in the execution order. Likewise, e happens before all

events that occur later in the system. Therefore, in Figure 1.1, all events occurring

to the left of e happen before e , and e happens before all events to the right of it.

The criteria for a potential causal relationship in the case of distributed systems is

a little more complicated. Not only does a distributed system have several processes

executing events, but these processes can communicate to each other via message-

passing. Therefore, potential causal relationships exist between local events of a

2



Figure 1.2: Happens Before in a Distributed System

process, and they exist between send-receive event pairs. Figure 1.1 depicts an exe-

cution of a distributed system. For an event e (shown in the figure), the events to

the left of e that are marked by a gray line happen before it. Likewise, e happens

before the grayed events to the right of e . Note that the happens before relationship

is transitive.

Another important relationship between events is the lack of a causal relationship.

When neither event happens before each other, we call these events concurrent. In

Figure 1.1, the un-grayed events between the dashed lines are concurrent with e .

1.2 Time Stamping Schemes

A Time Stamping Scheme (TSS) [16] is a tool used by distributed applications to

record logical time. That is, a TSS stores local information, called time stamps, with

each event. It also appends information, called time tags, to each application message.

3



Figure 1.3: Concurrency in a Distributed System

At run-time, an application can compare two time stamps and determine the causal

order of their respective events. Note, a TSS does not add events or messages to the

system. Therefore, its performance is evaluated by the size of its time stamps and

time tags, the time it takes to create time stamps and time tags, and the time it takes

to compare two time stamps.

Two examples of TSSs are the vector clock [7, 11], and Lamport’s clock [9]. For

a distributed system of N processes, the time stamps and time tags of the vector

clock are vectors of N integers. The vector clock satisfies the strong clock condition.

That is, the order it places on its time stamps is equivalent to the happens before

order of their corresponding events. Formally, a TSS X satisfies the strong clock

condition if for any two events a and b , their corresponding time stamps X.stamp(a)

and X.stamp(b) , and X ’s ordering of time stamps
X→ , the following holds: a →

b ≡ X.stamp(a)
X→ X.stamp(b) . For a general distributed system, time stamps and

4



Figure 1.4: Concurrency as seen by Lamport’s Clock

time tags of size O(N) are required for a TSS to satisfy the strong clock condition

[4]. Unfortunately, this linear size of time tags limits the scalability of such TSSs.

The time stamps and time tags of Lamport’s clock are single integers. Lamport’s

clock satisfies the weak clock condition. That is, Lamport’s clock correctly orders

all causally-related events, but may incorrectly order concurrent events. Formally, a

TSS X satisfies the weak clock condition if for any two events a and b , the following

holds: a → b ⇒ X.stamp(a)
X→ X.stamp(b) . Consider our previous example of

concurrency in a distributed system (Figure 1.1). By incorrectly ordering concurrent

event pairs, Lamport’s clock presents a less concurrent view of the system. Figure 1.2

depicts the view of the distributed system as seen by Lamport’s clock. The events

marked by the dark gray line are those incorrectly ordered by Lamport’s clock. The

events between the dashed lines are correctly reported as concurrent with event e .
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1.3 Plausible Clocks

Plausible clocks [16] were introduced as a scalable solution to vector clocks in

situations where detecting concurrency impacts performance but is not necessary for

correctness. A TSS X is plausible if it satisfies the weak clock condition ( a →

b ⇒ X.stamp(a)
X→ X.stamp(b) ). False orderings reported by the plausible clock

hinder the performance of the computation, but do not undermine its correctness.

For example, consider a cache consistency application that must maintain causal

consistency [1]. Objects in the cache are associated with the time stamp of their most

recent read or write. During an update of the cache, causal dependencies between

new and old values represent a potential inconsistency in data. Therefore, old values

that are causally dependent on incoming values should be invalidated. However, if

any object’s time stamp is concurrent with the incoming data, then it may be left in

the cache. In this scenario, failing to establish the concurrency between events results

in a decrease in performance (i.e., cache miss) but does not affect correctness.

1.4 Motivation

To date, plausible clocks have been parameterized by the size of the message over-

head and have allowed the error in detecting concurrency to vary from run to run.

These plausible clocks make no guarantee of their accuracy. In the worst case, the

error of these plausible clocks grows unbounded with the number of events. Applica-

tions that use these plausible clocks gain from the decreased message size, but may

suffer from the corresponding unbounded error. For instance, in the previous exam-

ple of a cache consistency protocol, the number of unnecessarily invalidated objects

could be quite high. The ability to bound the error of a plausible clock is useful

6



in applications where the accuracy of the clock affects performance as much as the

message overhead.

1.5 Problem Overview

Plausible clocks are used in situations where missing some concurrency does not

undermine correctness. Performance is a function of the size of the message overhead

and the amount of concurrency missed. Previously proposed plausible clocks only

guarantee performance with respect to message size; they do not guarantee perfor-

mance with respect to the inaccuracy of the clock.

Our goal is to construct a plausible clock which is parameterized by a bound on

inaccuracy. To be practical, our clock must not assume global information. It should

achieve its inaccuracy bound using a minimal amount of message overhead (otherwise

vector clocks would suffice). Some key design issues are: how to bound inaccuracy

using local information, how to merge inaccurate data during a receive event and

maintain accuracy, and how to efficiently encode time stamps and time tags.

We achieve this goal by the following. We quantify the inaccuracy of the system in

terms of local error. We define the metric imprecision which is a history-independent

bound on the error of time stamps, thereby allowing us to reason about and control

the inaccuracy of the system using local information only. Finally, we develop a novel

plausible clock algorithm that bounds imprecision by allowing the size of time tags

to grow and shrink over the course of the computation.

7



1.6 Thesis Outline

This thesis is structured as follows. In Chapter 2, we define the system model,

describes several common TSSs, and derive the definition of inaccuracy. In Chapter

3 we discuss our approach; introduce our metric imprecision, and introduce our plau-

sible clock. In Chapter 4 we prove the correctness of our algorithm. In Chapter 5

we provide an experimental evaluation of our algorithm’s performance with respect

to two previously proposed plausible clocks. Finally, in Chapter 6 we present related

work on causality-tracking, summarize our conclusions, and present possibilities for

future work.
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CHAPTER 2

Background and Definitions

2.1 Quantification Notation

In this thesis, we use a formal notation for quantification. A quantification has

the form:

(Q i : r.i : t.i)

where Q is the operator, i is the bound variable (whose domain comes from context),

r.i is the range, and t.i is the term. In order to be a valid quantification, the following

constraints must hold:

1. The operator must be a binary, symmetric, associative operator with an identity

element.

2. The range must be a predicate on the bound variable i .

3. The term must be an expression (that may contain i ) and the type of this

expression must be the same as the type of operands of the operator.

The predicate r.i defines a set of values of i . Informally, if the set of values of i

for which r.i holds is {i0, i1, i2, ..., iK , ...} , and the identity element of Q is u , the

9



quantified expression expands to:

u Q i0 Q i1 Q ... Q iK Q ...

For example, consider the quantification (
∑

i : 1 ≤ i ≤ 5 ∧ even.i : 2i ) . This

would expand to:

( + i : 1 ≤ i ≤ 5 ∧ even.i : 2i ) = 0 + 2 ∗ 2 + 2 ∗ 4 = 12

Another example is the logical operator ∧ . Consider the quantification ( ∧ i : 1 ≤

i ≤ 5 : even.i ) . This would expand to:

( ∧ i : 1 ≤ i ≤ 5 : even.i ) = true ∧ even.1 ∧ even.2 ∧ even.3 ∧ even.4 ∧ even.5

= false

Note, there are symbols traditionally used for the above quantifications. There-

fore, in this thesis, we will replace the + operator in the quantification with the

symbol
∑

(similarly, ∧ is replaced with ∀ and ∨ with ∃ ).

2.2 System Model and Definitions

We consider an asynchronous distributed system of N processes. Processes com-

municate via message-passing, which is point-to-point and fault-free. The execu-

tion of a process pi consists of a finite set of local events denoted Hi . An event

e ∈ Hi may be a local, send, or receive event. In the system, there is a one-to-one

correspondence between send and receive events. What a local event actually rep-

resents is application dependent. We denote the execution of the entire system as

H = (∪ i : 1 ≤ i ≤ N : Hi ) .

10



2.3 Happens Before

The happens before relation [9] represents the potential causal relationship between

events. For two events a ∈ Hi and b ∈ Hj , a→ b if and only if:

1. i = j and a occurs before b , or

2. a is a send event and b is the corresponding receive event, or

3. there exists an event c such that a→ c and c→ b .

Two events are considered concurrent if neither happens before the other:

a ‖ b ≡ ¬(a→ b) ∧ ¬(b→ a)

A Time Stamping System X [16] is formally defined as a tuple

〈S, X→, G,X.stamp, X.tag〉 where:

S is a set of logical time values used to locally record information (called time

stamps),

X→ is an irreflexive transitive relation on time stamps,

G is a set of logical time values appended to messages to record information (called

time tags),

X.stamp is the time stamping function mapping events to stamps, and

X.tag is the time tagging function mapping event time stamps to message time

tags.

11



Note that, in practice, the X.stamp function is guaranteed to be locally com-

putable by defining it inductively. First, time stamps are defined for all initial events.

Then, a function on S×G is given that determines the time stamp of an event based

upon the most recent local time stamp and the most recently received message time

tag.

The relation
X→ is irreflexive and transitive, therefore 〈S, X→〉 is a strict partial

order. This strict partial order induces the following further relations, for all r, s ∈ S :

r
X
= s ≡ r = s

r
X

‖ s ≡ ¬(r
X→ s) ∧ ¬(s

X→ r) ∧ ¬(r
X
= s)

For convenience, we will overload the definitions of these relations to allow them to

directly compare events of H . For instance, given two events a, b ∈ H :

a
X→ b ≡ X.stamp(a)

X→ X.stamp(b)

In the realization of a Time Stamping System, comparison of time stamps within

this strict partial order is implemented by a function X.comp that maps pairs of

stamps to the set { X→, X←, X
=,

X

‖} .

Also note, in the remainder of this thesis we will omit the X (so X.stamp would

be written as simply stamp ) when the X is clear from context.

A TSS X is plausible if it satisfies the weak clock condition. That is, for two

events a and b , a→ b⇒ a
X→ b .

12



2.4 Logical Clocks

2.4.1 Lamport’s Clock

Lamport’s clock [9] is a plausible TSS with simple integer time stamps and time

tags.

The definition of the Lamport clock is as follows. A time stamp s ∈ S is an integer

(S = Z ). The time tags of the system are identical to the time stamps (G = S ).

For a time stamp s on a process pi , the stamp function updates s according to

the following:

1. Initially, the value of s is equal to 1

2. For a local or send event, the value of s is incremented

3. For a receive event with time tag t , the max of s and t is taken and incre-

mented

The tag function simply appends the time stamp of the send event to the message.

For two time stamps, r from process pi and s from process pj , the
Lamport→ relation

is defined as:

r
Lamport→ s ≡ r < s

Figure 2.4.1 depicts a system using Lamport’s clock. Events marked with a dark gray

line are incorrectly ordered with event e . Observe that only the events whose time

stamps are equivalent to e are marked as concurrent.

2.4.2 R-Entries Vector Clocks

The R-Entries Vector (REV) clock[16] was introduced as a constant-size plausible

clock similar to vector clocks. Instead of each entry of the vector representing a single

13



Figure 2.1: Example of Lamport’s Clock

process, several processes are grouped together per entry. The function mapping a

process pi to a vector entry is (i modulo R) + 1 .

The definition of the REV clock is as follows. A time stamp s ∈ S is a vector of

R entries where R ≤ N (S = ZR ). The time tags of the system are identical to the

time stamps (G = S ). For a time stamp s on a process pi , the stamp function

updates s according to the following:

1. Initially, all entries of s are set to 0 except for s[(i modulo R) + 1] which is

set to 1

2. For a local or send event, the entry s[(i modulo R) + 1] is incremented

3. For a receive event with time tag t , the max of each entry in t and s is taken,

and the entry s[(i modulo R) + 1] is incremented

14



Figure 2.2: Example of REV Clock

For two time stamps, r on pi and s on pj , the
REV→ relation is defined as

r
REV→ s ≡ ( ( ∀ i : 1 ≤ i ≤ R : r[(i modulo R) + 1] ≤ s[(i modulo R) + 1] ) ∧

(∃ i : 1 ≤ i ≤ R : r[(i modulo R) + 1] < s[(i modulo R) + 1] )

Figure 2.4.2 depicts a system using REV clock. Events marked with a dark gray line

are incorrectly ordered with event e . Observe that REV incorrectly orders fewer

events than Lamport’s clock (Figure 2.4.1).

2.4.3 Vector Clocks

The vector clock was independently proposed by Fidge [7] and Mattern [11]. It

is a TSS that satisfies the strong clock condition. That is, for two events a and b ,

a→ b ≡ a
V ector→ b .

15



The definition of the vector clock is as follows. For a distributed system of N

processes, a time stamp s ∈ S is a vector of N integers (S = ZN ). The time tags of

the system are identical to time stamps (G = S ). For a time stamp s on a process

pi , the stamp function updates s according to the following:

1. Initially, all entries of s are equal to 0 except for the ith entry which is equal

to 1 .

2. For a local/send event, the ith entry of s is incremented

3. Upon receiving a time tag g , the entry-wise max of s and g is taken and then

the ith entry is incremented.

The tag operation simply appends the time stamp of the send event to the message.

The
V ector→ relation is defined as:

r
V ector→ s ≡ (∀ i : 1 ≤ i ≤ N : r[i] ≤ s[i] ) ∧

(∃ i : 1 ≤ i ≤ N : r[i] < s[i] )

Figure 2.4.3 depicts a system using the vector clock. Observe that all events that are

concurrent with event e are reported as such.

Intuitively, a vector clock maintains the following properties. First, it maps the

events of a given process to a strictly increasing sequence of integers. That is, for two

time stamps r = stamp(a) and s = stamp(b) on process pi , the following holds:

a→ b ≡ r[i] < s[i]

In Figure 2.4.3, these ith entries are marked with gray.

Second, it records the most recent happens before event from each process. For

instance, consider a time stamp r = stamp(a) on process pi . For each entry r[j]
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Figure 2.3: Example of Vector Clock

where j 6= i , there exists a time stamp s = stamp(b) on pj such that s[j] = r[j] .

This event b is the most recent event on pj that happens before a . More formally,

b→ a ∧ ¬ (∃ c ∈ Hj :: b→ c ∧ c→ a ) .

For example, consider event e in Figure 2.4.3. As previously mentioned, the gray

entries map the local events of a process to a strictly increasing sequence of integers.

For event e , the events that most recently happen before it are: event 2 from process

1, event 4 from process 3, and event 1 from process 4. Observe that the corresponding

entries of e ’s time stamp are consequently 2, 4, and 1.
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2.5 Inaccuracy

A plausible clock always correctly orders causally-related events, but it may incor-

rectly report a causal relationship when none exists (i.e., the events are concurrent).

The inaccuracy of a plausible clock is the ratio between the number of incorrectly

ordered event pairs, and the total number of concurrent pairs in the system [8]. For-

mally, we define C as the set of concurrent pairs in the system, and M as the set of

incorrectly ordered pairs. Inaccuracy, ρ(P,H) , is therefore defined as:

C = { (a, b) ∈ H ×H : a ‖ b : (a, b) }

M = { (a, b) ∈ H ×H : a ‖ b ∧ ¬(a
P

‖ b) : (a, b) }

ρ(P,H) =
|M |
|C|

Accuracy can then be defined as 1− ρ(P,H) .

Observe that (a ‖ b ≡ b ‖ a) and (a ‖ b ∧ ¬(a
P

‖ b) ≡ b ‖ a ∧ ¬(b
P

‖ a)) .

Therefore, in C and M , we are counting the pair (a, b) and (b, a) . This double-

counting cancels itself in the above definition of inaccuracy. On the other hand,

consider the following formal definition of inaccuracy from a published plausible clocks

paper [8]:

ρ∗(P,H) =
|{ (a, b) ∈ H ×H : a ‖ b ∧ a P→ b : (a, b) }|
|{ (a, b) ∈ H ×H : a ‖ b : (a, b) }|

In the definition of ρ∗ , the use of a
P→ b instead of ¬(a

P

‖ b) removes the double-

counting in the numerator. Therefore, the function ρ∗ returns half the value of the

ratio between mistakes and concurrent pairs:

ρ∗(P,H) = 2 ∗ ρ(P,H)
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CHAPTER 3

Approach

With vector clocks, the time stamps of events on process pi all differ in their

ith entry. This one entry orders these events and distinguishes between them. The

other entries serve a different purpose: Each one uniquely identifies the most recent

happens-before event on the corresponding remote process. Our approach is concep-

tually similar. Time stamps are vectors where the ith entry orders and distinguishes

between events on pi , while the other entries indicate the most recent happens-before

events on remote processes. The difference is that a range of values, rather than a

single one, is used as an entry in the array and hence the most recent happens-before

events are not uniquely identified. We will show later that using a range of values as

an entry will allow us to compress the size of our time tags.

3.1 Imprecision

Our goal is to create a plausible clock that can guarantee an arbitrary bound on

inaccuracy. To be practical, there should be no presumption of global information nor

should the clock modify the underlying computation (e.g., by sending extra messages).

Our approach is to bound the inaccuracy by controlling the maximum possible error
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Figure 3.1: Local Error of Lamport’s Clock

permitted by individual time stamps. To do so, we must first redefine inaccuracy in

terms of this error.

First, we define the local error of a plausible clock to be the number of mistakes it

makes with respect to a given event. More precisely, it is the number of (concurrent)

events that are mistakenly ordered before the event in question. Formally, we define

the local error of P with respect to an event b as:

δ(P,H, b) = |{ a ∈ H : a ‖ b ∧ a P→ b : a }|

Figure 3.1 depicts a system using Lamport’s clock. For event e , δ(P,H, e) is equal

to the number of events marked by dark gray that would be ordered as happening

before e . In this example, δ(P,H, e) is equal to 9 (4 events from process 1, 1 event

from process 3, and 4 events from process 4).

20



We can now define the total number of mistakes in terms of the local error for each

event. Note, that since δ(P,H, b) is defined with the
P→ relation, if a pair (a, b) is

counted, then we are guaranteed that the pair (b, a) will not be ( a
P→ b⇒ ¬(b

P→ a) ).

|M | = 2 ∗ (
∑

b ∈ H :: δ(P,H, b) )

Therefore, inaccuracy can be written:

ρ(P,H) = 2 ∗ (
∑

b ∈ H :: δ(P,H, b) )

|C|

Our definition of ρ(P,H) is still problematic. We would like to define inaccuracy

in terms of the local error per event; however, it is currently the ratio between the

sum of local error and the total number of concurrent event pairs. To this end, we

define ε(H) as the ratio between the total number of concurrent pairs and the total

number of events:

ε(H) = 1/2 ∗ |C|
|H|

For computations that exhibit regular communication patterns and whose processes

are not partitioned, the value of ε(H) remains constant as H is extended with new

events. If the processes were partitioned (say one process ceases to communicate),

this ratio would increase without bound as H is extended with new events. For

the remainder of the paper, we will assume fault-free executions where all processes

actively communicate within the system. Rewriting the total number of concurrent

pairs in terms of this concurrency ratio, we have:

ρ(P,H) = 1/ε(H) ∗ (
∑

b ∈ H :: δ(P,H, b) )

|H|

Since we assume that ε(H) is a constant, we need only to bound the mean value

of δ in order to bound the inaccuracy. Unfortunately, we cannot use δ directly in
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our algorithm; the stamp function is defined inductively over time stamps and not

histories. Therefore, we define a new metric that is based on time stamps and hence

can be used directly by a plausible clock to reason about fidelity. We call this metric

imprecision. The imprecision of a time stamp generated by a plausible clock is an

upper bound on the number of ordering mistakes made for an event with that time

stamp. More formally, let H(P, r) be the set of histories for which the plausible clock

P generates the time stamp r :

H(P, r) = {H : (∃ a ∈ H :: P.stamp(a) = r ) : H }

Imprecision, ψ(P, r) , is then defined as:

ψ(P, r) = (MaxH ∈ H(P, r), a ∈ H : P.stamp(a) = r : δ(P,H, a) )

Intuitively, imprecision is the worst-case value of δ for an event with a given time

stamp. Note that imprecision is independent of history and therefore is a function

of the information contained within a time stamp. Consider the following example.

Figure 3.1 depicts a system using Lamport’s clock. Observe that every event, from

other processes, that Lamport’s clock reports to have happened before event e is in

fact concurrent with e . Therefore, this is an example of a worst-case history for an

event with time stamp 6. From this example, we can determine that the imprecision

of a Lamport’s time stamp of 6, in a system of 4 processes, is 5 ∗ 3 = 15 . We

can generalize this result. For a given Lamport’s time stamp s , ψ(Lamport, s) =

(N − 1) ∗ (s− 1) .

We can use imprecision to bound inaccuracy. If we guarantee that all time stamps

generated during a computation have an imprecision less than some arbitrary bound,

K , then the mean value of δ is also less than that bound. More formally, the resulting
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Figure 3.2: Imprecision of Lamport’s Clock

bound on inaccuracy is:

ρ(P,H) ≤ 1/ε(H) ∗ (
∑

b ∈ H :: ψ(P, P.stamp(b)) )

|H|

≤ 1/ε(H) ∗K

3.2 Algorithm

At the core of our algorithm is the concept of a time interval. A time interval is a

tuple 〈beg, end〉 where beg and end are integers and beg ≤ end . Unlike the integer

entry of vector clocks which corresponds to a single event, a time interval corresponds

to a set of events. The event of interest is within this range. Thus, when comparing

two time intervals, we can conclude something about the ordering of the respective

events of interest only when the ranges do not overlap. The ordering between two
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intervals m and n is given by:

m
interval
< n ≡ m.end < n.beg

m
interval
≈ n ≡ ¬(m

interval
< n) ∧ ¬(n

interval
< m)

m
interval

/ n ≡ (m
interval
< n) ∨ (m

interval
≈ n)

We define a precise interval to be one in which the begin and end points are equal.

In the case of precise intervals, an overlap reflects exact equality.

precise(m) ≡ m.beg = m.end

m
interval

= n ≡ precise(m) ∧ precise(n) ∧ m = n

Since the beg and end values of a precise interval are equivalent, there is really a

single value that is associated with a precise interval. For convenience, we define

m.val as this value for a precise interval m :

m.val = m.beg = m.end

These notions of time interval comparison are illustrated in Figure 3.2.

The time stamps of our system are analogous to those of vector clocks. A time

stamp s ∈ S is a vector of N time intervals. Like vector clocks, the time stamps

of our system map the events of a given process to an increasing sequence. That is,

for two time stamps r = stamp(a) and s = stamp(b) on process pi , the following

hold:

precise(r[i]) ∧ precise(s[i])

a→ b ≡ r[i]
interval
< s[i]

For a given process pi , the integer entries of vector clocks (excluding the ith ) are

used to indicate the most recent happens before events on remote processes. Formally
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m
interval
≈ n

m
interval
≈ n

m
interval

< n

m
interval
≈ n

m
interval
≈ n

m
interval= n

Figure 3.3: Time Interval Comparison

we define the most recent event on pj that happens before an event a as the (unique)

event mrhb(a, j) that satisfies the following:

mrhb(a, j) ∈ Hj ∧

mrhb(a, j)→ a ∧

¬ (∃ c : c ∈ Hj : mrhb(a, j)→ c ∧ c→ a )

While vector clocks use integer entries to precisely indicate single events, we use time

intervals to represent a range of events. We guarantee that the event of interest, the

most recent happens before event, is within this range. Formally, for an event a on

process pi with time stamp r = stamp(a) :

(∀ j : 1 ≤ j ≤ N ∧ j 6= i : r[j].beg ≤ stamp(mrhb(a, j))[j].val ≤ r[j].end )

A time stamp s also satisfies several additional properties. First, all imprecise

intervals of s share the same end value. Second, all precise intervals of s are greater
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than the imprecise intervals. Formally, these invariants are:

(∃ k :: (∀ i : 1 ≤ i ≤ N : ¬precise(s[i]) ⇒ s[i].end = k ) )

(∀ i, j : 1 ≤ i, j ≤ N : ¬precise(s[i]) ∧ precise(s[j]) ⇒ s[i].end ≤ s[j].val )

Note, since precise intervals can be encoded with a single integer and all imprecise

intervals share the same end point, the time stamps of our system can be encoded

with N + 1 integers. Therefore, assuming integers require L bits, a time stamp

requires (N + 1) ∗ L bits.

A time tag t is also a vector of N time intervals. It satisfies all the properties

of time stamps and, in addition, the property that imprecise intervals have the same

begin point.

(∃ k :: (∀ i : 1 ≤ i ≤ N : ¬precise(s[i]) ⇒ s[i].beg = k ) )

Figure 3.2 presents an example of a time stamp and a time tag.

Given a time tag t with R precise intervals, it requires (logN) ∗ R bits to en-

code the association between precise intervals and their respective processes. Assume

integers require L bits. Since all imprecise intervals are the same, a time tag requires

R ∗ (L+ logN) + 2L bits.

3.2.1 comp()

The comparison of time stamps in our algorithm is similar to that of vector clocks.

The
P→ relation, and thereby the comp function, is formally defined as:

r
P→ s ≡ (∀ i : 1 ≤ i ≤ N : r[i]

interval

/ s[i] ) ∧

(∃ i : 1 ≤ i ≤ N : r[i]
interval
< s[i] )
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Figure 3.4: Example of a time stamp and a time tag

Data: r is old stamp on pi , s is new stamp on pi , t is the incoming tag
INITIALLY:

for j := 1 to N do
s[j] := 〈0, 0〉

end
s[i] := 〈1, 1〉

LOCAL or SEND EVENT:
for j := 1 to N do

s[j] := r[j]
end
s[i].end := s[i].end+ 1
s[i].beg := s[i].end

RECEIVE EVENT:
for j := 1 to N do

s[j].end := max(r[j].end, s[j].end)
s[j].beg := max(r[j].beg, s[j].beg)

end
s[i].end := s[i].end+ 1
s[i].beg := s[i].beg

Listing 1: stamp
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3.2.2 stamp()

For a given time stamp s on process pi , the stamp algorithm is defined as

follows. Initially, all entries of s are precise intervals equal to 〈0, 0〉 except for

the ith entry which is set to 〈1, 1〉 . During a local/send event, the ith entry is

incremented. That is, if r is the old stamp on pi , the new stamp s is defined by:

precise(s[i]) ∧ s[i].val = r[i].val + 1

(∀ j : 1 ≤ j ≤ N ∧ j 6= i : s[j] = r[j] )

Upon receiving a time tag t , the max of the beg and end points of each entry is

taken and the ith entry is incremented.

precise(s[i]) ∧ s[i].val = max(r[i].val, t[i].end) + 1

(∀ j : 1 ≤ j ≤ N ∧ j 6= i : s[j] = 〈max(r[j].beg, t[j].beg),max(r[j].end, t[j].end)〉 )

Listing 1 gives the pseudo-code of stamp .

3.2.3 tag

The goal of the tag algorithm is to construct the smallest time tag possible while

allowing the receiving event to maintain its bound on imprecision. Informally, the

time tag is constructed by iteratively adding the greatest precise intervals until the

error of the time tag is below the imprecision bound. The common imprecise interval

of the time tag is formed by taking the max end value and the min beg value of the

remaining intervals not in the time tag. The pseudo-code for tag is Listing 2. The

function jth max(j, s) returns the index of the jth greatest precise interval.
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Data: s is the time stamp of the send event on pi , t is the outgoing tag
for j := 1 to N do

t[j] := 〈0, 0〉
end
minbeg := (Min j : 1 ≤ j ≤ N : s[j].beg )
j := 1
k := jth max(i, r)
while (N − j + 1) ∗ (s[k].end−minbeg) > K do

t[k] := s[k]
j := j + 1
k := jth max(j, s)

end
for y := 1 to N do

if t[y] = 〈0, 0〉 then
t[y].end = s[k].end
t[y].beg = minbeg

end
end

Listing 2: tag

3.2.4 Example

Figure 3.2.4 depicts two examples of a process executing three events: a local

event, a receive event, and a send event. In this example, the process is p3 and the

bound on imprecision is 30 . Figure 3.2.4(a) is an example where the receipt of a time

tag increases the imprecision of a time stamp. Figure 3.2.4(b), on the other hand, is

an example where the receipt of a time tag decreases the imprecision of a time stamp.

We discuss, in detail, Figure 3.2.4(b). First, observe the local time stamp on

p3 . It maintains the previously mentioned invariants of time stamps; namely, the

precise intervals are greater than the imprecise intervals, the imprecise intervals share

the same end value, and the interval corresponding to p3 is precise. Also note

that the sum of the widths of the intervals is equal to 6 which is less than the

imprecision bound. The arriving time tag also satisfies its corresponding invariants.
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Figure 3.5: Example of Algorithm

Each imprecise interval is equivalent, and the precise intervals are greater than the

imprecise intervals. The time stamp of the receive event is formed by taking the max

beg and end values of the local time stamp and the incoming time tag. Finally,

the interval corresponding to p3 is incremented. Observe that the imprecision has

decreased from 6 to 3 .

The next event is the send event. First, the time stamp is created by incrementing

the interval corresponding to p3 . The time tag is constructed as follows. First, we

compute the minimal beg value of the time stamp. In this case, it is 10 . We begin

by considering the largest precise interval, 〈18, 18〉 . We determine the resulting error

of the time tag if we used 〈10, 18〉 as the common imprecise interval. In this case, it

would be 6 ∗ (18 − 10) = 48 . Since 48 > 30 , we add 〈18, 18〉 to the time tag and

consider the next largest precise interval. The next largest interval is 〈17, 17〉 and

the resulting error would be 5 ∗ (17 − 10) = 35 > 30 . We again add the interval to

the time tag and consider the next. At this point, we consider the interval 〈14, 14〉 .
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The resulting error is 4 ∗ (14 − 10) = 16 which is less than our imprecision bound.

Therefore, we set the remaining intervals to 〈10, 14〉 .
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CHAPTER 4

Proofs of Correctness

There are two proof requirements for the correctness of P . First, we must show

that P is plausible. Second, we must show that the imprecision of each time stamp

is less than or equal to the given bound.

This chapter is outlined as follows. We begin by proving several invariants of

time stamps and time tags. We show that our algorithm produces well-formed time

stamps and time tags, and that these maintain a bound on error. We prove that our

algorithm is plausible and that our time stamps maintain a bound on imprecision.

4.1 Recharacterization of S and G

In order to prove that the time stamps and time tags of our algorithm are well-

formed, we first recharacterize S and G . We define min beg(s) and min end(s)

as the minimum beg value and minimum end value of a time stamp s , respectively.

Definition 1.

min beg(s) = (Min i : 1 ≤ i ≤ N : s[i].beg )

min end(s) = (Min i : 1 ≤ i ≤ N : s[i].end )
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We can use min beg and min end to redefine S and G . S is defined as those

elements s whose imprecise intervals have an end value equal to min end(s) :

(∀ i : 1 ≤ i ≤ N : ¬precise(s[i])⇒ s[i].end = min end(s) ) (4.1)

While G is defined as those elements t whose imprecise intervals share the same

end value (4.1) and have a beg value equal to min beg :

(∀ i : 1 ≤ i ≤ N : ¬precise(s[i])⇒ s[i].beg = min beg(s) ) (4.2)

With this recharacterization, we can prove several properties about time stamps.

For instance, if a time stamp s has an imprecise interval, then min beg(s) is strictly

less than min end(s) .

(∃ i : 1 ≤ i ≤ N : ¬precise(s[i]) )⇒min beg(s) < min end(s) (4.3)

Proof. Let s[i] be an time interval of s such that ¬precise(s[i]) .

min beg(s)

= { Definition of min beg(s) }

(Min j : 1 ≤ j ≤ N : s[j].beg )

≤ { One-point rule }

s[i].beg

< { Definition of ¬precise(s[i]) }

s[i].end

= { end of imprecise interval is min end }

min end(s)
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Figure 4.1: The join ( ∗ ) operator

4.2 The join (∗ ) operator

We define the join ( r ∗ s ) of two time stamps by,

(∀ i : 1 ≤ i ≤ N : (r ∗ s)[i].beg = max(r[i].beg, s[i].beg) ∧

(r ∗ s)[i].end = max(r[i].end, s[i].end) )

Observe that we can redefine the stamp procedure in terms of ∗ . For a receive

event, the join of the old time stamp and the incoming time tag t is taken ( r ∗ t ),

and the local entry is incremented. Figure 4.2 is a graphical representation of the join

operator. The white and gray imprecise intervals correspond to the two time stamps

being joined. The dashed intervals (and circles to represent precise intervals) are the

join of the two time stamps.

We can prove the following useful properties of join. First, the join operator is

monotonic. That is, the join of two time stamps is greater than or equal to those
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time stamps in terms of its value of min beg and min end .

min beg(r ∗ s) ≥ max(min beg(r),min beg(s)) (4.4)

min end(r ∗ s) ≥ max(min end(r),min end(s)) (4.5)

Proof. min beg(r ∗ s) ≥ max (min beg(r),min beg(s))

min beg(r ∗ s)

= { Definition of min beg }

(Min i : 1 ≤ i ≤ N : (r ∗ s)[i].beg )

≥ { Definition of ∗ }

(Min i : 1 ≤ i ≤ N : r[i].beg )

= { Definition of min beg }

min beg(r)

Proof. min end(r ∗ s) ≥ max (min end(r),min end(s))

Similar to above.

Also, an interval that is precise in both time stamps is precise in the join of those

time stamps.

(∀ i : 1 ≤ i ≤ N : precise(r[i]) ∧ precise(s[i])⇒

precise((r ∗ s)[i]) ) (4.6)

Proof. precise(r[i]) ∧ precise(s[i])

⇒ { Definition of precise }

r[i].beg = r[i].end ∧ s[i].beg = s[i].end
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⇒ { Leibniz }

max (r[i].beg, s[i].beg) = max (r[i].end, s[i].end)

≡ { Definition of ∗ }

(r ∗ s)[i].beg = (r ∗ s)[i].end

≡ { Definition of precise }

precise(r ∗ s)[i]

The imprecise intervals of the join of two time stamps share the same end value,

and that end value is equal to the max of the min end of both time stamps.

(∀ i : 1 ≤ i ≤ N : ¬precise((r ∗ s)[i])⇒ (r ∗ s)[i].end =

max(min end(r),min end(s) ) (4.7)

Proof. We will prove by contradiction. Assume there exists an i such that ¬precise(r∗

s)[i] .

(r ∗ s)[i].end 6= max (min end(r),min end(s))

≡ { Monotonicity of ∗ , (4.5) }

(r ∗ s)[i].end > max (min end(r),min end(s))

≡ { Property of max }

(r ∗ s)[i].end > min end(r) ∧ (r ∗ s)[i].end > min end(s)

≡ { Definition of ∗ }

max (r[i].end, s[i].end) > min end(r)

∧ max (r[i].end, s[i].end) > min end(s)

⇒ { Property of max }

r[i].end > min end(r) ∧ s[i].end > min end(s)
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⇒ { end of imprecise interval is min end (4.1) }

precise(r[i]) ∧ precise(s[i])

⇒ { precise interval of both time stamps is precise in join (4.6) }

precise((r ∗ s)[i])

An important property is that S is closed under join. That is, the join of two

time stamps is also a time stamp:

(∀ r, s :: (r ∗ s)[i].beg ≤ (r ∗ s)[i].end ∧

¬precise((r ∗ s)[i])⇒ (r ∗ s)[i].end = min end(r ∗ s) )

Proof. We will prove each conjunct separately.

1. (r ∗ s)[i].beg ≤ (r ∗ s)[i].end

(r ∗ s)[i].beg

= { Definition of ∗ }

max (r[i].beg, s[i].beg)

≤ { Definition of a time interval }

max (r[i].end, s[i].end)

= { Definition of ∗ }

(r ∗ s)[i].end

2. ¬precise((r ∗ s)[i])⇒ (r ∗ s)[i].end = min end(r ∗ s)

¬precise((r ∗ s)[i])

⇒ { Property of imprecise intervals of join (4.7) }
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(r ∗ s)[i].end = max (min end(r),min end(s))

≡ { Definition of min end }

(r ∗ s)[i].end = max ( (Min j : 1 ≤ j ≤ N : r[j].end ),

(Min j : 1 ≤ j ≤ N : s[j].end ))

⇒ { min max }

(r ∗ s)[i].end ≤ (Min j : 1 ≤ j ≤ N : max (r[j].end, s[j].end) )

≡ { Definition of ∗ }

(r ∗ s)[i].end ≤ (Min j : 1 ≤ j ≤ N : (r ∗ s)[j].end) )

≡ { Property of min }

(r ∗ s)[i].end = (Min j : 1 ≤ j ≤ N : (r ∗ s)[j].end )

≡ { Definition of min end }

(r ∗ s)[i].end = min end(r ∗ s)

4.3 Additional Properties of join

Using the closure property of join, we are able to prove several more proper-

ties. First, if there is an imprecise interval in the join of two time stamps, then the

min end of the join is equal to the max of the min end ’s of the time stamps.

(∃ i :: ¬precise((r ∗ s)[i]) )⇒

min end(r ∗ s) = max(min end(r),min end(s)) (4.8)

Proof. ¬precise((r ∗ s)[i])

≡ { Property of imprecise intervals of join (4.7) }

¬precise((r ∗ s)[i]) ∧ (r ∗ s)[i].end = max (min end(r),min end(s))
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⇒ { end of imprecise intervals is min end (4.1) }

(r ∗ s)[i].end = min end(r ∗ s) ∧ (r ∗ s)[i].end =

max (min end(r),min end(s))

⇒

min end(r ∗ s) = max (min end(r),min end(s))

If an interval is imprecise in the join of two time stamps, it must have been

imprecise in time stamp with the greatest value of min end .

¬precise((r ∗ s)[i]) ∧min end(r) ≤min end(s)⇒ ¬precise(s[i]) (4.9)

Proof. ¬precise((r ∗ s)[i]) ∧ min end(r) ≤min end(s)

⇒ { Property of min end of join (4.8) }

¬precise((r ∗ s)[i]) ∧ min end(r ∗ s) = min end(s)

≡ { Imprecise interval implies min end < min beg (4.3) }

(r ∗ s)[i].beg < min end(r ∗ s) ∧ min end(r ∗ s) = min end(s)

⇒

(r ∗ s)[i].beg < min end(s)

≡ { Definition of ∗ }

max (r[i].beg, s[i].beg) < min end(s)

⇒ { Property of max }

s[i].beg < min end(s)

≡ { Definition of imprecise interval }

¬precise(s[i])

39



We will now prove that the time stamps and time tags of our algorithm are well-

formed.

Theorem 1. For all time stamps s , the following holds:

(∀ i : 1 ≤ i ≤ N : ¬precise(s[i])⇒ s[i].end = min end(s) ) (4.10)

For all t ∈ G , t satisfies (1) and (2), and the following:

(∀ i : 1 ≤ i ≤ N : ¬precise(t[i])⇒ t[i].beg = min beg(t) ) (4.11)

Proof. We will prove by induction.

Base case - holds trivially. There are no time tags in the system. All time stamps

have solely precise intervals, and their value is greater than or equal to min end(s) =

0 .

Inductive step - assume the invariants hold for a history. Let us extend the history

by a single event a on processor pi . Let r be the stamp of the event immediately

preceding a on pi . There are three cases:

1. a is a local event

There is no tag generated, so the tag invariants hold trivially. The time stamp

invariants hold since the new stamp, s , is the same as r except for the ith

entry which is increased and maintained to be precise. Therefore, it will be

precise, and its value will be larger than min end(s) .

2. a is a send event

The time stamp invariants hold due to the previous argument (case 1). The

new time tag, t , built from s is also a valid time tag. The end values of s
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are taken in decreasing order, and given equal beg points. So, any imprecise

interval has the min end as its end point and uses min beg as its beg point.

3. a is a receive event

By the inductive assumption, both r and the incoming time tag, t , satisfy the

invariants. We construct the new time stamp s by taking the join of r and t

and incrementing its ith entry. Since S is closed under join, and the ith entry

is increased and maintained as precise, s is a valid time stamp.

4.4 expand

The error of a time stamp is related to the sum of the widths of its time intervals.

At the end of this chapter, we will show that this is in fact the imprecision of the

time stamp. However, first we will show that this sum is bounded for all time stamps

and time tags. We begin by defining the expand of a time stamp. Intuitively,

the expand of a time stamp is equal to the imprecision of the worst-case time tag

formed from that stamp. That is, the time tag that includes every precise interval

of the time stamp. Figure 4.4 is a graphical representation of expand . The white

imprecise intervals are from the original time stamp. The dashed imprecise intervals

represent the corresponding widths used in expand .

Definition 1.

expand(s) = (
∑

i : 1 ≤ i ≤ N ∧ ¬precise(s[i]) : min end(s)−min beg(s) )

We can show that the join operation does not increase the error of the system.

That is, the expand of the join of two time stamps is less than or equal to the max
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Figure 4.2: expand

of their respective expand ’s.

expand(r ∗ s) ≤ max(expand(r), expand(s)) (4.12)

Proof. expand(r ∗ s) ≤ max (expand(r), expand(s))

≡ { Definition of max }

expand(r ∗ s) ≤ expand(r) ∨ expand(r ∗ s) ≤ expand(s)

Assume without loss of generality that min end(r) ≤ min end(s) . It suffices

to show that, under this assumption, expand(r ∗ s) ≤ expand(s) .

expand(r ∗ s)

= { Definition of expand }

(
∑

i : 1 ≤ i ≤ N ∧ ¬precise((r ∗ s)[i]) : min end(r ∗ s)−

min beg(r ∗ s) )

= { w.l.o.g. }

(
∑

i : 1 ≤ i ≤ N ∧ ¬precise((r ∗ s)[i]) ∧
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min end(r) ≤min end(s) : min end(r ∗ s)−min beg(r ∗ s) )

= { Property of min end of join (4.8) }

(
∑

i : 1 ≤ i ≤ N ∧ ¬precise((r ∗ s)[i]) ∧

min end(r) ≤min end(s) : min end(s)−min beg(r ∗ s) )

≤ { Imprecise interval in join is imprecise in time stamp (4.9) }

(
∑

i : 1 ≤ i ≤ N ∧ ¬precise(s[i]) : min end(s)−min beg(r ∗ s) )

≤ { Monotonicity of join (4.4) }

(
∑

i : 1 ≤ i ≤ N ∧ ¬precise(s[i]) : min end(s)−min beg(s) )

= { Definition of expand }

expand(s)

We now will show that the expand of all time stamps and time tags is less than

or equal to the specified bound, K .

Theorem 1.

expand(s) ≤ K

expand(t) ≤ K

Proof. We will prove by induction.

Base case - Holds trivially. There are no time tags, and the expand of all initial

time stamps is 0 since all intervals are precise.

Inductive step - Assume the invariants hold for a history. Let us extend the history

by a single event, a , on processor pi . Let r be the stamp of the event immediately

preceding a on pi . There are three cases:
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1. a is a local event

There is no tag generated, so the tag invariants hold trivially. The time stamp

invariants hold since the new stamp, s , is the same as r except for the ith

entry which is increased and kept as precise. Therefore, the ith entry is still

larger than min end .

2. a is a send event

The time stamp invariants hold due to the previous argument (case 1). Consider

the construction of the time tag t from the time stamp s . Since s satisfies

the invariants, in the worst case every precise interval of s will be included in

t . That means, in the worst case, expand(t) = expand(s) . Therefore, the

invariants hold for t .

3. a is a receive event

There is no tag generated, so the tag invariants hold trivially. The new time

stamp s , is constructed by taking the join of r and the incoming time tag, t ,

and increasing the ith entry. By our inductive assumption, the expand of r

and t are both less than or equal to K . By ??, expand(s) is also less than

or equal to K .

4.5 Proof of Plausibility

In order to prove that P is plausible, we begin by showing that the
P→ relation

holds between local events and send-receive pairs.

Theorem 2. If a and b both occur on a process pi , a→ b ⇔ a
P→ b .
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Proof. It suffices to show that for two consecutive events a and b , (∀ j : 1 ≤ j ≤

N : stamp(a)[j].beg ≤ stamp(b)[j].beg ) ∧ stamp(a)[i].end < stamp(b)[i].beg .

That is, it suffices to show that a → Pb holds. Observe that for a local or send

event, all entries of stamp(b) are equal to those of stamp(a) , except for the ith

which is incremented. For a receive event, the entries of stamp(b) are guaranteed

to be greater than or equal to those of stamp(a) since we max the beg values.

Therefore, the theorem holds.

Theorem 3. If a is a send event on pi and b is the corresponding receive event on

pj , a
P→ b .

Proof. Let r = stamp(a) , s = stamp(b) , and let t be the time tag sent from a to

b . We can derive the following:

(∀ k : 1 ≤ k ≤ N : r[k].end ≤ t[k].end ) , By construction of t (4.13)

(∀ k : 1 ≤ k ≤ N : t[k].end ≤ s[k].end ) , Maxing of end values (4.14)

(∀ k : 1 ≤ k ≤ N : r[k]
interval

/ s[k] ) , By 4.13 and 4.14 (4.15)

(∃ k : 1 ≤ k ≤ N : t[k].end < s[k].beg ) , Let k = j (4.16)

(∃ k : 1 ≤ k ≤ N : r[k]
interval
< s[k] ) , By 4.13 and 4.16 (4.17)

a
P→ b , By 4.15 and 4.17 (4.18)

Another property of P is that precise intervals imply a causal relationship. That

is, if a time stamp has a precise interval it must have been propagated from the

original event.
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Theorem 4. (∀ a ∈ Hi, b ∈ Hj :: a 6= b ∧ stamp(a)[i]
interval

= stamp(b)[i]⇒ a→

b ) .

Proof. Let r = stamp(a) and s = stamp(b) . We will prove by contradiction.

Assume a 6= b ∧ r[i]
interval

= s[i] ∧ ¬(a → b) . It suffices show that it is impossible

for s[i] = r[i] . Consider how the value of s[i] was obtained. The value was either

created at s , or propagated to s . Let’s consider the point of creation. That is, there

exists a first time stamp q = stamp(c) such that c → b and q[i] = r[i] . Formally,

(∃ c :: c → b ∨ c = b ∧ q[i] = r[i] ∧ ¬ (∃ d :: d → c ∧ stamp(d)[i] = r[i] ) ) . It

suffices to show that is impossible for q[i] = r[i] ∧ a 6= c . There are three cases:

1. c is a local or send event

The stamp function only modifies the interval corresponding to a stamp’s

process. If the value of q[i] was propagated from an event local to c , it

would violate the assumption that q is the first such time stamp with the

value q[i] = r[i] . Also, c could not have occurred on process pi and still

maintain a 6= c because the interval corresponding to a time stamp’s process

is strictly increasing.

2. c is a receive event, and the value of q[i] was propagated through the incoming

time tag

An interval of a time tag is only precise if it was precise in the corresponding

send event. This would violate our assumption that q is the first such time

stamp with the value q[i] = r[i] .

3. c is a receive event, and the value of q[i] occurred during the merging of data
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The value of q[i] is precise. Observe that the only way for an interval to be

precise after a receive event is if it was precise in either the previous local time

stamp or the incoming time tag. Therefore, this is impossible.

In all cases, there is a contradiction. Therefore, the lemma holds.

Definition 2. latest(Hi) = a : ( ∀ b ∈ Hi :: b→ a ∨ b = a )

Lemma 1. (∀Hi, a : a = latest(Hi) : (∀ b :: stamp(b)[i].beg ≤ stamp(a)[i].beg ) )

Proof. We will prove by induction. Initially, (∀ a ∈ Hi :: stamp(a)[i].beg = 1 ∧

(∀ j : 1 ≤ j ≤ N : stamp(a)[j].beg ≤ 1 ) ) , therefore the invariant holds. Assume

for all events, the invariant holds. Let a on process pi be the next event in the

system. There are two cases:

1. a is a send or local event

Let c be the event immediate preceding a on pi . By definition of the stamp

function, we know stamp(a)[i].beg ≥ stamp(c)[i].beg ∧ (∀ j : 1 ≤ j ≤

N : stamp(a)[i] = stamp(c)[i] ) . Since we assume that c maintains the

invariant, the following holds:

(∀ b :: stamp(b)[i].beg ≤ stamp(c)[i].beg ≤ stamp(a)[i].beg ) ∧

(∀Hj, b : b = latest(Hj) : stamp(a)[j].beg = stamp(c)[j].beg ≤

stamp(b)[i].beg )

Therefore, the invariant holds.

2. a is a receive event
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Let c be the event immediately preceding a on pi . Let t be the message a

receives from event d . By definition of the tag function, we know (∀ j : 1 ≤

j ≤ N : t[j].beg ≤ stamp(d)[j].beg ) . Therefore, by the definition of stamp ,

we know the following:

(∀ j : 1 ≤ j ≤ N ∧ j 6= i : stamp(a)[j].beg ≤

max(stamp(c)[j].beg, stamp(d)[i].beg) ) ∧

stamp(a)[i].beg ≥ stamp(c)[i].beg

By our assumption that c and d maintain the invariants, the following holds:

(∀ b :: stamp(b)[i].beg ≤ stamp(c)[i].beg ≤ stamp(a)[i].beg ) ∧

(∀Hj, b : b = latest(Hj, b) : stamp(a)[j].beg ≤

max(stamp(c)[j].beg, stamp(d)[j].beg) ≤ stamp(b)[i].beg )

Similarly to the presence of precise intervals, an interval of one time stamp being

strictly less than the corresponding interval of another time stamp also implies a

causal relationship.

Theorem 5. Let a and b be events on processes pi and pj respectively. The

following holds: stamp(a)[i]
interval
< stamp(b)[i]⇒ a→ b .

Proof. We will prove by induction. Initially, there does not exist two events a on

pi and b on pj such that stamp(a)[i]
interval
< stamp(b)[i] . Therefore, the invariant

trivially holds. Assume that for all events, the invariant holds. Let a on pi be the

next event in the system. There are two cases:
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1. a is a send or local event

Let c be the event immediately preceding a on pi . By the stamp function, we

know ( ∀ b ∈ Hj : j 6= i : (stamp(b)[j]
interval
< stamp(c)[j] = stamp(a)[j])⇒

b→ c→ a ) . Since stamp increments the ith entry of stamp(c) and c→ a ,

we know ( ∀ b ∈ Hi :: stamp(b)[i]
interval
< stamp(a)[i] ⇒ b → a ) . What

remains to be shown is (∀ b :: stamp(a)[i]
interval
< stamp(b)[i] ⇒ a → b ) .

However, by Lemma 1 we know ¬ (∃ b :: stamp(a)[i]
interval
< stamp(b)[i] ) ,

and therefore it is trivially true.

2. a is a receive event

Let c be the event immediately preceding a on pi . Let t be the message

a receives from event d . By the tag function, we know (∀ k : 1 ≤ k ≤

N : t[k].beg ≤ stamp(d)[k].beg ) . By the stamp function, we know (∀ k :

1 ≤ k ≤ N : stamp(a)[k].beg ≤ max(stamp(c)[k].beg, stamp(d)[k].beg ) .

(∀ b ∈ Hj : j 6= i : stamp(b)[j]
interval
< stamp(a)[j] ⇒ (stamp(b)[j]

interval
<

stamp(c)[j] ∨ stamp(b)[j]
interval
< stamp(d)[j]) ) . Since stamp increments

the ith entry of stamp(c) and c→ a , we know ( ∀ b ∈ Hi :: stamp(b)[i]
interval
<

stamp(a)[i]⇒ b→ a ) . What remains to be shown is (∀ b :: stamp(a)[i]
interval
<

stamp(b)[i]⇒ a→ b ) . However, by Lemma 1 we know

¬ (∃ b :: stamp(a)[i]
interval
< stamp(b)[i] ) , and therefore it is trivially true.

Theorem 6. P is plausible.

Proof. There are two proof obligations:
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1. a→ b⇒ a
P→ b

Assume a → b ; therefore, there exists a chain of events c0, c1, ..., cn where

c0 = a and cn = b and (∀ i : 0 ≤ i < n : ci → ci+1 ) . It suffices to show the

following properties:

(a) (∀ i : 0 ≤ i < n : ci
P→ ci+1 )

There are two cases: ci and ci+1 are either local to each other or a send

receive pair. Both of these cases are directly proved by Theorem 2 and 3.

(b) ( ∀ i, j, k : 0 ≤ i < j < k ≤ n : (ci
P→ cj ∧ cj

P→ ck)⇒ ci
P→ ck )

Let si = stamp(ci) , sj = stamp(cj) , and sk = stamp(ck) . Observe

that the end points of intervals are non-decreasing in our system (we

either increment or max them), therefore, we can derive the following:

(∀m : 1 ≤ m ≤ N : si[m].end ≤ sj[m].end ≤ sk[m].end )

, end points are non-decreasing (4.19)

¬ (∃m : 1 ≤ m ≤ N : sk[m]
interval
< si[m] )

, By 4.19 (4.20)

(∃m : 1 ≤ m ≤ N : sj[m].end < sk[m].beg )

, By definition of
P→ and → (4.21)
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Let m be an integer such that sj[m].end < sk[m].beg (by 4.21). We can

derive the following:

(∀ g : 1 ≤ g ≤ N : si[g]
interval

/ sk[g] )

, By 4.20 (4.22)

si[m].end ≤ sj[m].end < sk[m].beg

, By 4.19 and definition of m (4.23)

si[m]
interval
< sks[m]

, By definition of
interval
< (4.24)

ci
P→ ck

, By 4.22 and 4.24 (4.25)

2. a = b ⇐⇒ a
P
= b

Observe that by our definition of the
interval
≈ relation and

P
= , a = b ⇒ a

P
= b

holds. We will prove by contradiction that a
P
= b ⇒ a = b . Let pi and pj be

the processes for a and b respectively. Assume a
P
= b ∧ a 6= b . In order for

a
P
= b to hold, the following must be true, stamp(a)[i]

interval
= stamp(b)[i] ∧

stamp(b)[j]
interval

= stamp(a)[j] . By applying Theorem 4, a → b . However,

we previously proved that a → b ⇒ a
P→ b which contradicts our assumption

a
P
= b .

4.6 Proof of Bounded Imprecision

Theorem 7.

ψ(stamp(a)) ≤ (
∑

i : 1 ≤ i ≤ N : stamp(a)[i].end− stamp(a)[i].beg )
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Proof. We will prove by contradiction. Assume ψ(stamp(a)) > (
∑

i : 1 ≤

i ≤ N : stamp(a)[i].end − stamp(a)[i].beg ) . By Theorem 4 and 5, (∀ b ∈

Hj :: (stamp(b)[j]
interval
< stamp(a)[j] ∨ stamp(b)[j]

interval
= stamp(a)[j]) ⇒ b →

a ) . Since events satisfying the
interval

= and
interval
< relations are correctly ordered, ψ

must be a function of the events that are related by
interval
≈ . Observe that the precise

intervals corresponding to a process are strictly increasing on that process. There-

fore, for a given process pj , there can be at most stamp(a)[j].end−stamp(a)[j].beg

incorrectly related events (
P→ but not → ). Therefore, ψ(stamp(a)) ≤ (

∑
i : 1 ≤

i ≤ N : stamp(a)[i].end− stamp(a)[i].beg ) which is a contradiction.
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CHAPTER 5

Performance Evaluation

5.1 Simulation Framework

The experimental results presented in this chapter were obtained through a four

step process. First, a history is generated according to several simulation parameters.

Second, the plausible clock algorithms being evaluated are executed on the history.

That is, for a given simulation, each plausible clock is executed on the same history.

Third, a subset of the history is calculated. Finally, statistics are computed from the

subset of the history. Figure 5.1 depicts this process.

5.1.1 Generating Histories

A history is generated by using a discrete event simulation written in C++. Events

are placed in a single priority queue. When an event reaches the head of the queue,

Figure 5.1: Simulation Framework
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INITIALLY:
for j := 1 to N do

event a := 〈0.0, j, local〉 ;
p queue.insert(a) ;

end

begin
event a := p queue.dequeue() ;
if a.type = SEND then

event b ;
b.type := receive ;
b.pid := destination(a.pid) ;
b.time := a.time+ transmit delay(a.pid, b.pid) ;
p queue.insert(b) ;

end
event b ;
b.pid := a.pid ;
b.type := event rule(b.pid) ;
b.time := a.time+ local delay(b.pid) ;
p queue.insert(b) ;

end
Listing 3: Generating Histories

it is evaluated and another event is scheduled. The simulation is parameterized by

four procedures: transmit delay , local delay , event rule , and destination . The

procedure transmit delay is used to model the delay of channels in the system. The

local delay procedure is used to model the varying speed of each process. When

rescheduling another event for a given process, event rule is used to dictate the type

of the new event (send or local). Finally, destination is used to compute the target

process of a send event.

The pseudo code for the history generation algorithm is presented in Listing 3.

An event is a tuple 〈time, pid, type〉 , where time is the physical time at which the

event is executed, pid is the id of the event’s process, and type is one of: local ,
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Figure 5.2: Client-Server System

send , receive . The priority queue p queue is a queue of events. It maintains that

the event whose time is the least is kept at the head of the queue.

5.1.2 Client-Server System

For our experiments, we consider a client-server system similar to the one used

in previous plausible clock papers [16, 15]. There are two types of processes in the

system: clients and servers. A client may communicate with any server of the system,

but not other clients. A client sends a request to a server, and is not allowed to send

another message until the server replies to the request. Servers may communicate

with one another if they have no outstanding requests. A server replies to client

requests in first-come first-serve order. Figure 5.1.1 depicts a client-server system.

The system is defined by the following procedures:
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• transmit delay(src, dest)

returns a constant delay of 1.0 .

• local delay(src)

returns a random number based upon a negative exponential distribution with

a mean of 1.0 .

• event rule(src)

1. src is a client

return a local event if waiting on an outstanding request. return a send

event otherwise.

2. src is a server

return a send event.

• destination(src)

1. src is a client

return any server process id using a uniform random distribution.

2. src is a server

if there are no outstanding requests, return a server process id using a

uniform random distribution. if there are outstanding requests, return the

id of the next client to be serviced.

For the following experiments, we consider a 98-client, 2-server system.
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Figure 5.3: Cuts Required for a Middle Subset

5.1.3 Slicing Histories

Our goal is to construct an accurate expected-case analysis of our algorithm. In

practice, time stamping schemes are executed on arbitrarily large histories. However,

our generated histories are relatively small (less than 600 events per process). Fur-

thermore, there is an initial startup delay in which processes begin to communicate

with each other. In fact, our algorithm performs particularly well during this initial

startup. Therefore, in order to eliminate this bias from our expected-case analysis,

we consider a subset of events from the middle of the history.

The middle subset is constructed as follows. First, we construct the cut start beg

by selecting an event e from each process such that there is at least one event from

each process that happens before e . In other words, we select the first event, from

each process, whose vector clock time stamp would have no zero entries. We then

construct the cut mid beg by selecting the first event e from each process such

that every event in start beg happens before e . The cut mid end is constructed by
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Figure 5.4: Imprecision and Message Size

taking the event from each process that is a user-specified number of events later than

the process’ event in mid beg . Finally, the cut last end is constructed by taking

the first event e from each process such that all events in mid end happen before

e . Our middle subset contains the events between (and including) start beg and

last end . Figure 5.1.2 depicts the process of constructing these cuts.

5.2 Experimental Results

5.2.1 Imprecision and Message Size

Our algorithm is parameterized by a bound on imprecision, and maintains that

bound by allowing the size of time tags to grow and shrink throughout the course of
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the computation. Figure 5.1.3 depicts the relationship between the specified impre-

cision bound and the resulting mean time tag size. Since this figure solely considers

our algorithm, we define time tag size as the number of precise intervals included in

the time tag.

Figure 5.1.3 shows that a greater bound on imprecision results in a decrease in

time tag size. This isn’t surprising. A greater imprecision bound allows for a common

interval of greater length.

An interesting observation is that the drop in message size is not linear with re-

spect to the increase of imprecision. A more formal analysis of this result is planned

for future work, but consider the following hypothesis. We gain in time tag size by

representing precise intervals with the common interval. As the imprecision bound

increases, were are allowed to put precise intervals with greater values into the com-

mon interval. However, if those greatest precise intervals have a distribution that is

more spread out than the rest, than the cost of putting those precise intervals in the

common interval increases as our time tags get smaller (more precise intervals are put

in the common interval). In this scenario, the rate of the decrease in message size

would become smaller as the imprecision increases.

5.2.2 Inaccuracy Bound and Observed Inaccuracy

In this thesis, we’ve shown how imprecision can be used to define an upper bound

on inaccuracy. An obvious question is what is the relationship between this upper

bound and the actual inaccuracy. Figure 5.2.2 shows the relationship between the
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Figure 5.5: Inaccuracy Bound and Observed Inaccuracy

calculated inaccuracy bound and the actual observed inaccuracy. For these experi-

ments, the value of the concurrency ratio ε(H) was computed individually for each

run.

Observe that the calculated inaccuracy bound is not a tight bound. That is, there

are cases where the actual inaccuracy is far lower than the bound. One reason for this

is that imprecision reflects a worst-case error for a time stamp; a particular history

may not be the worst-case for all time stamps. Also, even if our algorithm does not

append any precise intervals to time tags (every time tag is just the common interval)

it can still detect concurrency. Therefore, it will never result in an inaccuracy of 1.
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5.2.3 Comparison with Existing Plausible Clocks

For the performance evaluation of our algorithm, we compared it with two previ-

ously proposed plausible clocks: REV and Comb [16]. Comb is a combination of two

plausible clocks: REV and k-Lamport. For our experiments, we fixed the size of the

k-Lamport part of Comb to 5. Therefore, for a given size, R , Comb is comprised of

a k-Lamport clock of size 5 and a REV clock of size R− 5 . For our experiments, an

integer of a time tag is encoded with 64 bits.

Figure 5.2.3 shows the results of our study. Observe that, in general, our algorithm

performs better than both other clocks. This isn’t surprising: our algorithm evaluates

the information of its time stamps and then sends the smallest time tag possible.

However, as the inaccuracy reaches zero, and the number of precise intervals required

in our time tags becomes close to N , the cost of encoding the processor id with each

precise interval causes our algorithm to be out-performed. But, we argue that if the

application is willing to tolerate plausible clocks of that size, it might as well use

vector clocks.
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Figure 5.6: Performance Comparison
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CHAPTER 6

Conclusion

6.1 Related Work

Several algorithms have been proposed as scalable solutions to vector clocks. For

instance, in [2] Baldoni and Melideo proposed k -Dependency Vectors. Their algo-

rithm affixed a constant-size vector of integers to application messages. The tradeoff

of this approach was that, in certain cases, extra computation was required to detect

the causal relationship between events. The algorithm required a dedicated checker

process to determine the causal order of events. The above mentioned detection delay

occurs when the checker process has to delay its decision until all relevant notifications

have arrived.

Two plausible clock algorithms were presented: R-Entries Vector (REV) and k-

Lamport. In [16, 15], the performance of the Comb (REV and k-Lamport combined)

clock was analyzed through simulation. The results of those studies showed good

performance of Comb and also the dependency of that performance on several fac-

tors (e.g., local history size, communication pattern, system size). However, formal

analysis of the expected behavior of a plausible clock algorithm was left for future

work.
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In [8], Gidenstam and Papatriantafilou made several steps in the investigation of

the issues proposed in [16]. They introduced NUREV clocks, a plausible clock algo-

rithm with a constant number of vector entries and a dynamic mapping of processor-

ids to those entries. They then formulated a formal quantification of the error pro-

duced by their algorithm. Using this analysis of error, they proposed several mapping

algorithms to minimize the error produced by information loss. One such mapping was

R-Others Vector-Most Recent Senders (ROV-MRS). Unlike our precision guaranteed

clock, in which the R max time stamps are mapped to message entries, ROV-MRS

maps the most recently heard from processors to R-1 time stamp entries. The moti-

vation of this approach is to minimize the number of time stamps in which error is

propagated.

Our approach to the worst-case analysis of plausible clocks differs from the con-

tributions of [8] in several ways. First, the analysis of the run-time error of NUREV

clocks was used to construct optimal mapping algorithms. Imprecision, on the other

hand, is a means by which to evaluate the performance of plausible clocks independent

of a specific history. Also, it provides a way in which an algorithm can (at run-time)

evaluate the error it is producing and thereby control it.

6.2 Summary

Plausible clocks are used in situations where incorrectly ordering concurrent events

impacts performance but does affect correctness. Previously proposed plausible clocks

use a fixed message size and allow the number of incorrectly ordered concurrent pairs

to vary from run to run. In this thesis, we have considered the problem of reasoning

about and bounding the inaccuracy of plausible clocks. Specifically,
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• We have defined the metric imprecision, which is a history-independent bound

on the worst-case error of a time stamp,

• We have derived a bound on inaccuracy in terms of imprecision,

• We have introduced, and proven the correctness of, a plausible clock algorithm

that is parameterized by an arbitrary bound on imprecision, and

• We have shown that our algorithm achieves good performance with respect to

existing plausible clocks.

6.3 Future Work

The work presented in this thesis provides several possibilities for future work. For

instance, in Chapter 5, we observed that for our algorithm, the observed inaccuracy

may be far lower than the inaccuracy bound. The possibility exists that by storing

more information with a time stamp regarding its imprecision, one may decrease this

gap, thereby allowing the user of the clock to have a finer grain of control on error.

Another interesting idea would be to consider changing the bound on imprecision

at run-time. For instance, in distributed debugging and visualization, a user may want

a more detailed view of the system at critical points of the computation. Pursuit of

this problem would require characterizing under what conditions the imprecision of

the system would converge and/or modifying our algorithm to make convergence more

likely.

65



BIBLIOGRAPHY

[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Causal memory:
Definitions, implementation, and programming. Distributed Computing, 9(1):37–
49, 1995.

[2] R. Baldoni and G. Melideo. k-dependency vectors: A scalable causality-tracking
protocol. In Proceedings of the 11th Euromicro Conference on Parallel, Distrib-
uted and Network-Based Processing, 2003.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75,
February 1985.

[4] B. Charron-Bost. Concerning the size of logical clocks in distributed systems.
Inf. Process. Lett., 39(1):11–16, 1991.

[5] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message passing systems. Technical Report CMU-CS-96-
181, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA, Oct. 1996.
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