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Abstract

Monitoring a pool of resources in a cluster-based web data-
center environment can be critical for successful deployment of
applications such as web servers, database servers, etc. In partic-
ular, the monitored information assists system-level services like
load balancing in enabling the data-center environment to effi-
ciently adapt to the changing system load and traffic pattern. This
information is not only critical in terms of accuracy and content,
but it must also be gathered without impacting performance or
affecting other applications. In this paper, we propose two accu-
rate load monitoring schemes, namely, user-level load monitoring
(ULM) and kernel-level load monitoring (KLM) in a web data-
center environment and evaluate its benefits with respect to overall
system load balancing. In our approach, we use the Remote Di-
rect Memory Access (RDMA) operation (in user space or kernel
space) provided by RDMA-enabled interconnects like InfiniBand.
We further leverage the information provided by certain kernel
data structures in designing these schemes without requiring any
modifications to the existing data-center applications. Our exper-
imental results show that the KLM and ULM schemes achieve an
improvement of 22% and 12% in a single data-center and an im-
provement of 25% and 11% per web-site in shared data-centers,
respectively. More importantly, our schemes take advantage of
RDMA operations in accessing portions of kernel memory that
is not exposed to user space for accurate load monitoring. Fur-
ther, our design is resilient and well-conditioned to the load on the
servers as compared to two-sided communication protocols such
as TCP/IP.
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1 Introduction

With the increasing adoption of Internet as the primary
means of interaction and communication, highly scalable
and available web servers have become a critical require-
ment. A cluster-based web data-center has been proposed
as a cluster architecture to provide scalable web services,
which in turn is distinguished from high performance com-
puting systems in several aspects. In particular, web data-
centers are comprised of several software components such
as proxy servers and web servers which have vastly dif-
ferent system resource requirements. Usually front-end
servers of the data-center such as the proxy servers per-
form communication services between the network and the
back-end server farm for providing edge services such as
load balancing, security, caching, and others. The back-end
servers consist of application servers that handle transaction
processing and implement data-center business logic and
database servers that hold a persistent state of the databases.

Since the front-end servers forward requests to back-end
servers, problem of load balancing the requests among the
nodes in back-end is critical for providing scalable web ser-
vices. Request patterns seen inside the data-center over a
period of time, may vary significantly in terms of the popu-
larity of the content. In addition, requests themselves have
varying computation time. Small documents get served
quickly while large documents take more time to get trans-
ferred. Similarly dynamic web-pages take varying amount
of computation time depending on the type of the client
request. Due to these complex issues, balancing the re-
quests in order to efficiently utilize all the nodes in a data-
center becomes a challenging problem to solve. Moreover,
in the past few years several researchers have proposed data-
centers providing multiple independent web services, pop-
ularly known as shared web data-centers [6, 7]. For ex-
ample, ISPs and other web service providers host multiple
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unrelated web-sites on their data-centers. The requests for
these different web-sites compete with each other for the
resources available in data-center, thus further complicating
this problem.

Several researchers have proposed and evaluated various
load balancing policies for cluster-based web servers [8, 11,
14, 23, 24]. As mentioned in [12], lot of them are valuable
in general, but not all of them can be applicable to current or
next generation web data-centers. Many of the policies fo-
cus on coarse-grained services and ignore the fine-grained
services. Fine-grained services introduce many challenging
issues of which most important one is how to provide accu-
rate load monitoring.

The traditional load monitoring mechanisms are based
on send/recv communication and cannot provide an accu-
rate detection of fluctuating system load on the back-end.
The send/recv communication based design requires sepa-
rate processes running on front-end and back-end to mon-
itor the load of back-end nodes in which the processes
on the back-end nodes send load information to the pro-
cesses on the front-end for every load sampling time inter-
val. Thus if these processes on the back-end nodes are de-
layed to be scheduled because of heavy load, they cannot
provide an accurate picture of the load information period-
ically. While capturing highly fluctuating load information
requires smaller load sampling intervals, these load moni-
toring processes would increasingly compete with the back-
end server applications for CPU resources. A previous re-
search [16] shows that usage of such two-sided communica-
tion for sharing of information in highly loaded data-centers
has significant adverse impact on achievable performance.
More importantly, as the server applications running on the
back-end nodes become diverse, simple load information
(e.g., CPU usage) is not sufficient to accurately represent
load status of the back-end nodes. For example, although
CPU usage is very low there could be many pending I/O
requests, which can result in very high CPU usage in near
future. So we need a mechanism to obtain more detailed
system information.

To address these issues, in this paper, we suggest the use
of accurate load monitoring schemes in the web data-center
environment by leveraging the Remote Direct Memory Ac-
cess (RDMA) operations of modern high speed intercon-
nects such as InfiniBand. The RDMA operations allow the
network interface to transfer data between local and remote
memory buffers without any interaction with the operating
system or processor intervention. Moreover, we suggest
a kernel-level support to allow the load monitor to access
detailed system information of back-end nodes. We pro-
pose two schemes, User-level Load Monitoring (ULM) and
Kernel-level Load Monitoring (KLM), and evaluate their
benefits in providing accurate load monitoring for load bal-
ancing. Especially, the KLM scheme exploits certain ker-

nel data structures that are not exposed to the user space in
performing efficient load balancing. Further, such an im-
plementation removes the need for a separate process on
server nodes for load monitoring, thereby avoiding wastage
of CPU cycles. This work contains several research contri-
butions:

1. We propose novel schemes for accurate load monitor-
ing in web data-centers. These schemes require mini-
mal changes to the legacy data-center applications. We
further utilize the advanced features provided by mod-
ern interconnects such as InfiniBand.

2. It takes the first step toward using RDMA operations
in the kernel space for remote load monitoring in web
data-centers.

3. Our schemes can be used to assist load balancing
by monitoring the load between any two tiers of the
web data-center. Hence our schemes are applicable
to multi-tier data-centers and can result in significant
benefits.

4. RDMA operations in kernel space extends the idea of
reading the entire physical memory from remote nodes
in monitoring the status of the machine. This idea
opens up a new research direction in fault tolerance,
monitoring machine status remotely even if the CPU
is down.

We implement our schemes on Apache based web data-
center. The experimental results show that both KLM and
ULM schemes achieve an improvement of 22% and 15% in
a single data-center and an improvement of 35% and 25%
in shared data-centers, respectively.

The rest of the paper is organized as follows: Section 2
describes the background. In Section 3, we discuss the de-
sign issues and implementation details of our schemes. Sec-
tion 4 presents the potential benefits that we can expect from
our schemes. The experimental results are presented in Sec-
tion 5 and related work in Section 6. We draw our conclu-
sions and discuss possible future work in Section 7.

2 Background

2.1 InfiniBand Architecture and RDMA

InfiniBand Architecture (IBA) is an industry standard
that defines a System Area Network (SAN) to design clus-
ters offering low latency and high bandwidth. A typical IBA
cluster consists of switched serial links for interconnecting
both processing nodes and I/O nodes. The IBA specifica-
tion defines a communication and management infrastruc-
ture for both inter-processor communication as well as inter
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and intra node I/O. IBA defines also built-in QoS mecha-
nisms which provide virtual lanes on each link and define
service levels for individual packets. In an IBA network,
processing nodes are connected to the fabric by Host Chan-
nel Adapters (HCA). Their semantic interface to consumers
is specified in the form of IBA Verbs.

IBA mainly aims at reducing the communication pro-
cessing overhead by decreasing the number of copies asso-
ciated with a message transfer and removing the kernel from
the critical message passing path. The InfiniBand commu-
nication stack consists of different layers. The interface pre-
sented by Channel Adapters to consumers belongs to the
transport layer. A queue-based model is used in this inter-
face.

Each Queue Pair (QP) is a communication endpoint. A
Queue Pair consists of a send queue and a receive queue.
Two QPs on different nodes can be connected to each
other to form a logical bi-directional communication chan-
nel. An application can have multiple QPs. Communica-
tion requests are initiated by posting Work Queue Requests
(WQRs) to these queues. Each WQR is associated with
one or more pre-registered buffers from which data is either
transferred (for a send WQR) or received (receive WQR).

IBA supports two types of communication semantics:
channel semantics (send/recv communication model) and
memory semantics (RDMA communication model).

In channel semantics, every send request has a corre-
sponding receive request at the remote end. Thus there is a
one-to-one correspondence between every send and receive
operation.

In memory semantics, RDMA operations are used.
These operations are transparent at the remote end since
they do not require the remote end to involve in the com-
munication. Therefore, an RDMA operation has to specify
both the memory address for the local buffer as well as that
for the remote buffer. There are two kinds of RDMA opera-
tions: RDMA Write and RDMA Read. In an RDMA write
operation, the initiator directly writes data into the remote
node’s memory. Similarly, in an RDMA Read operation,
the initiator reads data from the remote node’s memory.

2.2 Cluster-Based Shared Web Data-Centers

A clustered data-center environment essentially relies on
the benefits of a cluster environment to provide the services
requested in a data-center environment (e.g., web hosting,
transaction processing). As mentioned earlier, researchers
have proposed data-centers that provide multiple indepen-
dent services, such as hosting multiple web-sites, forming
what is known as shared web data-centers.

Figure 1 shows a logical higher level layout of a shared
web data-center architecture hosting multiple web-sites.
External clients request documents or services from the

data-center over the WAN/Internet through load-balancers
using higher level protocols such as HTTP. The load-
balancers on the other hand serve the purpose of exposing
a single IP address to all the clients while maintaining a list
of several internal IP addresses to which they forward the
incoming requests based on a pre-defined algorithm (e.g.,
round-robin). Typically, the front-end tiers of the data-
center form the load balancers of the inner tiers.

Web−Site ’A’

Web−Site ’B’

Web−Site ’C’

Clients

WAN

Tier

Load Balancing

Servers

Servers

Servers

Figure 1. A Shared Cluster-Based Web Data-
Center Environment

While hardware load-balancers are commonly available
today, they suffer from being based on pre-defined algo-
rithms and are difficult to be tuned based on the require-
ments of the data-center. On the other hand, though soft-
ware load-balancers are easy to modify and tune based on
the data-center requirements, they can potentially form bot-
tlenecks themselves for highly loaded data-centers. Re-
quests can be forwarded to this cluster of software load-
balancers either by the clients themselves by using tech-
niques such as DNS aliasing, or by using an additional hard-
ware load-balancer.

The back-end servers of the clustered data-center pro-
vide the actual data-center services such as web-hosting,
transaction processing, etc. Several of these services such
as CGI scripts, Java servlets and database query operations
can be computationally intensive. This makes the process-
ing on the server nodes more CPU intensive in nature.

3 Design and Implementation of Accurate
Load Monitoring

In this section, we describe the basic design issues in-
volved in monitoring the server’s load and the details about
the implementation of the schemes we propose: User-level
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Load Monitoring (ULM) and Kernel-level Load Monitoring
(KLM).

3.1 Basic Load-Monitoring Support

In this section, we describe the basic design for our
RDMA based load monitoring, which is applied to both
ULM and KLM schemes.

Support for existing applications: A number of appli-
cations exist that allow highly efficient user request process-
ing. These have been developed over a span of several years
and modifying them to allow dynamic load-balancing is im-
practical. To avoid making these cumbersome changes to
the applications, our design makes use of external helper
modules which work along with the applications to pro-
vide effective dynamic load-balancing. Tasks related to sys-
tem load monitoring, maintaining global state information,
load-balancing, etc. are handled by these helper modules in
an application transparent manner. The modules running on
each node in the front-end balance the requests in the data-
center depending on current load patterns. The applications
on the other hand, continue with the request processing, un-
mindful of the changes made by the modules.

Front-end based load monitoring: Two different ap-
proaches could be taken for load-monitoring: back-end
based load monitoring and front-end based load monitoring.
In back-end based load monitoring, when a back-end node
detects a significant load on itself, it informs the front-end
(i.e., load balancer) about its high load. Though intuitively
the loaded node itself is the best node to determine its load
(based on its closeness to the required data and the num-
ber of messages required), performing load-monitoring on
this node adds some amount of load to an already loaded
server. Due to this reason, load-balancing does not happen
in a timely manner and the overall performance is affected
adversely. On the other hand, in front-end based load moni-
toring, the front-end servers detect the load on the back-end,
appropriately choose the � least loaded servers, and per-
form the load balancing accordingly. Choosing � servers
instead of just one least loaded server is a simple method to
avoid load implosion. Hence all future requests get well dis-
tributed among a set of � nodes rather than implode the least
loaded node. In this paper, our design is based on front-end
load monitoring approach.

RDMA read based design: As mentioned earlier, by
their very nature, the back-end nodes are compute intensive.
Execution of CGI-Scripts, business-logic, servlets, database
processing, etc. are typically very taxing on the server
CPUs. In such environment, though in theory the back-
end nodes can share the load information through explicit
two-sided (i.e., send/recv) communication, in practice, such
communication does not perform well [16]. InfiniBand, on
the other hand, provides one-sided remote memory oper-

ations (i.e., RDMA) that allow access to remote memory
without interrupting the remote CPU. In our design, we use
RDMA read to perform efficient front-end based load mon-
itoring. Since the load balancer is performing the load mon-
itoring with no interruptions to the back-end nodes CPUs,
this RDMA read based design is highly resilient to server
load.

With these basic supports, we propose two novel
schemes which can support accurate load monitoring in
a data-center environment: User-level Load Monitoring
(ULM) and Kernel-level Load Monitoring (ULM). We
present these two schemes in the following sub-sections.

3.2 User-level Load Monitoring (ULM)

In order to monitor the load in a data-center, we need to
collect system statistics and propagate this information to
the front-end nodes. In the ULM scheme, we use two differ-
ent kinds of helper modules running on the front-end nodes
and the back-end nodes, respectively. The helper module
in the back-end takes care of connection management by
creating connections to all the front-end nodes. Further,
the module also does exchange of queue pairs and mem-
ory handles so that the front-end helper module can per-
form the RDMA read operation on specific memory areas
registered by the back-end in the user space. The front-end
helper module after getting the memory handles, periodi-
cally performs RDMA read operation and gets the updated
load information, which is used by the load balancer. The
back-end helper module constantly calculates the CPU cy-
cles spent for every time interval from /proc and copies this
information onto a user registered memory.

We use the /proc file system for gathering several sys-
tem statistics. The /proc file system provides several infor-
mation about processes running currently, CPU statistics,
memory and I/O statistics, etc. However, for load monitor-
ing we focus on /proc/stat file which gives us information
about kernel statistics like CPU cycles spent, total number
of I/O interrupts received, context switches, etc. For imple-
menting the ULM scheme, we capture the CPU cycles spent
by the back-end node for every time interval from this file
and copy the load information to the registered memory.

The sequence of steps in load monitoring is shown in
Figure 2. In the first step, the back-end helper module reads
/proc. To access /proc, a trap occurs because of file I/O
in Step 2. In Step 3, the kernel reads certain kernel data
structures and in Step 4, the kernel returns these information
to the helper module. Finally, the helper module parses this
information, calculates the load, and copies to the registered
memory. This load information obtained from all front-end
nodes (Step 5) is further being utilized by load-balancing
algorithms in determining a set of least loaded nodes (Step
6) so that future requests get forwarded to those nodes.
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Figure 2. User-level Load Balancing Mecha-
nism

3.3 Kernel-level Load Monitoring (KLM)

While the ULM scheme retains some of the benefits of
an RDMA based design, since we are using a user process
to implement the helper module, the information we can ob-
serve is restricted at the user-level. An alternative to avoid
this limitation is we can make a kernel module read the nec-
essary information directly and return this load information
to the helper module instead of using /proc. However, we
still need a separate helper module in the back-end to con-
stantly update the load information and this module com-
petes with other processes in the system in the back-end
system. Furthermore, in a data-center that is heavily loaded
with multiple processes competing for the processor(s), the
module which updates the load information may not get the
CPU for a long time. This results in inaccurate load infor-
mation.

To resolve these problems, we suggest a kernel-level
load monitoring scheme that registers the necessary kernel
data structures and let the front-end node directly read the
kernel memory and get the load information. Such a design,
avoids all the drawbacks mentioned above and more impor-
tantly it completely removes the need for an extra process
in the server node. In this approach, we use a Linux ker-
nel module which takes care of connection management,
exchange of queue pairs and registers specific memory re-
gions. After this initialization phase, the kernel is no longer
disturbed. As shown in Figure 3, the load information is
directly got from the kernel space, reading the kernel data
structures using RDMA read (Step 1). Once the load infor-
mation is obtained from all server nodes, a similar approach
is taken by load monitor as mentioned in ULM scheme to
perform load balancing (Step 2).

As mentioned earlier, we use a kernel module to reg-
ister memory area for the kernel data structures. Fortu-
nately we have access to almost all the data-structures via
the kernel modules. For example, the information provided
in /proc/stat is a combination of two data structures namely
kstat and context switches. Apart from these, there are sev-
eral other data-structures that can be accessed at the kernel-
level only. These data structures can provide detail load

information. For example, a kernel data structure that KLM
uses is the irq stat data structure, which maintains the to-
tal number of software interrupts pending that each of the
CPUs need to handle in future. This information, in partic-
ular, gives us an indication of number of pending software
interrupts that the kernel needs to handle and helps in pre-
dicting the load for the next time interval. Usually only the
kernel data structures which have been explicitly exported
are available through a kernel module. But, if we have ac-
cess to the System.map file which is generated while build-
ing the kernel, the kernel module can access all the global
data structures of the kernel even if they are not explicitly
exported. As a consequence, we now have the flexibility of
accessing certain kernel data structures which are otherwise
not exposed to user space. Since we allow only RDMA read
operations on the registered kernel data structures, we are
secure from overwriting the kernel data structures by other
node.

An issue with this scheme is to provide a way to ef-
ficiently manage the history of load information. If the
polling interval on the load information from front-end is
very large, the resolution by which it captures the load in-
formation from server nodes is also large. Thus although
KLM can still observe the accurate current load, it can miss
the load information for last time interval. However, in a
ULM scheme, since we have a separate module on the back-
end, it can manage the load history. Interestingly, the kernel
also maintains load averages and history of load for the past
5 seconds, 1 minute and 5 minutes. We can utilize this in-
formation in KLM to manage correct load history.

Proxy
Threads

Space
Kernel

Space

SpaceKernel

User User Space

Kernel
Module

App
Threads

Back−end NodeFront−end Node

Memory CPUCPU Memory

1
2

Helper
Module

Kernel
Data Structures

RDMA Read

Figure 3. Kernel-level Load Balancing Mech-
anism

4 Potential Benefits of KLM

Using RDMA operations and kernel data structures to
design and implement load monitoring in data-center has
several potential benefits: (i) getting correct load informa-
tion, (ii) utilizing detailed system information, (iii) no pro-
cess requirement on the back-end side, (iv) enhanced ro-
bustness to load, and (v) no kernel modification. In this
section, we describe them in detail.
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Getting correct load information: As mentioned ear-
lier, in the ULM scheme, the helper module on the back-end
constantly calculates the load for every time interval � and
stores this information in its registered memory. The front-
end helper module gets this load information using RDMA
read operation. Due to this interval � , there is always a delay
between the time at which the back-end module updates the
load information and the time at which the front-end reads
the load information from the back-end. For example, if we
assume that the load information is updated every 500ms at
the back-end node, then the front-end node gets the infor-
mation of load updated before 0 500ms and mostly not the
current load in the back-end node. However, regardless of
the � value, KLM can get accurate current load information.
It is because KLM directly reads the load information from
kernel data structures.

Utilizing detailed system information: While the ULM
scheme operates at the user space, KLM scheme operates at
the kernel space providing several opportunities to access
most of the kernel data structures which may be useful for
providing system-level services like load-balancing or dy-
namic reconfigurability in a data-center. Some of them are
exposed via /proc interface while some data structures like
irq stat, dq stat, and avenrun[] are not. However, we can
access these data structures through a kernel module. In ad-
dition, we can also register these memory regions and allow
a remote node to access these data structures through an
RDMA read operation. Accessing a kernel data structure
has two main benefits. (i) The kernel space is the first to get
the updated information and hence performing an RDMA
read operation on kernel memory would provide the most
accurate load information. (ii) Since we can get detail sys-
tem load information we can enhance existing load balanc-
ing algorithms.

No process requirement on the back-end side: The
ULM scheme requires a separate process on the back-end
side to calculate the load of the back-end node periodi-
cally and place this information onto its registered memory.
While this operation may not occupy considerable CPU, in
a highly loaded data-center, it certainly competes for pro-
cessor(s). If we have multiple processes in the data-center,
it increases the time at which this load information is up-
dated. Furthermore, if the traffic inside the data-center is
extremely bursty such delays in capturing the load informa-
tion might lead to poor load balancing. However, with the
KLM scheme in-place, after the kernel module registers the
necessary data structures and sends the memory handle and
read access rights to the front-end, the kernel is free to exe-
cute its code and there is no requirement of any involvement
of the module for load monitoring on the back-end. More-
over, under high loaded conditions, there is no extra thread
competing for CPU and memory.

Enhanced robustness to load: It is a well known fact

that the load on data-centers that support dynamic web ser-
vices is very bursty and unpredictable [21, 22]. Perfor-
mance of load balancing schemes over traditional network
protocols can be degraded significantly especially if there
is a high load in the back-end. This is because both sides
should get involved in communication and it is possible that
the module capturing the load on the back-end may never
get the CPU for a long time. However, for protocols based
on RDMA operations, the peer side is totally transparent
to the communication procedure. Thus, the performance of
both ULM and KLM based on RDMA operations is resilient
and well-conditioned to load.

No kernel modification: It follows quite trivially that
the ULM scheme needs no kernel modification. In addi-
tion, KLM scheme too does not need any kernel modifi-
cation. We implement the basic connection management,
exchange of queue pairs and memory handles for commu-
nication between the back-end and front-end using a kernel
module. This kernel module can be loaded dynamically and
does not require any kernel modification.

5 Experimental Results

For all our experiments we used a 24-nodes cluster in
which each node is equipped with dual Intel Xeon 2.66 GHz
processors, 512KB L2 cache and 2GB of main memory.
The nodes are connected to InfiniBand fabric with 64-bit,
133 MHz PCI-X interface. The InfiniBand network con-
nected with Mellanox InfiniHost MT23108 Host Channel
Adapters (HCAs) through a Mellanox MTS 14400 144 port
switch. The Linux kernel version used is 2.4.20-8smp. The
InfiniHost SDK used is 3.2 and the HCA firmware version
was 3.3.

The 8 nodes of the cluster are used as the back-end nodes
in the data-center environment and the other 16 nodes are
used as the front-end nodes. We use Apache version 2.0.48,
PHP 4.3.1 and MySQL 4.0.12 in all our experiments. We
have used a polling time of 50ms for load monitoring and,
in the case of ULM, the load updating time on back-end
nodes is also 50ms in all the experiments unless otherwise
explicitly specified.

To measure the data-center throughput in TPS, we use
the Zipf trace varying � value. In Zipf law, the relative prob-
ability of a request for the � th most popular content is pro-
portional to ������� , where � determines the randomness of
file accesses. For base performance to compare with ULM
and KLM, we measure the throughput of round-robin and
random based load balancing, which perform the load bal-
ancing without any load information of the back-end nodes
but simple forward requests to the back-end nodes in round-
robin and random manner, respectively.
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Figure 4. Accuracy of Load Information from
ULM and KLM

5.1 Accuracy of Load Information

Figure 4 shows the CPU load captured by the ULM and
KLM schemes and also reports the actual load seen at the
back-end side. To measure all these numbers at the same
time, we have designed the experiment in the following
way. We create a process in the back-end node which al-
ternatively repeats to load the CPU for sometime and go
to sleep at other times. In parallel, we run both ULM and
KLM together and compared the values reported by these
schemes with the actual load values. To measure the ac-
tual load, we have a separate process in the back-end node
which constantly calculates the load (CPU cycles spent) for
every time interval 10 ms and stores this load information
along with a timestamp. To generate timestamps, we use the
kernel time, xtime, in identifying the time at which the front-
end node captured the load information from the back-end
node. As we can see in the figure, the KLM scheme reports
almost the same value with actual load values. However,
ULM scheme takes a while to get the updated load infor-
mation mainly due to the fact that the server thread in the
ULM scheme updates the load only for every interval 50ms.
On the other hand, since the KLM scheme directly reads the
actual load information from the kernel, the KLM scheme
reports accurate load values.

5.2 Benefits in Single Data-Center

In this section, we present the data-center throughput
with ULM and KLM schemes in a single data-center en-
vironment hosting only one website. To show the impact
of load balancing, we run one Zipf trace with varying �
values in our evaluation. Figure 5a shows the throughput
achieved by five schemes. In order to understand the ben-
efits of extra kernel-level information, we added the pKLB

scheme, which only uses CPU load information as the met-
ric to load balance whereas the KLB scheme uses both CPU
load and interrupts pending in the queue while load balanc-
ing the requests. We observe that, in terms of the actual
throughput values, ULM and KLM does better than round-
robin or random load balancing. Figure 5b shows the ben-
efits in terms of improvement percentage. We see that as
the � value decreases in the Zipf trace, the performance im-
provement of all three suggested schemes increases. This is
because, for lower � values in the Zipf trace, the temporal
locality of files is low and the requests are well distributed
in a given set of files giving more opportunity for the load
balancing scheme to balance the requests. As a result, ULM
and KLM can improve the throughput by 12% and 22%, re-
spectively. An interesting result is that even though pKLM
and ULM uses the same information for load balancing, we
see that pKLM performs consistently better than the ULM
scheme, due to accuracy of load information obtained by the
pKLM scheme as as shown in Section 5.1. Another point to
note here is that the KLM scheme consistently does better
than the pKLB scheme for all traces validating the fact that
detailed system information helps load balancer in balanc-
ing the requests in a better way in comparison with other
schemes.

5.3 Impact of Heavy Load on the Back-end Nodes

In this experiment, we emulate the loaded conditions
in the single data-center environment by performing back-
ground computation and communication operations on the
back-end nodes. We run 16 processes in the background
performing a simple ping-pong latency experiment ex-
changing message sizes of 4KB for every iteration. Fig-
ure 6 shows the performance benefits of ULM and KLM
schemes with varying number of loaded nodes in the back-
end side running Zipf trace. As the load in the back-end
nodes increase, both ULM and KLM schemes inform the
back-end nodes’ state to the front-end nodes and these take
the appropriate action of avoiding these loaded nodes. On
the other hand, static load balancing schemes like round-
robin and random are not aware of load in the back-end side
and hence forward requests to all the back-end nodes even
if these are heavily loaded. As a result, we can observe that
ULM and KLM can achieve significantly better throughput
as shown in Figure 6. It is also to be noted that KLM can
achieve higher throughput than ULM, which is again due
to the fact that KLM can obtain more detailed and timely
accurate information.

5.4 Benefits in Shared Data-Centers

In this section, we present the throughput improvement
of ULM and KLM schemes in comparison with random
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Figure 5. (a) Throughput of ULM and KLM in a Single Data-Center with Varying Zipf � Values (b)
Improvement Percentage with Three Suggested Schemes
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Figure 7. Performance Improvement of ULM
and KLM in Shared Data-Centers: Zipf with �
Value 0.9 with Varying Zipf Traces

load balancing in a shared data-center scenario. The ex-
periment is designed in the following manner. We run two
Zipf traces simultaneously with random load balancing and
measure the throughput realized for each trace separately,
where we fix the � value to 0.9 for a Zipf trace and vary it
for the other trace from 0.1 to 0.75. Then, we run the same
test with ULM scheme and KLM scheme and measured the
throughput achieved in the same way as mentioned above.
We report the improvement percentage seen in comparison
with the random load balancing for each of these traces
separately as shown in Figure 7. We can observe that in
the case of Zipf traces with � value 0.9 and 0.1, the KLM
scheme achieves a performance improvement of up to 25%
and 21% per web-site, respectively. On the other hand, the
ULM scheme achieves only 11% and 9% improvements for
the same Zipf traces. In addition, we observe that the ben-
efits in shared data-centers are more in comparison with a
single data-center scenario. This is because there is more
opportunity for performing fine-grained load balancing in
shared data-centers since we have multiple websites with
different resource requirements which change dynamically
from time to time. However, as Zipf � value increases, the
temporal locality of contents increases giving less opportu-
nity to perform fine-grained load balancing but still we can
see significant improvements with KLM.

5.5 Load Distribution

In this section, we show the main benefit of our KLM
scheme with other schemes that we have compared in this
paper. In order to show this, we use the shared data-center
scenario hosting two Zipf traces with � value 0.9 and 0.1
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Figure 8. Load Distribution in Shared Data-Center Scenario Hosting Zipf Traces with � Values of 0.9
and 0.1 (a) Random (b) Round-Robin (c) ULM (d) KLM

as used in Section 5.4. We run this experiment, measure
the CPU cycles spent among all back-end nodes for every
time interval of 50ms, and calculate its variance. We re-
port this variance value over a period of time in Figure 8.
We know that variance on a set of values indicates the de-
gree of fluctuation on those set of values. A lower value
indicates that the set of values are very close to each other,
while high values indicate large differences between these
values. In our case, it is a measure of how well the load
among the back-end nodes was distributed for a period of
time in the data-center. As seen in Figure 8, the variance
of load values reported for random and round-robin load
balancing schemes fluctuate from very high values to low
values, indicating that the load balancing algorithms do not
distribute the load equally most of the time. We see simi-
lar trends even for ULM except that the fluctuation is little
lesser and the average of this variance over time is a bit less
than random and round-robin schemes. On the other hand,
the variance reported by the KLM scheme is significantly
less than all other three schemes indicating that the KLM
scheme resulted in better distribution of load (almost by a
factor of 2).

5.6 Sensitivity on Polling Interval

Figure 9 shows the performance sensitivity with different
polling interval at which the front-end node gathers load in-
formation of back-end nodes by using RDMA read. For a
static scheme like random load balancing we do not have
any polling interval and hence the performance is not af-
fected. However, we have an interesting observation for
ULM and KLM schemes. We see that, in both these two
schemes, higher polling intervals lead to poor performance.
This is because the front-end node uses a snapshot of load
information for long time, which cannot reflect the fluctua-
tion of load on the back-end side. Also, choosing very small
thresholds for ULM scheme yields to poor performance.
This suggests that the responsiveness of the front-end node
to load fluctuations is largely dependent on the polling inter-
val and this needs to be carefully chosen in order to achieve
maximum performance.

6 Related Work

Several researchers have proposed and evaluated vari-
ous load balancing policies for cluster-based network ser-
vices [8, 11, 14, 23, 24]. As mentioned in [12], a lot of them
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Figure 9. Impact of Polling Interval in Load
Monitoring

are valuable in general, but not all of them can be applica-
ble to current or next-generation data-centers. Many of the
policies focus on coarse-grained services In addition, many
of the load balancing policies proposed in [1, 19, 5, 9] rely
on the assumption that all network packets go through a sin-
gle front-end dispatcher so that all connection-based statis-
tics can be accurately maintained. However, in a data-center
environment with several nodes in each tier and interactions
between tiers (e.g., proxy servers and application servers or
application servers and database servers), such an approach
may not be optimal or sometimes give worse performance.
This constraint calls for a distributed and complex load in-
formation dissemination schemes to provide fine-grained
services.

Several others have focused on the design of adaptive
systems that can react to changing workloads in the context
of web servers [15, 10, 20, 4, 18]. There has been some pre-
vious research which focus on dynamism in the data-center
environment by HP labs and IBM Research [13, 17]. These
are notable in the sense that they were the first to show the
capabilities of a dynamic allocation of system resources in
the data-center environment. However, some of the solu-
tions focus on lower level architectural requirements mainly
for storage related issues, rely on specific hardware and are
hard to look at as commodity component based solutions.
On the other hand, in our approach, we try to propose a so-
lution that is not geared toward any specific hardware and
try to give a generic solution at the application level with-
out requiring any changes to existing applications. Further,
some of these approaches rely on the servers to intelligently
load balance the requests to other nodes. While these ap-
proaches are quite intuitive, in a real data-center scenario,

the high server loads can make them inefficient and poten-
tially unusable. Our approach of placing the onus of load
balancing coupled with load monitoring on the relatively
lightly loaded edge servers by utilizing the remote memory
operations offered by InfiniBand tries to tackle these chal-
lenges in an efficient manner.

7 Conclusions and Future Work

In this paper, we proposed two schemes (ULM and
KLM) for accurate load monitoring in a data-center en-
vironment and evaluated its benefits in providing load-
balancing. In our approach, we used the advanced fea-
tures of InfiniBand such as Remote Direct Memory Ac-
cess (RDMA) operations without requiring any modifica-
tions to the existing data-center applications. We also pro-
posed the use of certain kernel data structures which are not
exposed to the user space for performing efficient load bal-
ancing. Our experimental results show that both KLM and
ULM schemes achieve better performance in comparison
with random and round-robin load balancing schemes that
are widely used in current data-centers. Our results also
validate that the load distribution performed by the KLM
scheme is the best in comparison with the other schemes.
Both KLM and ULM schemes achieved an improvement
of 22% and 12% in a single data-center and an improve-
ment of 25% and 11% per web-site in shared data-centers,
respectively. More importantly, our schemes take advan-
tage of RDMA read operation in accessing certain portion
of kernel memory for accurate load monitoring and making
it resilient and well-conditioned to the load on the back-end
nodes. This feature becomes more important because of the
unpredictability of load in a typical data-center environment
which supports large-scale dynamic services.

Dynamic reconfiguration of resources has been studied
in the context of nodes [3, 2] and storage environments [17].
Monitoring the load for such services is also critical for ef-
ficiently utilizing the resources in the data-center. We plan
to extend the knowledge gained in this study to implement a
full-fledged dynamic reconfiguration module coupled with
accurate load monitoring.
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