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Abstract

In the context of IEEE 802.11b network testbeds, we examine
the differences between unicast and broadcast link properties,
and we show the inherent difficulties in precisely estimating uni-
cast link properties via those of broadcast beacons even if we
make the length and transmission rate of beacons be the same as
those of data packets. To circumvent the difficulties in link es-
timation, we propose to estimate unicast link properties directly
via data traffic itself without using beacons. To this end, we de-
sign a beacon-free routing protocol Learn on the Fly (LOF). LOF
estimates link quality based solely on data traffic, and it chooses
routes by way of a locally measurable metric ELD, the expected
MAC latency per unit-distance to the destination. Using a real-
istic sensor network traffic trace and an 802.11b testbed of 195
Stargates, we experimentally compare the performance of LOF
with that of existing protocols, represented by the geography-
unaware ETX and the geography-based PRD. We find that LOF
reduces end-to-end MAC latency by a factor of 3, enhances en-
ergy efficiency by a factor up to 2.37, and improves route stabil-
ity by 2 orders of magnitude. The results demonstrate the feasi-
bility as well as potential benefits of data-driven beacon-free link
estimation and routing.

K eywords—experiment-based design and analysis, bursty convergecast,

beacon-free geographic routing, data-driven link quality estimation, MAC
latency, IEEE 802.11b, real time, energy, reliability

1 Introduction

Wireless sensor networks are envisioned to be of large scale,
comprising thousands to millions of nodes. To guarantee real-
time and reliable end-to-end packet delivery in such networks,
they usually require a high-bandwidth network backbone to pro-
cess and relay data generated by the low-end sensor nodes such
as motes [3]. This architecture has been demonstrated in the sen-
sor network field experiment ExScal [7], where 203 Stargates
and 985 XSM motes were deployed in an area of 1260 meters
by 288 meters. Each Stargate is equipped with a 802.11b radio,
and the 203 Stargates form the backbone network of ExScal to
support reliable and real-time communication among the motes
for target detection, classification, and tracking. Similar 802.11
based sensor networks (or network backbones) have also been
explored in other projects such as MASE [1] and CodeBlue [2].
In this paper, we study how to perform routing in such 802.11
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based wireless sensor network backbones.

As the quality of wireless links, for instance, packet deliv-
ery rate, varies both temporally and spatially in a complex man-
ner [8, 22, 31], estimating link quality is an important aspect
of routing in wireless networks. Existing routing protocols [12,
13, 14, 26, 29] exchange broadcast beacons between peers for
link quality estimation. Nevertheless, link quality for broad-
cast beacons differs significantly from that for unicast data, be-
cause broadcast beacons and unicast data differ in packet size,
transmission rate, and coordination method at the media-access-
control (MAC) layer [11, 24]. Moreover, temporal correlations
of link quality assume a complex pattern [28], which makes it
even harder to precisely estimate unicast link quality via that of
broadcast. Therefore, link quality estimated using periodic bea-
con exchange may not accurately apply for unicast data, which
can negatively impact the performance of routing protocols.

In wireless sensor networks, a typical application is to monitor
an environment (be it an agricultural field or a classified area) for
events of interest to the users. Usually, the events are rare. Yet
when an event occurs, a large burst of data packets is often gen-
erated that needs to be routed reliably and in real-time to a base
station [30]. In this context, even if there were no discrepancy
between the actual and the estimated link quality using periodic
beacon exchange, the estimates tend to reflect link quality in the
absence, rather than in the presence, of bursty data traffic. This is
because: first, link quality changes significantly when traffic pat-
tern changes (as we will show in Section 2.2.2); and second, link
quality estimation takes time to converge, yet different bursts of
data traffic are well separated in time, and each burst lasts only
for a short period.

Beacon-based estimation of link quality is not only limited in
reflecting reality, it is also inefficient in energy usage. In exist-
ing routing protocols that use link quality estimation, beacons
are exchanged periodically. Therefore, energy is consumed un-
necessarily for the periodic beaconing when there is no data traf-
fic. This is especially true if the events of interest are infrequent
enough that there is no data traffic in the network most of the
time [30].

To deal with the shortcomings of beacon-based link quality es-
timation and to avoid unnecessary beaconing, new mechanisms
for link estimation and routing are desired.

Contributions of the paper. Using outdoor and indoor testbeds
of 802.11b networks, we study the impact of environment, packet
type, packet size, and interference pattern on the quality of wire-
less links. The results show that it is difficult (if even possible)
to precisely estimate unicast link quality using broadcast bea-
cons even if we make the length and transmission rate of bea-



cons be the same as those of data packets. Fortunately, we find
that geography and the DATA-ACK handshake (available in the
802.11b MAC) make it possible to perform routing without using
beacons, in terms of information diffusion and beacon-free link
quality estimation respectively. To demonstrate the technique of
data-driven link estimation and beacon-free routing, we define a
routing metric ELD, the expected MAC latency per unit-distance
to the destination, which can be implemented in our 802.11 net-
works and works well in both our indoor testbeds and the large
scale field experiment ExScal [7]. (Note: in principle, we could
have used metrics such as ETX [12] or RNP [10] in data-driven
beacon-free routing, but this is not feasible given the existing
802.11 radios.)

To implement beacon-free routing, we modify the Linux ker-
nel and the WLAN driver hostap [5] to exfiltrate the MAC la-
tency for each packet transmission, which is not available in ex-
isting systems. The exfiltration of MAC latency is reliable in the
sense that it deals with the loss of MAC feedback at places such
as netlink sockets and IP transmission control.

Building upon the capability of reliably fetching MAC latency
for each packet transmission, we design a routing protocol Learn
on the Fly (LOF) which implements the ELD metric in a beacon-
free manner. In LOF, control packets are used only rarely, for
instance, during the node boot-up. Upon booting up, a node ini-
tializes its routing engine by taking a few (e.g., 8) samples on
the MAC latency to each of its neighbors; then the node adapts
its routing decision solely based on the MAC feedback for data
transmission, without using any control packet. To deal with
temporal variations in link quality and possible imperfection in
initializing its routing engine, the node switches its next-hop for-
warder to another neighbor at controlled frequencies with a prob-
ability that this neighbor is actually the best forwarder.

Using an event traffic trace from the field sensor network of
ExScal [7], we experimentally evaluate the design and the per-
formance of LOF in a testbed of 195 Stargates [3] with 802.11b
radios. We also compare the performance of LOF with that of
existing protocols, represented by the geography-unaware ETX
[12, 29] and the geography-based PRD [26]. We find that LOF
reduces end-to-end MAC latency, reduces energy consumption
in packet delivery, and improves route stability. Besides bursty
event traffic, we evaluate LOF in the case of periodic traffic, and
we find that LOF outperforms existing protocols in that case too.
The results corroborate the feasibility as well as potential bene-
fits of data-driven beacon-free link estimation and routing.

Organization of the paper. In Section 2, we study the short-
comings of beacon-based link quality estimation, and we analyze
the feasibility of beacon-free routing. Following that, we present
the routing metric ELD in Section 3, and we design the protocol
LOF in Section 4. We experimentally evaluate LOF in Section 5,
and we discuss the related work in Section 6. We make conclud-
ing remarks in Section 7.

2  Why beacon-free routing?

In this section, we first experimentally study the impact of packet
type, packet length, and interference on link properties'. Then

'In this paper, the phrases link quality and link property are used interchangeably.

we discuss the shortcomings of beacon-based link property esti-
mation, as well as the concept of beacon-free link estimation and
routing.

2.1 Experiment design

We set up two 802.11b network testbeds as follows.

Outdoor testbed. In an open field (see Figure 1), we deploy 29
Stargates in a straight line, with a 45-meter separation between
any two consecutive Stargates. The Stargates run Linux with ker-
nel 2.4.19. Each Stargate is equipped with a
SMC 2.4GHz 802.11b wireless
card and a 9dBi high-gain collinear
omnidirectional antenna, which
is raised 1.5 meters above the
ground. To control the maximum
communication range, the trans-
mission power level of each Star-
gate is set as 35. (Transmission
power level is a tunable parameter
for 802.11b wireless cards, and its
range is 127, 126, ..., 0,255,254, ..., 129, 128, with 127 being
the lowest and 128 being the highest.)

Indoor testbed. In an open warehouse with flat aluminum walls
(see Figure 2(a)), we deploy 195 Stargates in a 15 x 13 grid (as
shown in Figure 2(b)) where the separation between neighbor-
ing grid points is 0.91 meter (i.e., 3 feet). For convenience, we

Figure 1: Outdoor testbed

(a) testbed

(b) grid topology

Figure 2: Indoor testbed

number the rows of the grid as 0 - 12 from the bottom up, and
the columns as O - 14 from the left to the right. Each Stargate
is equipped with the same SMC wireless card as in the outdoor
testbed. To create realistic multi-hop wireless networks similar
to the outdoor testbed, each Stargate is equipped a 2.2dBi rubber
duck omnidirectional antenna and a 20dB attenuator. We raise
the Stargates 1.01 meters above the ground by putting them on
wood racks. The transmission power level of each Stargate is
set as 60, to simulate the low-to-medium density multi-hop net-
works where a node can reliably communicate with around 15
neighbors.

The Stargates in the indoor testbed are equipped with wall-
power and outband Ethernet connections, which facilitate long-
duration complex experiments at low cost. We use the indoor
testbed for most of the experiments in this paper; we use the
outdoor testbed mainly for justifying the generality of the phe-
nomena observed in the indoor testbed.

Experiments. In the outdoor testbed, the Stargate at one end
acts as the sender, and the other Stargates act as receivers. Given



the constraints of time and experiment control, we leave complex
experiments to the indoor testbed and only perform relatively
simple experiments in the outdoor testbed: the sender first sends
30,000 1200-byte broadcast packets, then it sends 30,000 1200-
byte unicast packets to each of the receivers.

In the indoor testbed, we let the Stargate at column O of row

6 be the sender, and the other Stargates in row 6 act as receivers.
To study the impact of interference, we consider the following
scenarios (which are named according to the interference):

o [nterferer-free: there is no interfering transmission. The
sender first sends 30,000 broadcast packets each of 1200
bytes, then it sends 30,000 1200-byte unicast packets to
each of the receivers, and lastly it broadcasts 30,000 30-
byte packets.

e [nterferer-close: one “interfering” Stargate at column O of
row 5 keeps sending 1200-byte unicast packets to the Star-
gate at column O of row 7, serving as the source of the in-
terfering traffic. The sender first sends 30,000 1200-byte
broadcast packets, then it sends 30,000 1200-byte unicast
packets to each of the receivers.

o [nterferer-middle: the Stargate at column 7 of row 5 keeps
sending 1200-byte unicast packets to the Stargate at column
7 of row 7. The sender performs the same as in the case of
interferer-close.

o Interferer-far: the Stargate at column 14 of row 5 keeps
sending 1200-byte unicast packets to the Stargate at column
14 of row 7. The sender performs the same as in the case of
interferer-close.

o [nterferer-exscal: In generating the interfering traffic, ev-
ery Stargate runs the routing protocol LOF (as detailed in
later sections of this paper), and the Stargate at the upper-
right corner keeps sending packets to the Stargate at the
left-bottom corner, according to an event traffic trace from
the field sensor network of ExScal [7] . The traffic trace
corresponds to the packets generated by a Stargate when a
vehicle passes across the corresponding section of ExScal
network. In the trace, 19 packets are generated, with the
first 9 packets corresponding to the start of the event detec-
tion and the last 10 packets corresponding to the end of the
event detection. Figure 3 shows, in sequence, the intervals
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Figure 3: The traffic trace of an ExScal event

between packets 1 and 2, 2 and 3, and so on. The sender
performs the same as in the case of interferer-close.
In all of these experiments, except for the case of interferer-
exscal, the packet generation frequency, for both the sender and
the interferer, is 1 packet every 20 milliseconds. In the case of
interferer-exscal, the sender still generates 1 packet every 20 mil-

liseconds, yet the interferer generates packets according to the
event traffic trace from ExScal, with the inter-event-run interval
being 10 seconds. (Note that the scenarios above are far from
being complete, but they do give us a sense of how different in-
terfering patterns affect link properties.)

In the experiments, broadcast packets are transmitted at the
basic rate of 1M bps, as specified by the 802.11b standard. Not
focusing on the impact of packet rate in our study, we set uni-
cast transmission rate to a fixed value (e.g., 5.5M bps). (We have
tested different unicast transmission rates and observed similar
phenomena.) For other 802.11b configurations, we use the de-
fault parameter values that come with the system software. For
instance, unicast transmissions use RTS-CTS handshake, and
each unicast packet is retransmitted up to 7 times until success
or failure in the end.

2.2 Experimental results

For each case, we measure various link properties, such as packet
delivery rate and the run length of packets successfully received
without any loss in between, for each link defined by the sender
- receiver. Due to space limitations, however, we only present
the data on packet delivery rate here. The packet delivery rate
is calculated once every 100 packets (we have also calculated
delivery rates in other granularities, such as once every 20, 50 or
1000 packets, and similar phenomena were observed).

We first present the difference between broadcast and unicast
when there is no interference, then we present the impact of in-
terference.

2.2.1 Interferer free

Figure 4 shows the scatter plot of the delivery rates for broadcast
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Figure 4: Outdoor testbed

and unicast packets at different distances in the outdoor testbed.
From the figure, we observe the following:

e Broadcast has longer communication range than unicast.
This is due to the fact that the transmission rate for broad-
cast is lower, and that there is no RTS-CTS handshake for
broadcast. (Note: the failure in RTS-CTS handshake also
causes a unicast to fail.)

e For links where unicast has non-zero delivery rate, the mean
delivery rate of unicast is higher than that of broadcast. This
is due to the fact that each unicast packet is retransmitted up
to 7 times upon failure.



e The variance in packet delivery rate is lower in unicast than
that in broadcast. This is due to the fact that unicast pack-
ets are retransmitted upon failure, and the fact that there
is RTS-CTS handshake for unicast. (Note: the success in
RTS-CTS handshake implies higher probability of a suc-
cessful unicast, due to temporal correlations in link proper-
ties [10].)

Similar results are observed in the indoor testbed, as shown in
Figures 5(a) and 5(b). Nevertheless, there are exceptions at dis-
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Figure 5: Indoor testbed

tances 3.64 meters and 5.46 meters, where the delivery rate of
unicast takes a wider range than that of broadcast. This is likely
due to temporal changes in the environment. Comparing Fig-
ures 5(a) and 5(c), we see that packet length also has significant
impact on the mean and variance of packet delivery rate.

Implication. From Figures 4 and 5, we see that packet delivery
rate differs significantly between broadcast and unicast, and the
difference varies with environment, hardware, and packet length.

2.2.2 Interfering scenarios
Figure 6 shows how the difference between broadcast and uni-
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Figure 6: The difference between broadcast and unicast in dif-
ferent interfering scenarios

cast in the mean packet delivery rate changes as the interfer-

ence and distance change. Given a distance and an interfering
scenario, the difference is calculated as U;#B, where U and B
denote the mean delivery rate for unicast and broadcast respec-
tively. From the figure, we see that the difference is signifi-
cant (up to 94.06%), and that the difference varies with distance.
Moreover, the difference changes significantly (up to 103.41%)
as interference pattern changes.

Figures 7 and 8 show the relative changes, when compared
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with the case of interferer-free, in packet delivery rate and its
coefficient of variation (COV)? under different interfering sce-
narios. Given a distance and an interfering scenario, the rela-
tive change is calculated as %, where I and F' denote the pa-
rameter value in the presence and in the absence of the interfer-
ence respectively; if I or F'is 0, we do not calculate the relative
change since the value would be less meaningful. From the fig-
ures, we see that both the mean and the COV of packet delivery
rate change significantly for broadcast when there is interference,
yet the relative changes for unicast are much less. Moreover, the
relative changes vary as interfering scenarios and distances vary.

Implication. For wireless sensor networks where data bursts are
well separated in time and possibly in space (e.g., in bursty con-
vergecast), the link properties experienced by periodic beacons
may well differ from those experienced by data traffic. More-
over, the difference between broadcast and unicast changes as
interference pattern changes.

2COV is defined as the standard deviation divided by the mean [20].



2.3 Beacon-free routing

To ameliorate the differences between broadcast and unicast link
properties, researchers have proposed to make the length and
transmission rate of broadcast beacons be the same as those of
data packets, and then estimate link properties of unicast data via
those of broadcast beacons by taking into account factors such as
link asymmetry. ETX [12] has explored this approach. Neverthe-
less, this approach may not be always feasible when the length of
data packets is changing; or even if the approach is always feasi-
ble, it still does not guarantee that link properties experienced by
periodic beacons reflect those in the presence of data traffic, es-
pecially in event-driven sensor network applications. Moreover,
the existing method for estimating metrics such as ETX does not
take into account the temporal correlations in link properties [10]
(partly due to the difficulty of modeling the temporal correlations
themselves [28]), which further decreases its estimation fidelity.
Therefore, it is not trivial, if even possible, to precisely estimate
link properties for unicast data via those of broadcast beacons.

To circumvent the difficulty of estimating unicast link proper-
ties via those of broadcast, we propose to directly estimate uni-
cast link properties without using beacons. In this context, since
we are not using beacons for link property estimation, we also
explore the idea of not using periodic beacons in routing at all
(i.e., beacon-free routing) to save energy; otherwise, beaconing
requires nodes to wake up periodically even when there is no
data traffic.

To enable beacon-free routing, we need to find alternative mech-
anisms for accomplishing the tasks that are traditionally assumed
by beacons: acting as the basis for link property estimation, and
diffusing information (e.g., the cumulative ETX metric). In sen-
sor network backbones, beacon-free routing is feasible because
of the following facts:

e MAC feedback. In MACs where every frame transmission
is acknowledged by the receiver (e.g., in the 802.11b MAC),
the sender can determine if a transmission has succeeded by
checking whether it receives the acknowledgment?®. Also,
the sender can determine how long each transmission takes
(as to be explained in detail in Section 4.5), i.e., MAC la-
tency. Therefore, the sender is able to get information on
link properties without using any beacons. (Note: it has
also been shown that MAC latency is a good routing metric
for optimizing wireless network throughput [9].)

e Static network & geography. Nodes are static most of the
time, and their geographic locations are readily available
via devices such as GPS. Therefore, we can use geography-
based routing in which a node only needs to know the lo-
cation of the destination and the information regarding its
local neighborhood (such as the quality of the links to its
neighbors). Thus, only the location of the destination (e.g.,
the base station in convergecast) needs to be diffused across
the network. Unlike in beacon-based distance-vector rout-
ing, the diffusion happens infrequently since the destination
is static most of the time. In general, control packets are
needed only when the location of a node changes, which
occurs infrequently.

3Even though this method is not perfect when an acknowledgment frame can get lost, it
works well in practice given the low probability of losing an acknowledgment frame.

In what follows, we first present the routing metric ELD which
is based on geography and MAC latency, then we present the
design of LOF which implements ELD in a beacon-free manner.

Remarks:

e Our objective in this paper is to explore the idea of beacon-
free link property estimation and routing, but it is not our
objective to prove that geography-based routing is better
than distance-vector routing. In principle, we could have
used distance-vector routing together with data-driven link
property estimation, but this would introduce extra control
packets which we would like to avoid to save energy. De-
tailed study of distance-vector routing with data-driven es-
timation is beyond the scope of this paper.

e Conceptually, we could have also defined our routing metric
based on other parameters such as ETX [12] or RNP [10].
Nevertheless, the firmware of our SMC WLAN cards does
not expose information on the number of retries of a unicast
transmission, which makes it hard to estimate ETX or RNP
directly via data traffic. As a part of our future work, we
plan to design mechanisms to estimate ETX and RNP via
data traffic (e.g., in IEEE 802.15.4 based mote networks)
and study the corresponding protocol performance.

3 ELD: the routing metric

In this section, we first justify mathematically why MAC la-
tency reflects link reliability and energy consumption, then we
derive the routing metric ELD, the expected MAC latency per
unit-distance to the destination, and finally we analyze the sam-
ple size requirement in routing.

3.1 MAC latency as the basis for route selection

For convergecast in sensor networks (especially for event-driven
applications), packets need to be routed reliably and in real-time
to the base station. As usual, packets should also be delivered in
an energy-efficient manner. Therefore, a routing metric should
reflect link reliability, packet delivery latency, and energy con-
sumption at the same time. One such metric that we adopt in
LOF is based on MAC latency (i.e., the time taken for the MAC
to transmit a data frame).

Intuitively, both the MAC latency and the energy consumption
of a frame transmission depend on the link reliability. Therefore
MAC latency certainly reflects link reliability and energy con-
sumption. But to characterize their relationships more precisely,
we mathematically analyze them as follows, using 802.11b as an
example. (Readers unfamiliar with the details of 802.11b could
refer to [6], or simply skip the mathematical formulation.)

Given a sender S and a receiver R where the link between
them has non-zero reliability, we let Dg g and Ps g denote the
MAC latency and the energy consumption for transmitting a uni-
cast frame from S to R. Then, we are interested in calculating the
expected values E(Dg gr) and E(Ps g). To simply analysis, we
only consider the case where there is no interfering traffic, and
we assume that the MAC continues to transmit a packet until it is
successful. (Note that this simplification, though different from
reality, does no prevent us from getting a sense of the gross re-



lationship between MAC latency and energy consumption.) Let
po be the probability that a RTS-CTS handshake between S and
R will fail (e.g., due to the loss of RTS or CTS) (pg > 0), p1 be
the probability that a DATA-ACK handshake between S and R

will fail (p; > 0),and C' = pg + p1 — pop1- Then, we have
E(Dsr) = (1—po)(1 —p1)(464 + tg) + (F,20)T (us) (1)
where
tq = time taken to transmit the DATA frame (in microseconds);
— (134+42t4)(1—po)p1 y 202 -3
T = (502 + ol ) =07
15872005 —1388800° | (—ta—482)C?
(1-0)2 e}
119040C8 1004p0—502p0 4
1-C —g
—158720p8 +138880p (td+482)p0+
(1 Pp)2 1-pg

PG 4155 Y F o ((2C)*0 — (2po)ko).

Derivation sketch for formula (1). Assume a frame transmission
from S to R takes k; rounds of DATA-ACK handshakes and kg
rounds of RTS-CTS handshakes. Clearly, kg > k;. Then, the
MAC latency Dg, r(ko, k1) can be decomposed into the follow-
ing three components:

e The latency I(kg, k1) due to the initial DIFS before any
RTS-CTS-DATA-ACK handshake. We have I(kg, k1) =
DIFS (us).

e The latency C'B(kg, k1) due to the contention avoidance
backoffs: there are (ko — k1) RTS-CTS handshake failures,
(k1 — 1) DATA-ACK handshake failures, and (ko — k1) +
(k1 — 1) = kg — 1 contention backoffs. Therefore, we have

CB(ko, k1) = (ko — k1)(CTSTimeout + DIFS)+
(k1 — 1)(ACKTimeout + DIF S)+
ko1 BT;

where CT STimeout = tpis+iteis+2SIFS, ACKTimeout =
tqa+tack + SIFS+ DIFS, and BT; is the value of the it"
contention backoff timer.

e The latency DT'(ko, k1) due to the normal RTS-CTS-DATA-

ACK procedure. We have
DT(ko,k1) = (ko — k1)trts+

kl(trts + SIFS + tcts)"‘

(STFS +ty + STFS + tock) (us)

where t,¢5, tets, and t,0r denote the time taken to transmit
a RTS, a CTS, and an ACK respectively.

Therefore, we have
Ds,r(ko,k1) = I(ko,k1) + CB(ko,k1) + DT (ko,k1)
ko(DIFS + tris + CTSTimeout)+
k1(—CTSTimeout + ACKTimeout+
tots + 3STFS + tg + tack)—
ACKTimeout + Eko ! BTy

Now, let us calculate the probability P(kq, k1) that a transmis-
sion from S to R takes kg rounds of RTS-CTS handshake and &;
rounds of DATA-ACK handshake. We have P(ko, k1) =

P{(ko — k1) RTS-CTS failure out of ko times} X
P{(k1 — 1) DATA-ACK failures followed by a success }

_ (((ko kl))poo FL(1 — po)k1) x (p1F1=1(1 — p1)) ifko > k1
0 otherwise
k. 1— .
_ (1]: ) lpfl )pOO(( ]1;0)101 )kl if ko > ki
0 otherwise

——mac latency (# of 10-milliseconds)
501 = energy consumption (# of kilo-bytes)|
-7 latency/energy

Figure 9: MAC latency as an indicator of energy consumption

Therefore, we have

E(Ds,r) = Eyy,k,(Ds,r(ko, k1))

=320 210y Ds,r(ko, k1)P(ko, k1)

Applying 802.11b parameters, such as t,;s and SIF'S, to the
above formula, we could arrive at formula (1). Due to the limi-
tation of space, we skip the detail here.
O
For energy consumption, we have

E(Ps,r) = C)) (bytes)

@

T2y (34C + (I + 14)p1(1 — po) (2 —
where

lg = the length of the DATA frame (in number of bytes).

Derivation sketch for formula (2). Let ko, k1, and P(kq, k1)
be the same as in the “derivation sketch for formula (1). Let
By¢s—cts be the length, in number of bytes, of a RTS-CTS pair,
and Bggtq—ack be the length of a DATA-ACK pair. Then, if a
transmission from S to R takes kg rounds of RTS-CTS hand-

“shakes and k; rounds of DATA-ACK handshakes (kg > k1), the
energy Ps g (ko, k1) consumed, in number of bytes transmitted,
is kOBrts—cts + ledata—ack-

Therefore, we have

E(Ps g) = Eg,, k:l(PS' r(ko, k1))
=0 40—y Ps,r(ko, k1) P(ko, k1)

Applying 802.11b parameters, such as Bj;s_cs, to the above
formula, we could arrive at formula (2). Due to the limitation of
space, we skip the detail here.

O

To visualize Formulas (1) and (2), we let the probability p}
that a DATA-ACK handshake will succeed represent link relia-

e . length(DATA+ACK
bility (i.e., pj = 1—py). Letting k = W, and assum-

ing that bit errors are independent, we have p; = 1 — (1 — po)*.

Thus,
po=1=3Y1—-p1=1- y/p} 3

Based on equations (1), (2), (3), and assuming that £4 is 1200,
Figure 9 presents a visual characterization of the expected MAC
latency, the expected energy consumption, and the ratio between
them, as link reliability changes.

From Figure 9, we see that MAC latency is strongly related to
energy consumption in a positive manner, and the ratio between
them changes only slightly as link reliability changes. Thus,



routing metrics optimizing MAC latency would also optimize
energy efficiency. Note that, as link reliability becomes too low,
the rate of increase in MAC latency is slightly faster compared
to energy consumption. This is because the contention window
for the random backoff in MAC increases exponentially. In prac-
tice, however, this scenario may not happen, because extremely
low link reliability only leads to transmission failures due to the
upper limit on the number of retries (whose default value is 7).

Previous work has argued the advantages of using routing met-
rics Expected Transmission Count (ETX) [29, 12] and Expected
Transmission Time (ETT) [14, 13], which are similar to MAC
latency, from perspectives such as reducing self-interference and
increasing throughput. Our analysis complements theirs by math-
ematically showing the relationships among MAC latency, en-
ergy consumption, and link reliability.

3.2 ELD: a geography-based routing metric

Given that MAC latency is a good basis for route selection and
that geography enables low frequency information diffusion, we
define a routing metric ELD, the expected MAC latency per unit-
distance to the destination, which is based on both MAC latency
and geography. Specifically, given a sender S, a neighbor R of S,

and the destination D as shown in Figure 10,
we first calculate the effective ge-

L(SR) ographic progress from S to D
S via R, denoted by L.(S, R), as

D
V (LS,D—LR7D),Where LS,D de-

R notes the distance between S and
D, and Lg p denotes the dis-
tance between R and D. Then,
we calculate, for the sender
S, the MAC latency per unit-
distance to the destination (LD) via R, denoted by LD(S, R),

as*

Ds r .

.s.m lsp>Lrp @)
[e%s) otherwise

Figure 10: L calculation

where Dg g is the MAC latency from S to R. Therefore, the
ELD via R, denoted as ELD(S, R), is E(LD(S, R)) which is
calculated as

ifLS,D > LR,D (5)

E(Ds,r)
L.(S,R)
e’} otherwise

For every neighbor R of S, S associates with R a rank

(ELD(S, R),var(LD(S, R)), Lr,p, ID(R))

where var(LD(S, R)) denotes the variance of LD(S, R), and
ID(R) denotes the unique ID of node R. Then, S selects as
its next-hop forwarder the neighbor that ranks the lowest among
all the neighbors. (Note: routing via metric ELD is a greedy
approach, where each node tries to optimize the local objective.
Like many other greedy algorithms, this method is effective in
practice, as shown via experiments in Section 5.)

To understand what ELD implies in practice, we set up an ex-
periment as follows: consider a line network formed by row 6 of

4Curremly, we focus on the case where a node forwards packets only to a neighbor closer
to the destination than itself.

the indoor testbed shown in Figure 2, the Stargate S at column
0 needs to send packets to the Stargate D at the other end (i.e.,
column 14). Using the data on unicast MAC latencies in the case
of interferer-free, we show in Figure 11 the mean unicast MAC

- mean MAC latency (ms)
a -7 ELD (ms/meter)

--m

20| ]

i

g N—
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6 8
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Figure 11: Mean unicast MAC latency and the ELD

latencies and the corresponding ELD’s regarding neighbors at
different distances. From the figure, Stargate D, the destination
which is 12.8 meters away from S, offers the lowest ELD, and
S sends packets directly to D. From this example, we see that,
using metric ELD, a node tends to choose nodes beyond the re-
liable communication range as forwarders, to reduce end-to-end
MAC latency as well as energy consumption.

Remark. ELD is a locally measurable metric based only on
the geographic locations of nodes and information regarding the
links associated with the sender S; ELD does not assume link
conditions beyond the local neighborhood of S. In the analysis
of geographic routing [26], however, a common assumption is
geographic uniformity — that the hops in any route have sim-
ilar properties such as geographic length and link quality. As
we will show by experiments in Section 5, this assumption is
usually invalid. For the sake of verification and comparison,
we derive another routing metric ELR, the expected MAC la-

tency along a route, based on this assumption. More specifically,
ELR(S,R) =

Tsn ifLS,D > LR,D (6)

Ls r+L
E(DS,R) X [M]
[e'e) otherwise

where [%1 denotes the number of hops to the destina-

tion, assuminé equal geographic distance at every hop. We will
show in Section 5 that ELR is inferior to ELD.

3.3 Sample size requirement

To understand the convergence speed of ELD-based routing and
to guide protocol design, we experimentally study the sample
size required to distinguish out the best neighbor in routing.

In our indoor testbed, let the Stargate at column 0 of row 6
be the sender S and Stargate at the other end of row 6 be the
destination D; then let S send 30,000 1200-byte unicast packets
to each of the other Stargates in the testbed, to get information
(e.g., MAC latency and reliability) on all the links associated
with S. The objective is to see what sample size is required for
S to distinguish out the best neighbor.

First, we need to derive the distribution model for MAC la-
tency. Figure 12 shows the histogram of the unicast MAC laten-
cies for the link to a node 3.65 meters (i.e., 12 feet) away from
S. (The MAC latencies for other links assume similar patterns.)
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Figure 12: Histogram for unicast MAC latency

Given the shape of the histogram and the fact that MAC latency
is a type of “service time”, we select three models for evalua-
tion: exponential, gamma, and lognormal.’> Against the data on
the MAC latencies for all the links associated with S, we perform
Kolmogorov-Smirnov test [19] on the three models, and we find
that lognormal distribution fits the data the best.

Therefore, we adopt lognormal distribution for the analysis in
this paper. Given that MAC latency assumes lognormal distribu-
tion, the LD associated with a neighbor also assumes lognormal
distribution, i.e., log(LD) assumes normal distribution.

Because link quality varies temporally, the best neighbor for S
may change temporally. Therefore, we divide the 30,000 MAC
latency samples of each link into chunks of length L., denoted as
the granularity of comparison, and we compare all the links via
their corresponding sample-chunks. Given each sample chunk
for the MAC latency of a link, we compute the sample mean
and sample variance for the corresponding log(LD), and use
them as the mean and variance of the lognormal distribution.
When considering the ¢-th sample chunks of all the links (¢ =
1,2,..., (%ﬂ] ), we find the best link according to these sample
chunks, and we compute the sample size required for comparing
this best link with each of the other links as follows:

Given two normal variates X1, X where X1 ~ N (u1,0%)

and X2 ~ N (u2,d3), the sample size required to com-

pare X; and X5 at 100(1 — a)% confidence level is

(Zellthe)y2 (0 < @ < 1), with Z, being the a-

quantile of a unit normal variate [20].
In the end, we have a set of sample sizes for each specific L..
For a 95% confidence level comparison and route selection, Fig-
ure 13(a) shows the 75-, 80-, 85-, 90-, and 95-percentiles of the
sample sizes for different L.’s. We see that the percentiles do
not change much as L. changes. Moreover, we observe that,
even though the 90- and 95-percentiles tend to be large, the 75-
and 80-percentiles are pretty small (e.g., being 3 and 8 respec-
tively when L. is 20), which implies that routing decisions can
converge quickly in most cases. This observation also motivates
us to use initial sampling in LOF, as detailed in Section 4.2.

Remark. By way of contrast, we may also compute the sample
size required to estimate the absolute ELD value associated with
each neighbor. Figure 13(b) shows the percentiles for a 95% con-
fidence level estimation with an accuracy of £5%. We see that,
even though the 90- and 95-percentiles are less than those for
route selection, the 75- and 80-percentiles (e.g., being 47 and 56
respectively when L. is 20) are significantly greater than those

>The methodology of LOF is independent of the distribution model adopted. Therefore,
LOF would still apply even if better models are found later.
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Figure 13: Sample size requirement

for route selection. Therefore, when analyzing sample size re-
quirement for routing, we should focus on relative comparison
among neighbors rather than on estimating the absolute value,
unlike what has been done in the literature [29].

4 LOF: a beacon-free protocol

Having determined the routing metric ELD, we are ready to de-
sign protocol LOF for implementing ELD in a beacon-free man-
ner. Without loss of generality, we only consider a single desti-
nation, i.e., the base station to which every other node needs to
find a route.

Briefly speaking, LOF needs to accomplish two tasks: First,
to enable a node to obtain the geographic location of the base
station, as well as the IDs and locations of its neighbors; Second,
to enable a node to track the LD (i.e., MAC latency per unit-
distance to the destination) regarding each of its neighbors. The
first task is relatively simple and only requires exchanging a few
control packets among neighbors in rare cases (e.g., when a node
boots up); LOF accomplishes the second task using three mech-
anisms: initial sampling of MAC latency, adapting estimation
via MAC feedback for application traffic, and probabilistically
switching next-hop forwarder.

In this section, we first elaborate on the individual components
of LOF, then we discuss implementation issues of LOF such as
reliably fetching MAC feedback.

4.1 Learning where we are

LOF enables a node to learn its neighborhood and the location
of the base station via the following rules:

I. [Issue request] Upon boot-up, a node broadcasts M copies
of hello-request packets if it is not the base station. A hello-
request packet contains the ID and the geographic location
of the issuing node. To guarantee that a requesting node is
heard by its neighbors, we set M as 7 in our experiments.

II. [Answer request] When receiving a hello-request packet
from another node that is farther away from the base sta-
tion, the base station or a node that has a path to the base
station acknowledges the requesting node by broadcasting
M copies of hello-reply packets. A hello-reply packet con-
tains the location of the base station as well as the ID and
the location of the issuing node.



III. [Handle announcement] When a node A hears for the
first time a hello-reply packet from another node B closer
to the base station, A records the ID and location of B and
regards B as a forwarder-candidate.

[Announce presence] When a node other than the base
station finds a forwarder-candidate for the first time, or when
the base station boots up, it broadcasts M copies of hello-
reply packets.

Iv.

To reduce potential contention, every broadcast transmission men-
tioned above is preceded by a randomized waiting period whose
length is dependent on node distribution density in the network.
Note that the above rules can be optimized in various ways. For
instance, rule II can be optimized such that a node acknowledges
at most one hello-request from another node each time the re-
questing node boots up. Even though we have implemented quite
a few such optimizations, we skip the details here since they are
not the focus of this paper.

4.2 Initial sampling

Having learned the location of the base station as well as the lo-
cations and IDs of its neighbors, a node needs to estimate the
LDs regarding its neighbors. To design the estimation mecha-
nism, let us first check Figure 14, which shows the mean unicast
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Figure 14: MAC latency in the presence of interference
MAC latency in different interfering scenarios for the indoor ex-
periments described in Section 2.1. We see that, even though
MAC latencies change as interference pattern changes, the rel-
ative ranking in the mean MAC latency among links does not
change much. Neither will the LDs accordingly.

In LOF, therefore, when a node .S learns of the existence of a
neighbor R for the first time, S takes a few samples of the MAC
latency for the link to R before forwarding any data packets to
R. The sampling is achieved by S sending a few unicast packets
to R and then fetching the MAC feedback. The initial sampling
gives a node a rough idea of the relative quality of the links to its
neighbors, to jump start the data-driven estimation.

According to the analysis in Section 3.3, another reason for
initial sampling is that, with relatively small sample size, a node
could gain a decent sense of the relative goodness of its neigh-
bors. We set the initial sample size as 8 (i.e., the 80-percentile of
the sample size when L., is 20) in our experiments.

4.3 Data-driven adaptation

Via initial sampling, a node gets a rough estimation of the rela-
tive goodness of its neighbors. To improve its route selection for

an application traffic pattern, the node needs to adapt its estima-
tion of LD via the MAC feedback for unicast data transmission.
Since LD is lognormally distributed, LD is estimated by estimat-
ing log(LD).

On-line estimation. To determine the estimation method, we
first check the properties of the time series of log(LD), consid-
ering the same scenario as discussed in Section 3.3. Figure 15
shows a time series of the log(LD) regarding a node 3.65 me-

log(LD) (ms/meter)

0.5

25 3
4

1.5
sample series x10

Figure 15: A time series of log(LD)

ters (i.e., 12 feet) away from the sender S (The log(LD) for
the other nodes assumes similar patterns.). We see that the time
series fits well with the constant-level model [18] where the gen-
erating process is represented by a constant superimposed with
random fluctuations. Therefore, a good estimation method is ex-
ponentially weighted moving average (EWMA) [18], assuming
the following form

Ve—aV+01-a)V (7

where V' is the parameter to be estimated, V' is the latest obser-
vation of V, and « is the weight (0 < a < 1).

In LOF, when a new MAC latency and thus a new log(LD)
value with respect to the current next-hop forwarder R is ob-
served, the V' value in the right hand side of formula (7) may be
quite old if R has just been selected as the next-hop and some
packets have been transmitted to other neighbors immediately
before. To deal with this issue, we define the age factor B(R)
of the current next-hop forwarder R as the number of packets
that have been transmitted since V of R was last updated. Then,
formula (7) is adapted to be the following:

Ve— PRV + (1 - PRV (8)

(Experiments confirm that LOF performs better with formula (8)
than with formula (7).)

Each MAC feedback indicates whether a unicast transmission
has succeeded and how long the MAC latency [ is. When a node
receives a MAC feedback, it first calculates the age factor 3(R)
for the current next-hop forwarder, then it adapts the estimation
of log(LD) as follows:

e If the transmission has succeeded, the node calculates the
new log(LD) value using [ and applies it to formula (8)
to get a new estimation regarding the current next-hop for-
warder.

e If the transmission has failed, the node should not use ! di-
rectly because it does not represent the latency to success-
fully transmit a packet. To address this issue, the node keeps
track of the unicast delivery rate, which is also estimated us-
ing formula (8), for each associated link. Then, if the node



retransmits this unicast packet via the currently used link,
the expected number of retries until success is +, assuming
that unicast failures are independent and that the unicast de-
livery rate along the link is p. Including the latency for this
last failed transmission, the expected overall latency I’ is
1+ %)l . Therefore, the node calculates the new log(L D)
value using I’ and applies it to formula (8) to get a new es-
timation.

Another key issue in the EWMA estimation is choosing the
weight a, since it affects the stability and agility of estimation.
To address this question, we again perform experiment-based
analysis. Using the data from Section 3.3, we try out different
a values and compute the corresponding estimation fidelity, that
is, the probability of LOF choosing the right next-hop forwarder
for S. Figure 16(a) shows the best a value and the correspond-
ing estimation fidelity for different granularities of comparison.
If the granularity of comparison is 20, for instance, the best a is
0.88, and the corresponding estimation fidelity is 89.56%. (Since
the ExScal traffic trace contains 19 packets, we set o as 0.88 in
our experiments.)

-4-best o (%)
< estimation fidelity (%)

estimation fidelity (%)

s

20 40 1 120 140 160

60 80 100
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Figure 16: The weight « in EWMA

For sensitivity analysis, Figure 16(b) shows how the estima-
tion fidelity changes with @ when the granularity of comparison
is 20. We see that the estimation fidelity is not very sensitive
to changes in a over a wide range. For example, the estima-
tion fidelity remains above 85% when a changes from 0.6 to
0.98. Similar patterns are observed for the other granularities
of comparison too. The insensitivity of estimation fidelity to
guarantees the robustness of the estimation method.

Route adaptation. As the estimation of LD changes, a node S
adapts its route selection by the ELD metric. Moreover, if the
unicast reliability to a neighbor R is below certain threshold (say
60%), S will mark R as dead and will remove R from the set of
forwarder-candidates. If S loses all its forwarder-candidates, .S
will first broadcast M copies of hello-withdrawal packets and
then restarts the routing process. If a node S’ hears a hello-
withdrawal packet from S, and if S is a forwarder-candidate of
S’, S’ removes S from its set of forwarder-candidates and up-
date its next-hop forwarder as need be. (As a side note, we find
that, on average, only 0.9863 neighbors of any node are marked
as dead in both our testbed experiments and the field deploy-
ment of LOF in project ExScal [7]. Again, the withdrawing and
rejoining process can be optimized, but we skip the details here.)
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4.4 Probabilistic neighbor switching

Given that the initial sampling is not perfect (e.g., covering 80%
instead of 100% of all the possible cases) and that wireless link
quality varies temporally, the data-driven adaptation alone may
miss using good links, simply because they were relatively bad
when tested earlier and they do not get chance to be tried out
later on. Therefore, we propose probabilistic neighbor switching
in LOF. That is, whenever a node S has consecutively transmit-
ted I,s (Ro) number of data packets using a neighbor Ry, S will
switch its next-hop forwarder from Ry to another neighbor R’
with probability P,s(R'). On the other hand, the probabilistic
neighbor switching is exploratory and optimistic in nature, there-
fore it should be used only for good neighbors. In LOF, neighbor
switching only considers the set of neighbors that are not marked
as dead.

In what follows, we explain how to determine the switching
probability P,s(R') and the switching interval I,,s(Ry). For
convenience, we consider a sender S, and let the neighbors of
Sbe Ry, Ry, ..., Ry with increasing ranks.

Switching probability. At the moment of neighbor switching,
a better neighbor should be chosen with higher probability. In
LOF, a neighbor is chosen with the probability of the neighbor
actually being the best next-hop forwarder. We derive this proba-
bility in three steps: the probability P,(R;, R;) of a neighbor R;
being actually better than another one R; (given by formula (9)),
the probability Pj,(R;) of a neighbor R; being actually better
than all the neighbors that ranks lower than itself (given by for-
mula (10)), and the probability P,,;(R;) of a neighbor R; being
actually the best forwarder (given by formula (11)).

Given S and its two neighbors R; and R;, we approximate
Py(R;, R;) with P{LD(S,R;) > LD(S,R;)}, which equals
P{log(LD(S, R;)) > log(LD(S, R;))}. As discussed in Sec-
tion 3.3, log(LD(S, R;)) as well as log(LD(S, R;)) has a nor-

mal distribution. Assume log(LD(S, R;)) ~ N(ui,62),log(LD(S, R;)) ~
N (p;,63), and that log(LD(S, R;)) is independent of log(LD(S, R;)),

then we have
Mg — i

,/6?4-6?

Py(Ri, Rj) = G( ) 9)

where G(z) = 1 — ®(z), with
%erfc(fx/\/@)) z<0

®(2) = { 1— Zerfe(z/+/(2)) >0

erfe(z) ~ (m)exp(—w2 + P(ﬁm))

P(z) = 0.170872772° — 0.8221522328 + 1.4885158727 —
1.13520398z5 + 0.27886807z% — 0.18628806x* +
0.09678418x3 + 0.37409196x2 + 1.00002368—
1.26551223.

Derivation sketch for formula (9 ). Since log(LD(S, R;)) ~
N (15,82), log(LD(S, By)) ~ N(15,62), and log(LD(S, Ry))
is independent of log(LD(S, R;)), it is easy to show that Z'
log(LD(S, R;)) —log(LD(S, R;) is a normal variate with mean
Z'—(pi—pj)

LR

(i — ;) and variance (07 + d7). Therefore, Z =

is a standard normal variate. Thus,

Py(Ri, Ry) = P{log(LD(S, Ri)) > log(LD(S, R;))}
= P[Z’ > 0]
= P[Z> = (mi—py)

\ /5§+5]2

]



By Andrew’s method [27], P[Z > *\%;1;2] = G( jg;f;?),
where G(z) = 1 — ®(z), with J ’
| Lerfe(—x//(2)) z<0
@(m)_{ 12— erfcz/\fQ) z>0

ere(z) © (b Jon(—2? + P11 7))

P(z) =0. 170872772 — 0.82215223x8 + 1.48851587x7 —
1.135203982% + 0.27886807x% — 0.18628806x+
0.0967841823 + 0.3740919622 + 1.00002368x—
1.26551223

O

Knowing P, (R;, Ry,) for every j and k, we compute Pp,(R;)
(#=1,...,N)inductively as follows:

Py(R1) = Py(R1, Ro);

Pu(Ri) ~ Py(Ri, Ro) x T2k (1 — (Py(Ry, o)+

Because of the approximation in formula (10), Eéio P.s(R;)

may not equal to 1. To address this issue, we normalize the
P,s(R;)’s (i = 0,..., N)such that their sum is 1.
Switching interval. The frequency of neighbor switching should
depend on how good the current next-hop forwarder Ry is, i.e.,
the switching probability P,,s(Ro). In LOF, we set the switching
interval I;(Ro) to be proportional to Pps(Ryp), that is,

ns(RO) =Cx Pns(RO) (12)
where C is a constant being equal to (N x K), with N being the
number of active neighbors that S has, and K being a constant
reflecting the degree of temporal variations in link quality. We
set K to be 20 in our experiments.

The switching probabilities and the switching interval are re-

10 . _ .
(Pu(R;) — I)QX Py(Ro, R:))) (10)  calculated each time the next-hop forwarder is changed.
1=2,...,
4.5 Implementation issues
Derivation sketch for formula (10 ). Let Py({Rpy, Rmo)s - - - » {Rky» Bimy )) : . ) L
denote the probability that Ry, is better than Ry, ..., and Ry, is In'this subsection, we discuss implementation issues of LOF.

better than Ry, , and let Py ((R;, R;)|{Rko, Rmo)s - - - »
denote the probability R; being better than R; given that Ry, is
better than Ry, ..., and Ry, is better than R,,,. Then, P, (R;)
(i =1,...,N)is computed inductively as follows:

Pp,(R1) = Py(R1, Ro);

Py(R;) = Py(Ri, Ro) X Py({Ri, R1)|{Ri, Ro)) X
P[,((Ri,Rj)KRq;,Ro), ... ,(Rq;, Rj_1>) X ...
Pb(<Ri7Rl 1>|<RlvR0>7 EE) (RiyRi72>)

= Py(Ri, Ro) x H 1 Po((Riy Rj)|(Riy Ro)y - -, (Ri, Rj-1))
= Py(R;, Ro) X (lbe((R],R)|(Ri,R0),...

= Py(Ri, Ro) x H’ 1(1 — Py((R;, Ri), (R;, Ro), .

= Py(Ry, Ro) x [T'Z1 (1 — (Py (R, all of Rg to Rj— 1)><

Py(any of Rg to Rj_1, R;)+
Pb(R],R ) X Pb(R“all of Rp to Rj 1)))
= Py(Ri, Ro) x [TiZ
 Py(Rj, Ri) X Py(Ry,all of Ry to Rj_1)))
= Py(Ri, Ro) x TT;21(1 — (Po(Rj, Ri)+

(Pr(Rj) — 1)Py(any of Ry to Rj_1, R;)))
~ Py(Ri, Ro) x TI;Z1 (1 — (Py(Ry, R+
(Pr(Rj) — 1)2>< Py(Ro, R;)))
Pi=2,...,
O
Then, we compute the switching probability as follows:
Prns(Ro) = Py(Ro, R1) x HJ 2(1 — Pp(Ry));
Pps(R;) = Py(Ri) X [Tj=i41(1 — Pa(R;)) (an
(i=1,...,N—1);
Pns(RN) = Ph(RN)
Derivation sketch for formula (11 ). Inductively,
Pps(Ro) = Py(Ro, R1) X Py({Ro, R2)|(Ro, R1)) X -
Py({Ro, Rn)|(Ro, R1), .- .,{Ro, RN 1))
= Py(Ro, R1) X TI}_y Po((Ro, Rj) (Ro, R1), ..., (Ro, Rj—1))
= P[,(Ro,R1) x [Tz ,2( Pb(<R],R0)|<R0,R1), . (Ro,Rj_
= Py(Ro, R1) X []j=5(1 — Pa(R;));
Pns(Ri) = Pr(Ri) % H] —i+1 Po((Ri, Rj)(Ri; Ro), - -, (Ri, Rj—1))
= Pp(Rs) XH] 11— Pr(Rj))
(i=1,...,N—1);
Pns(RN) = Ph(RN)
O
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(Rp,, Rm,)) MAC feedback exfiltration.

In LOF, both the status and the
MAC latency are required for every unicast transmission. Yet
the default Linux WLAN driver hostap [5] only signals failed
unicast transmissions, and it does not signal the unicast MAC
latency. Therefore, we modify the Linux kernel and the hostap
driver such that the transmission status, whether success or fail-
ure, is always signaled and the MAC latency is reported too.
Since we implement LOF, using EmStar [4], as a user-space
process, MAC feedback is sent to the LOF process via netlink

»{Ri, Rj—1))$ockets and /proc file system [17].
-»(Rj, Rj-1))) Given that the LOF process executes in user-space and that

packet transmission is supported via UDP sockets in EmStar,
there is memory copying in the procedure between the LOF pro-

1(1 = (Pu(R;) x Py(any of Ro to Rj_1, R;)+€€SS sending a packet and the hostap driver transmitting the cor-

responding 802.11b MAC frame(s). Thus, one issue is how to
map a data transmission at the user-space with the frame trans-
mission at the driver and thus the MAC feedback. Fortunately,
the data buffers in EmStar, Linux TCP/IP stack, hostap driver,
and the SMC WLAN card are managed in the first-in-first-out
(FIFO) manner. Therefore, as long as we make sure that each
data transmission from the LOF process can be encapsulated in
a single MAC frame, each MAC feedback can be mapped with
the corresponding data transmission if there is no loss of MAC
feedback.

Nevertheless, we find that, under stressful conditions, MAC

feedback may get lost in two ways:

o A MAC feedback will be dropped in netlink sockets if the
socket buffer overflows.

e If there is no valid ARP (Address Resolution Protocol) en-
try regarding the unicast destination, a data packet is dropped
at the IP layer (without informing the application layer) be-

) fore even getting to the hostap driver, which means that no
MAC feedback will be generated and thus “lost”.

To deal with possible loss of MAC feedback, LOF adopts the

following two mechanisms:

e To avoid buffer overflow at netlink sockets, LOF enforces
flow control within a node by enforcing an upper bound
on the number of data transmissions whose MAC feedback



has not come back. (This upper bound is set to 7 in our
experiments.)

e After each data transmission, LOF checks the kernel ARP
table to see if there is a valid entry for the destination of this
unicast packet. In this way, LOF is able to decide whether
a MAC feedback will ever come back and act accordingly.

Via the stress tests in both testbeds and outdoor deployment, we
find that the above mechanisms guarantee the reliable delivery
of MAC feedback.

We implement LOF at user-space for the sake of safety and
easy maintenance. As a part of our future work, we are explor-
ing implementing LOF in kernel space to see if the process of
reliably fetching MAC feedback can be simplified.

Reliable transport. MAC feedback helps not only in link qual-
ity estimation but also in reliable data transport. For example,
upon detecting a failed transmission via the MAC feedback, a
node can retransmit the failed packet via a new next-hop for-
warder. On the other hand, the transmission status carried in
a MAC feedback only reflects the reliability at the MAC layer.
To guarantee end-to-end reliability, we need to make sure that
packet delivery is reliable at layers above MAC: First, we need
to guarantee the liveness of the LOF routing process, which is
enabled by the EmStar process monitoring facility emrun in our
current implementation; Second, the sender of a packet transmis-
sion guarantees that the packet is received by the hostap driver,
using the transmission status report from EmStar; Third, sender-
side flow control guarantees that there is no queue overflow at
the receiver side.

Node mobility. Given that nodes in most sensor networks are
static, LOF is not designed to support high degree of mobility.
Nevertheless, LOF can deal with infrequent movement of nodes
in the following simple manner:

e If the base station moves, the new location of the base sta-
tion is diffused across the network;

e If a node other than the base station moves, it first broadcast
M copies of hello-withdrawal packets, then it restarts its
routing process.

(Note that a node can detect the movement of itself with the help
of a GPS device.)

Neighbor-table size control. Compared with Berkeley motes,
Stargates have relatively large memory and disk size (e.g., 64MB
RAM and 32MB flash disk). Therefore, we adopt a very simple
method of neighbor-table size control: keeping the best next-hop
forwarders according to their ranks. In our experiments, we set
the maximum neighbor table size as 20. A more detailed study
of the best neighborhood management scheme for Stargates is
beyond the scope of this paper.

5 Experimental evaluation

Via testbeds and field deployment, we experimentally evaluate
the design decisions and the performance of LOF. First, we present
the experiment design; then we discuss the experimental results.
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5.1 Experiment design

Network setup. In our indoor testbed as shown in Figure 2, we
let the Stargate at the left-bottom corner of the grid be the base
station, to which the other Stargates need to find routes. Then,
we let the Stargate S at the upper-right corner of the grid be the
traffic source. S sends packets of length 1200 bytes according to
the ExScal event trace as discussed in Section 2.1 and Figure 3.
For each protocol we study, S simulates 50 event runs, with the
interval between consecutive runs being 20 seconds. Therefore,
for each protocol studied, 950 (i.e., 50 x 19) packets are gener-
ated at S.

We have also tested scenarios where multiple senders gener-
ate ExScal traffic simultaneously, as well as scenarios where the
data traffic is periodic; LOF has also been used in the backbone
network of ExScal. We discuss them in Section 5.3.

Protocols studied. We study the performance of LOF in com-
parison with that of beacon-based routing, where the latest de-
velopment is represented by ETX [12, 29] and PRD [26]: (For
convenience, we do not differentiate the name of a routing metric and the proto-
col implementing it.)

e ETX:expected transmission count. Itis a type of geography-
unaware routing where a node adopts a route with the min-
imum ETX value. Since the transmission rate is fixed in
our experiments, ETX routing also represents another met-
ric ETT [14], where a route with the minimum expected
transmission time is used. ETT is similar to MAC latency
as used in LOF.

e PRD: product of packet reception rate and distance traversed
to the destination. Unlike ETX, PRD is geography-based.
In PRD, a node selects as its next-hop forwarder the neigh-
bor with the maximum PRD value. The design of PRD is
based on the analysis that assumes geographic-uniformity.

By their original proposals, ETX and PRD use broadcast bea-
cons in estimating the respective routing metrics. In this paper,
we compare the performance of LOF with that of ETX and PRD
as originally proposed in [12] and [26], without considering the
possibility of directly estimating metrics ETX and PRD via data
traffic. This is because the firmware of our SMC WLAN cards
does not expose information on the number of retries of a uni-
cast transmission. (As a part of our future work, we plan to
design mechanisms to estimate ETX and PRD via data traffic
and study the corresponding protocol performance.) In our ex-
periments, metrics ETX and PRD are estimated according to the
method originally proposed in [12] and [26]; for instance, broad-
cast beacons have the same packet length and transmission rate
as those of data packets. Since it has been shown that ETX and
PRD perform better than protocols based on metrics such as RTT
(round-trip-time) and hop-count [13, 26], we do not study those
protocols in this paper.

To verify some important design decisions of LOF, we also

study different versions of LOF as follows:

e [-hop: assumes geographic-uniformity, and thus uses met-
ric ELR, as specified by formula (6), instead of ELD;

e [-ns: does not use the method of probabilistic neighbor
switching;

e [-sd: considers, in probabilistic neighbor switching, the



neighbors that have been marked as dead;
e [-se: performs probabilistic neighbor switching after every
packet transmission.
For easy comparison, we have implemented all the protocols
mentioned above in EmStar [4], a software environment for de-
veloping and deploying wireless sensor networks.

Evaluation criteria. Reliability is one critical concern in con-
vergecast. Using the techniques of reliable transport discussed
in Section 4.5, all the protocols guarantee 100% packet delivery
in our experiments. Therefore, we compare protocols in metrics
other than reliability as follows:

o End-to-end MAC latency: the sum of the MAC latency spent
at each hop of a route. This reflects not only the deliv-
ery latency but also the throughput available via a protocol
[12, 14].

e Energy efficiency: energy spent in delivering a packet to the
base station.

e Route stability: the number as well as the degree of route
changes, and the stability of end-to-end packet delivery.

5.2 Experimental results

MAC latency. Using boxplots®, Figure 17 shows the end-to-end
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Figure 17: End-to-end MAC latency

MAC latency, in milliseconds, for each protocol. The average
end-to-end MAC latency in both ETX and PRD is around 3 times
that in LOF, indicating the advantage of both the data-driven link
quality estimation and the decision of not assuming geographic
uniformity. The MAC latency in LOF is also less than that of the
other versions of LOF, showing the importance of using the right
routing metric and neighbor switching technique.
To explain the above observation, Figures 18, 19, 20, and 21

show the route hop length, per-hop MAC latency, average per-
hop geographic distance, and the coefficient of variation (COV)
of per-hop geographic distance. Even though the average route
hop length and per-hop geographic distance in ETX are approx-
imately the same as those in LOF, the average per-hop MAC
latency in ETX is about 3 times that in LOF, which explains why

6B0xplol is a nice tool for describing the distribution of a data sample:

e The lower and upper lines of the “box” are the 25th and 75th percentiles of the sam-
ple. The distance between the top and bottom of the box is the interquartile range.

e The line in the middle of the box is the sample median.

e The “whiskers”, lines extending above and below the box, show the extent of the rest
of the sample. If there is no outlier, the top of the upper whisker is the maximum
of the sample, and the bottom of the lower whisker is the minimum. An outlier is a
value that is more than 1.5 times the interquartile range away from the top or bottom
of the box. An outlier, if any, is represented as a plus sign.

e The notches in the box shows the 95% confidence interval for the sample median.
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Figure 21: COV of per-hop geographic distance in a route

the end-to-end MAC latency in ETX is about 3 times that in LOF.
In PRD, both the average route hop length and the average per-
hop MAC latency is about twice that in LOF.

From Figure 21, we see that the COV of per-hop geographic
distance is as high as 0.4305 in PRD and 0.2754 in L-hop. There-
fore, the assumption of geographic uniformity is invalid, which
partly explains why PRD and L-hop do not perform as well as
LOF. Moreover, the fact that the COV value in LOF is the largest
and that LOF performs the best tend to suggest that the network
state is heterogeneous at different locations of the network.

Energy efficiency. Given that beacons are periodically broad-
casted in ETX and PRD, and that beacons are rarely used in LOF,
it is easy to see that more beacons are broadcasted in ETX and
PRD than in LOF. Therefore, we focus our attention only on
the number of unicast transmissions required for delivering data



packets to the base station, rather than on the broadcast overhead.
To this end, Figure 22 shows the number of unicast transmissions
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Figure 22: Number of unicast transmissions per packet received

averaged over the number packets received at the base station.
The number of unicast transmissions per packet received in ETX
and PRD is 1.49 and 2.37 times that in LOF respectively, show-
ing again the advantage of data-driven instead of beacon-based
link quality estimation. The number of unicast transmissions per
packet received in LOF is also less than that in the other ver-
sions of LOF. For instance, the number of unicast transmissions
in L-hop is 2.89 times that in LOF.

Given that the SMC WLAN card in our testbed uses Intersil
Prism?2.5 chipset which does not expose the information on the
number of retries of a unicast transmission, Figure 22 does not
represent the actual number of bytes sent. Nevertheless, given
Figure 19 and the fact that MAC latency and energy consumption
are positively related (as discussed in Section 3.1), the above
observation on the relative energy efficiency among the protocols
still holds.

To explain the above observation, Figure 23 shows the num-
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Figure 23: Number of failed unicast transmissions

ber of failed unicast transmissions for the 950 packets generated
at the source. The number of failures in ETX and PRD is 1112
and 786 respectively, yet there are only 5 transmission failures
in LOF. Also, there are 711 transmission failures in L-hop. To-
gether with Figures 20 and 5(b), we see that there exist reliable
long links, yet only LOF tends to find them well: ETX also uses
long links, but they are not reliable; L-ns uses reliable links, but
they are relatively shorter.

Route stability. Figure 24 shows the average number of route
changes at each node. For readability in spite of the sharp dif-
ference in the values across protocols, we present the common
logarithm (i.e., base 10) of the values along the y-axis. We see
that the average number of route changes in ETX and PRD is 2
orders of magnitude greater than that in LOF. As a result, packets
tend to be delivered in order in LOF but not in ETX and PRD, as
shown in Figure 25 where the reorder distance of a packet pg is
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the number of packets that are generated later than py but reach
the base station earlier than py.

To understand how route changes, we measure the degree of
route changes and how the hop-length of routes change. The
degree of route change is measured as follows:

o (: the route taken by a packet is the same as that taken by

the previous packet;

e -1: the route taken by a packet is different from that taken

by the previous packet, but they are of equal hop length;

e -2: the route taken by a packet is longer, in hop-length, than

that taken by the previous packet;

e -3: the route taken by a packet is shorter, in hop-length, than

that taken by the previous packet.

Due to space limitations, we present, in Figure 26, only the time
series of the hop-length and the degree of route change for pro-
tocols ETX, PRD, LOF, and L-hop. LOF seldom changes route;
yet route changes occur frequently in ETX and PRD, even when
the routes are of equal hop-length. This shows that data-driven
link quality estimation is also more stable than beacon-based link
estimation.

5.3 Other experiments

Besides the scenario of 1 source event traffic which we discussed
in detail in the last subsection, we have performed experiments
where the Stargate at the upper-right corner and its two imme-
diate grid-neighbors simultaneously generate packets according
to the ExScal traffic trace. We have also experimented with pe-
riodic traffic where 1 or 3 Stargates (same as those in the case of
event traffic) generate 1,000 packets each, with each packet be-
ing 1200-byte long and the inter-packet interval being 500 mil-
liseconds. In these experiments, we have observed similar pat-
terns in the relative protocol performance as those in the case of
1 source event traffic. For conciseness, we only present the end-
to-end MAC latency for these three cases, as shown in Figure 27.

Based on its well-tested performance, LOF has been incorpo-
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rated in the ExScal sensor network field experiment [7], where
203 Stargates were deployed as the backbone network, with the
inter-Stargate separation being around 45 meters. LOF success-
fully guaranteed reliable and real-time convergecast from any
number of non-base Stargates to the base station in ExScal, show-
ing not only the performance of the protocol but also the stability
of its implementation.
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6 Related work

The literature on routing in ad hoc and wireless networks is quite
rich. In this section, we only review those related most closely
to LOF.

Link properties in 802.11b mesh networks and dense wire-
less sensor networks have been well studied in [8], [22], and
[31]. They have observed that wireless links assume complex
properties, such as wide-range non-uniform packet delivery rate
at different distances, loose correlation between distance and
packet delivery rate, link asymmetry, and temporal variations.
Our study on link properties complements existing works by fo-
cusing on the differences between broadcast and unicast link
properties, as well as the impact of interference pattern on the
differences.

Differences between broadcast and unicast and their impact on
the performance of AODV have been discussed in [24] and [11].
Our work complements [24] and [11] by experimentally study-
ing the differences as well as the impact of environment, dis-
tance, and interference pattern on the differences, which were not
the focus of [24] and [11]. [11] mentioned the difficulty of get-
ting MAC feedback and thus focused on the method of beacon-
based link estimation. Our work complements [11] by develop-
ing techniques for reliably fetching MAC feedback, which build
the foundation for beacon-free link estimation as well as routing.
To improve the performance of AODV, [24] and [11] also dis-
cussed reliability-based mechanisms (e.g., SNR-based ones) for
blacklisting bad links. Since it has been shown that reliability-
based blacklisting does not perform as well as ETX [15, 12, 29],
we do not directly compare LOF to [24] and [11], instead we
compare LOF to ETX.

Recently, great progress has been made regarding routing in
wireless sensor networks as well as in mesh networks. Rout-
ing metrics such as ETX [12, 29] and ETT/WCETT [14] have
been proposed and shown to perform well in real-world wireless
networks [13]. The geography-based metric PRD [26] has also
been proposed for energy-efficient routing in wireless sensor net-
works. Nevertheless, unicast link properties were still estimated
using broadcast beacons in these works. Our work differs from
existing approaches by experimentally demonstrating the diffi-
culty of precisely estimating unicast link properties via those of
broadcast beacons, and proposing the beacon-free protocol LOF
where unicast link properties are estimated via the data traffic
itself.

Similar to our work, protocols SPEED [16] and NADV [23]
also use MAC latency and geographic information in route selec-
tion. While focusing on real-time packet delivery and a general
framework for geographic routing (but not on data-driven link
estimation and beacon-free routing as in LOF), neither SPEED
nor NADV considers the importance of appropriate probabilistic
neighbor switching. SPEED switches next-hop forwarders after
every packet transmission (as in L-se), and NADV does not per-
form probabilistic neighbor switching (as in L-ns), both of which
degenerate network performance as shown in Section 5. Com-
plementary to SPEED and NADYV, moreover, we have analyzed
the small sample size requirement in LOF, which shows the fea-
sibility of data-driven link estimation. While the method of using
MAC latency and geographic information has been evaluated via



simulation in [16] and [23], we further justified the method via
experiments in real networks with realistic traffic trace.

The problem of local minimum or geographic void has been
dealt with in routing protocols such as GPSR [21]. In this paper,
therefore, we have not considered this problem since it is inde-
pendent of our major concerns — data-driven link quality esti-
mation and beacon-free routing. As a part of our future work, we
plan to incorporate techniques of dealing with geographic void
into LOF, by adapting the definition of “effective geographic
progress” (in Section 3.2) and routing around void. The impact
of localization errors on geographic routing has been studied in
[25]. In LOF, we adopted a separate software component that
fine tunes the GPS readings to reduce localization inaccuracy, as
also used in the field experiment ExScal [7].

7 Concluding remarks

Via experiments in testbeds of 802.11b networks, we have demon-
strated the difficulties of precisely estimating unicast link prop-
erties via broadcast beacons. To circumvent the difficulties, we
have proposed to estimate unicast link properties via data traffic
itself, using MAC feedback for data transmissions. To this end,
we have modified the Linux kernel and hostap WLAN driver to
provide feedback on the MAC latency as well as the status of
every unicast transmission, and we have built system software
for reliably fetching MAC feedbacks. Based on these system fa-
cilities, we have demonstrated the feasibility as well as potential
benefits of data-driven beacon-free routing by designing protocol
LOF. LOF mainly used three techniques for link quality estima-
tion and route selection: initial sampling, data-driven adaptation,
and probabilistic neighbor switching. With its well tested perfor-
mance and implementation, LOF has been successfully used to
support convergecast in the backbone network of ExScal, where
203 Stargates have been deployed in an area of 1260 meters by
288 meters.

In this paper, we have focused on beacon-free link estimation
and routing in 802.11 networks. But we believe that the concept
of data-driven link estimation also applies to other sensor net-
works such as those using IEEE 802.15.4 radios, since temporal
correlation in link properties also leads to estimation inaccuracy
in these networks [10]. Given the limitation of our 802.11 radios,
we have not applied the technique of data-driven link estimation
to metrics such as ETX [12] or RNP [10]. We plan to explore
these directions in our future work.

Besides saving energy by avoiding periodic beaconing, the
beacon-free nature of LOF facilitates greater extent of energy
conservation, because LOF does not require a node to be awake
unless it is generating or forwarding data traffic. The beacon-free
nature of LOF also helps in enhancing network security, since
the network is less exposed. More detailed study of the impact
of beacon-free routing on energy efficiency and security is a part
of our future work.
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