
Interactive Level-of-Detail Selection Using Image-Based

Quality Metric for Large Volume Visualization

Chaoli Wang∗ Antonio Garcia† Han-Wei Shen‡

The Ohio State University

ABSTRACT

For large volume visualization, an image-based quality metric is
much difficult to incorporate for level-of-detail selection and ren-
dering without sacrificing the interactivity. In this paper, we in-
troduce an image-based level-of-detail selection algorithm for in-
teractive visualization of large volumetric data. The design of our
image-based quality metric is based on an efficient way to evalu-
ate the contribution of multiresolution data blocks to the final im-
age. To ensure real-time update of the quality metric and interac-
tive level-of-detail decisions, we propose a summary table scheme
in response to run-time transfer function changes, and a GPU-based
solution for visibility estimation. Experimental results on large sci-
entific and medical data sets demonstrate the promise of our image-
based level-of-detail selection algorithm.

CR Categories: E.4 [Coding and Information Theory]: Data
compaction and compression; I.3.3 [Computer Graphics]: Pic-
ture and Image Generation—Viewing algorithms; I.3.6 [Computer
Graphics]: Methodology and Techniques—Graphics data struc-
tures and data types; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

Keywords: level-of-detail, image-based quality metric, visibility
computation, multiresolution rendering, large volume visualization

1 INTRODUCTION

Direct volume rendering with hardware texture mapping has be-
come a standard technique for visualizing three-dimensional scalar
fields from scientific and medical applications. An increasing num-
ber of these applications are now producing large-scale data sets,
ranging from gigabytes to terabytes. One example is the Visible
Woman (VisWoman) data set with resolution of 512× 512× 1728
from The National Library of Medicine, generated as part of
the Visible Human Project. Another example is the Richtmyer-
Meshkov Instability (RMI) simulation performed at Lawrence Liv-
ermore National Laboratory. The simulation was executed on a
2048×2048×1920 rectilinear grid, and it produced 7.5 gigabytes
of data at each time step.

While it is common for the domain scientists to generate enor-
mous amount of data, the state-of-the-art high-end graphics hard-
ware is limited to only several hundred megabytes. This dispar-
ity severely challenges brute-force conventional hardware-texturing
based volume rendering approaches, since the rendering time is
proportional to the size of the data. New visualization systems
that can scale adequately and ensure the level of interactivity are
needed. Among several alternatives, multiresolution volume ren-
dering [31, 15, 12] is a solution that can reduce the rendering cost
dramatically. To perform interactive rendering, a multiresolution
data hierarchy composed of multiple spatially partitioned blocks is
first created. At run time, as the user navigates through the hier-
archy, various amounts of data at different levels of detail can be

∗e-mail: wangcha@cse.ohio-state.edu
†e-mail: agarcia@cse.ohio-state.edu
‡e-mail: hwshen@cse.ohio-state.edu

extracted and used for the rendering.
Often, such a level-of-detail (LOD) is determined by various

user-specified parameters, such as the tolerance of errors based
on certain data-dependent metrics [17, 1, 29], different view-
dependent parameters [15, 19], or both [32, 12, 11, 20]. In gen-
eral, these metrics can be classified as data-based and image-based
metrics. Data-based metrics measure the distortion between low
and high (or full) resolution coarse-grained data blocks in the vol-
ume. The most widely used data-based metrics are mean square
error (MSE), L2 norm, and peak signal-to-noise ratio (PSNR). Al-
though these metrics have clear physical meanings and are simple
to compute, they are usually not good at predicting the quality of
the rendered images due to the lack of correlation between data and
image [13, 7, 27, 30, 20]. Image-based metrics focus on the ul-
timate images the user perceives, and strive to capture the quality
loss in the rendered images introduced by rendering lower resolu-
tion data. These metrics are intrinsically view-dependent and more
difficult to develop in conjunction with interactive LOD selections
for large volume visualization. The major challenge lies in design-
ing a comprehensive image-based metric, and updating the metric
fast enough as not to harm the interactivity.

In this paper, we present an interactive LOD selection and ren-
dering algorithm using an image-based quality metric for visualiz-
ing large volumetric data. We advocate an image-space approach
for the quality metric design, based on a novel way to evaluate the
importance values of coarse-grained multiresolution data blocks on
the final image. Crucial to this approach is the notion of real-time
update of the quality metric when the viewing or transfer function
changes at run time. Utilizing programmable graphics hardware,
we propose a GPU reduction scheme that can efficiently perform
the visibility estimation for multiresolution data blocks. Conse-
quently, all the view-dependent information can be updated in real
time, ensuring interactive LOD selections. Moreover, our method
does not make any assumption of the transfer function the user may
use. By storing summary tables of data blocks in the multireso-
lution hierarchy with very small storage overhead (around 1% of
the original volume data), we can update the quality metric within
seconds whenever the transfer function changes at run time. As
demonstrated in Section 5, our LOD selection algorithm performs
better than traditional algorithms using data-based metrics, such as
the MSE 1.

The remainder of the paper is structured as follows. First, we
review related work in Section 2. In Section 3, we briefly intro-
duce the multiresolution data representation we use for large three-
dimensional data sets. In Section 4, we describe our multiresolution
LOD selection and rendering algorithm in detail. Experimental ev-
idence showing the superiority of our image-based LOD selection
to the MSE-based one is provided in Section 5. The paper is con-
cluded in Section 6 with future work for our research.

1In order to better perceive the image differences, the reader should view
the rendered images in this paper electronically. Additionally, some video
clips (http://www.cse.ohio-state.edu/∼wangcha/research/lod.avi) have been
made as the supplementary material to compare our LOD selection method
with the traditional MSE-based one.

2 RELATED WORK

This section presents a brief review of related work in the areas
of multiresolution data representation for volumetric data, image-
based quality measurement, and visibility computation.

Building a multiresolution data hierarchy allows the user to vi-
sualize data at different scales, and balance image quality and com-
putation speed. A number of techniques have been developed to
provide hierarchical data representation for volumetric data, such
as the Laplacian pyramid [9], multi-dimensional trees [32], and
octree-based hierarchies [15, 1]. Muraki first introduced the use
of wavelet transforms for volumetric data [23]. Westermann [31]
presented a framework for approximating the volume rendering in-
tegral using multiresolution spaces and wavelet projections. More
recently, Guthe et al. [12] presented a wavelet-encoded hierarchi-
cal representation for large volume data sets that supports interac-
tive walkthroughs on a single commodity PC. Vector quantization
[24, 28] has also been utilized to compress large data sets for direct
volume rendering. Although this approach achieves good compres-
sion, it is not as flexible as a hierarchical data representation.

The lack of correlation between the type of error in an image and
the response of the human visual system (HVS) to different types
of errors prompted researchers to develop image-based metrics. Ja-
cobs et al. [13] introduced an image-query metric for searching in
an image database using a query image similar to the intended tar-
get. The metric makes use of multiresolution wavelet decomposi-
tions of the query and database images, and operates on the coef-
ficients of these decompositions. Gaddipati et al. [7] presented a
wavelet-based metric which captures the change in images wrought
by operators and the image synthesis algorithms. Sahasrabudhe
et al. [27] proposed a quantitative technique which accentuates dif-
ferences in images and data sets through a collection of partial met-
rics. A study of different image comparison metrics, categorized
into spatial domain, spatial-frequency domain, and perceptually-
based metrics, was presented in [33]. Alternatively, Wang et al. [30]
proposed the use of structural similarity for the design of image
quality measures. Experimental results show that their Structural
Similarity Index simulates the response of the HVS with low com-
putation cost.

In the context of large volume visualization, an image-based
metric is hard to develop because of the following reasons: First,
image-based metrics need to consider run-time information, such
as the viewing, projection, and occlusion. Unlike most data-based
metrics which can be easily computed in a preprocessing stage, to
get view-dependent occlusion information for a large data set, one
has to resort to either sophisticated precomputation with consider-
able overhead [8] or run-time calculation with rough approximation
[11]. Next, since the user may adjust the transfer function dur-
ing the rendering in order to reveal different features, image-based
metrics should be adaptive to run-time transfer function changes.
Previous work on large data visualization was either dependent on
the input transfer function [20], or limited to a family of transfer
functions consisting of a series of basis functions [8]. Last, the
human observer plays a central role in perceiving the image qual-
ity. Therefore, image-based metrics should also reflect the human
perception [25] involved in the volume rendering process. This in-
cludes a wide variety of spectrums, such as the perception of dis-
tance, coverage, shape, color, occlusion, texture, and lighting. In
this paper, we integrate an image-based quality metric within the
multiresolution LOD selection and rendering framework.

To accelerate the process of image generation, visibility compu-
tation has long been employed for occlusion culling [2] in rendering
large polygonal models as well as volumetric data sets. Klosowski
and Silva [14] introduced the time-critical Prioritized-Layered Pro-
jection (PLP) algorithm for fast rendering of high depth complex-
ity scenes, using a solidity-based metric for visibility estimation.

A similar approach that integrates occlusion culling with view-
dependent rendering was given in [4]. Gao et al. [8] proposed
a Plenoptic Opacity Function (POF) scheme, which encodes the
view-dependent opacity of a volume block, for visibility culling of
large volume data. Utilizing visibility information for multiresolu-
tion volume rendering has not been widely studied. A conservative
way of visibility testing that assumes a uniform opacity for each
data block was presented in [11]. In [20], a low resolution ray-
casting renderer was used to estimate the average opacity of each
block, followed by empirical tests for approximating the simplified
discrete rendering equation with no emission factor.

3 MULTIRESOLUTION DATA HIERARCHY

To build a multiresolution data hierarchy from a large three-
dimensional data set, we use wavelet transforms to convert the data
into a hierarchical multiresolution representation, called the wavelet
tree [12]. The wavelet tree construction algorithm starts with sub-
dividing the original 3D volume into a sequence of blocks with the
same size (assuming each has N voxels). These raw volume blocks
form the leaf nodes of the wavelet tree. After performing a 3D
wavelet transform to each block, a low-pass filtered subblock of
size N/8 and wavelet coefficients of size 7N/8 are produced. The
low-pass filtered subblocks from eight adjacent leaf nodes in the
wavelet tree are grouped into a single block of N voxels, which
becomes the low resolution data stored in the parent node. We re-
cursively apply this 3D wavelet transform and subblock grouping
process in a bottom-up manner till the root of the tree is reached,
where a single block of size N is used to represent the entire vol-
ume. To reduce the size of the coefficients stored in the wavelet
tree, the wavelet coefficients in each tree node are set to zero if they
are smaller than a user-specified threshold. These wavelet coef-
ficients are then compressed using run-length encoding combined
with a fixed Huffman encoder. Note that in the wavelet tree, the
multiresolution data blocks associated with all the tree nodes have
data of the same size, which is N. However, the spatial resolutions
they represent may vary, depending on which level of the tree the
corresponding nodes lie on.

4 LOD SELECTION AND RENDERING ALGORITHM

Our multiresolution LOD selection and rendering algorithm opti-
mizes the quality of rendered images through the use of an image-
based quality metric. Our quality metric evaluates the importance
values of multiresolution data blocks, by examining the contribu-
tion of data blocks to the final image, based on the discretized vol-
ume rendering integral (DVRI). The evaluation approximates the
emission of each block, as well as taking into account the occlusion
caused by the blocks in front of it. To capture the multiresolution er-
ror in the data hierarchy, we modulate the importance value with the
distortion between low and high resolution data blocks, calculated
in the roughly perceptually-uniform CIE L∗u∗v∗ (CIELUV) color
space. To ensure real-time update of the quality metric, we pro-
pose a summary table scheme in response to changes of the transfer
function, and a GPU reduction scheme for visibility estimation. At
run time, for a given viewing direction, the LOD selection is made
based on a priority queue scheme with the priority values of mul-
tiresolution blocks set as their importance values. The wavelet tree
traversal maintains the LOD as a cut through the hierarchy, and the
importance values dictate the sequence of LOD refinements. A cer-
tain number of blocks up to a user-specified budget are extracted
and sent to the texture hardware for rendering.

4.1 Volume Rendering Integral

According to the emission-absorption optical model [21], the vol-
ume rendering integral (VRI) that calculates the amount of light I
along a viewing ray r through the volume is given by:

Ir =
∫ D

0
c̃(s(~x(λ))) exp(−

∫ λ

0
τ(s(~x(λ ′))) dλ ′) dλ (1)

where s(~x(λ)) is the scalar value at position ~x(λ) in the volume,
parameterized by the distance λ to the viewpoint; c̃(s) is the volume
source term or intensity; τ(s) defines the attenuation function.

In general, the VRI cannot be evaluated analytically. Therefore,
practical volume rendering algorithms discretize the VRI by numer-
ical approximation. Using Riemann sum for n equal ray segments
of length D/n, and further approximating the exponential function
with the first two terms of the Taylor series expansion, we get the
discretized volume rendering integral (DVRI) [22], also known as
the compositing equation [18]:

Ir =
n

∑
i=0

c(si)α(si) ·
i−1

∏
j=0

(1−α(s j)) (2)

where c(s) and α(s) define the color and opacity transfer function.
This equation denotes that at each discrete sample position i along
the viewing ray r in the volume, light is emitted according to the
term c(si)α(si), which is absorbed by the volume at all positions
along r in front of i according to the term α(s j). Equation 2 serves
as the foundation for our design of importance values for multires-
olution data blocks.

4.2 Importance Value Design

The DVRI in Equation 2 evaluates the amount of light on a per-ray
basis. It is also possible to look at the equation on a per-slice basis,
which leads to the popular slice-based compositing technique for
volume rendering. In this paper, the underlying entity for our LOD
selection and rendering algorithm is a data block. Therefore, we
evaluate the importance values of multiresolution data blocks by
approximating Equation 2 on a per-block basis. The importance
value of a data block b along the viewing direction r is calculated
as follows:

Ib = (c(µ)α(µ) · t · a) · ν (3)

where µ is the mean scalar data value of block b; c(µ) and α(µ)
define the color and opacity transfer function respectively (we actu-
ally calculate the magnitude of its corresponding CIELUV color, as
explained later in Equation 9); t is the average thickness (the length
of the viewing ray segment inside the block) of block b; a is the
screen projection area of the block, and ν is its estimated visibil-
ity. Similar to Equation 2, here ((c(µ)α(µ) · t ·a) approximates the
emission of block b along direction r, and ν accounts for the at-
tenuation. Given a viewing direction r, Ib essentially evaluates the
contribution of block b to the final image.

If we record the mean scalar value µ of each block during the
construction of the multiresolution data hierarchy, we can quickly
compute c(µ) and α(µ) at run time. Also, given a viewing direction
r, the average thickness t and projection area a of a block can be
easily calculated. However, to obtain the estimated visibility ν of a
block is non-trivial, and we will describe our real-time GPU-based
solution in Section 4.5.

Even if two multiresolution data blocks have the same approx-
imate emission and absorption terms, there still might be different
distortions between the two blocks and their children. Taking ac-
count of the relative distortion, we modulate the importance value I
with the multiresolution error between low and high resolution data
blocks. Equation 3 becomes:

Ib = (c(µ)α(µ) · ε · t · a) · ν (4)

where ε is the distortion between block b and its higher resolution
child blocks, normalized to [0,1]. The motivation behind this mod-
ulation is that if a block contains larger distortion, then it should
receive a higher priority value for LOD refinement.

4.3 Multiresolution Error Evaluation

The multiresolution error ε evaluates the distortion of low and high
(or full) resolution data blocks in the data hierarchy. Previously, re-
searchers have proposed various ways to calculate the error in the
scalar data space [17, 1, 29], and in the RGB [5, 11] or CIELUV
[20] color space. In this paper, we take an image-space approach
and opt to evaluate the multiresolution error in the perceptually
adapted CIELUV color space, as suggested by Glassner [10].

First, let us consider two data blocks bi and b j , where b j is an
immediate child block of bi. We define the multiresolution error
between bi and b j as follows:

εi j = σ̃i j ·
µ̃2

i + µ̃2
j +C1

2µ̃iµ̃ j +C1
·

σ̃2
i + σ̃2

j +C2

2σ̃iσ̃ j +C2
(5)

where σ̃i j is the covariance between bi and b j; µ̃i and µ̃ j are the
mean values of bi and b j respectively; σ̃i and σ̃ j are the standard
deviations of bi and b j respectively (small constants C1 and C2 are
included to avoid instability when µ̃iµ̃ j and σ̃iσ̃ j are very close to
zero):

σ̃i j =
1

N−1

N

∑
k=1

(x̃ik− µ̃i)(x̃ jk− µ̃ j) ; (6)

σ̃i =
1

N−1

N

∑
k=1

(x̃ik− µ̃i)
2 ; σ̃ j =

1
N−1

N

∑
k=1

(x̃ jk− µ̃ j)
2 . (7)

Here, N is the number of voxels in the block, and x̃ is the volume
source term. Equation 5 consists of three parts, namely, covariance,
luminance distortion, and contrast distortion. The first part is the
covariance between bi and b j , which measures the degree of lin-
ear correlation between the two blocks (σ̃i j is always non-negative
since we actually calculate σ̃i j based on the CIELUV color dif-
ferences of the pairs (x̃ik, µ̃i) and (x̃ jk, µ̃ j), as explained in Equa-
tions 8 - 10). Even though bi and b j are linearly related, there still
might be relative distortions between them. Therefore, we add two
more parts to the equation. The second one, measures how close
the mean luminance is between bi and b j . The minimum value of
1.0 is achieved if and only if µ̃i = µ̃ j . On the other hand, σ̃i and σ̃ j
can be viewed as estimate of the contrast of bi and b j , so the third
part measures how similar the contrasts of the two blocks are. Also,
the minimum value of 1.0 is achieved if and only if σ̃i = σ̃ j . Col-
lectively, these three parts capture the distortion between the two
blocks. The luminance distortion and contrast distortion are orig-
inally from the image quality assessment literature [30], and have
been shown to be consistent with the luminance masking and con-
trast masking features in the HVS, respectively.

One should note that the input source terms, x̃ and µ̃ , are
CIELUV color values, rather than original scalar data values. Ac-
cordingly, we define x̃ik and µ̃i as follows (x̃ jk and µ̃ j can be defined
similarly):

x̃ik = ∆E(f (crgb(xik) ·α(xik)), (0,0,0)) (8)

µ̃i = ∆E(f (crgb(µi) ·α(µi)), (0,0,0)) (9)

where xik is the scalar data value at the kth voxel position in block
bi; µi is the mean scalar value of bi; crgb and α define the color and
opacity transfer function; f is the function that converts an RGB
color to its CIELUV color [6]; ∆E is the Euclidean distance be-
tween a pair of colors specified in the CIELUV color space:

∆E =
√

∆L∗2 + ∆u∗2 + ∆v∗2 (10)

where ∆L∗, ∆u∗, and ∆v∗ are the differences of L∗, u∗, and v∗ com-
ponents for the pair of CIELUV colors.

Equation 5 only calculates the multiresolution error εi j between
a pair of parent-child blocks: bi and b j . In our multiresolution data
hierarchy, a parent block has eight immediate child blocks, thus
we compute the error as the summation of the errors between the
parent block and its eight child blocks. We also take into account
the maximum error of the child blocks, as an approximation of the
error between the parent block and the original full-resolution data
block it represents. Written in equation:

εi =
7

∑
j=0

εi j +max{ε j|
7
j=0} (11)

where εi and ε j are the multiresolution errors of blocks bi and b j
respectively.

As a special case, if block bi is associated with a leaf node in the
hierarchy, we define εi = C3, where C3 is a small constant. All the
multiresolution errors in the data hierarchy are normalized before
being used in Equation 4 for the calculation of importance values.

4.4 Summary Table Scheme

As we can see, the calculation of multiresolution error ε in Equa-
tion 11 requires the input of the color and opacity transfer function
(Equations 8 and 9). At run time, whenever the user adjusts the
transfer function, the multiresolution errors in the entire data hi-
erarchy have to be recomputed from the beginning. This entails a
considerable amount of computation overhead and makes the whole
LOD selection and rendering process non-interactive. In the fol-
lowing, we describe a summary table scheme that ensures real-time
update of the errors in response to transfer function changes.

Our summary table scheme is based on the observation that, for
large data sets, the range size of the scalar data is often many or-
ders of magnitude smaller than the spatial size of the volume. For
instance, the RMI data set is byte (8-bit) data with range size of
256. However, the spatial size of the volume is 2048×2048×1920.
Therefore, instead of calculating Equations 6 and 7 for each voxel,
it suffices to count the frequencies of unique error terms, which is
much faster (similar observations have been made and utilized in
[5, 16]). In the case of byte data, there are 2562 = 65536 combina-
tions for σ̃i j , and only 256 cases for σ̃i or σ̃ j . To compute the error,
rather than adding individual error terms voxel by voxel, we add the
products of a unique error term and the frequency of that term.

To realize this, first of all, for each of the data blocks at the mul-
tiresolution hierarchy, we precompute the mean scalar value µ , and
keep a local histogram table H (256 entries):

H (xi, m)

where xi is the scalar value, m is the frequency of xi in the block.
Next, for each data block associated with a non-leaf node in the

hierarchy, we keep a local correspondence table C (65536 entries):

C (xi, x j, m)

where xi is the scalar data value in the current (parent) block; x j is
the data value in its immediate eight child blocks; m is the frequency
of the data pair. We refer to these histogram and correspondence ta-
bles as summary tables. They are created during the construction of
the data hierarchy and are precomputed only once. Besides this, we
keep a global distance table D (1+2+ . . .+255 = 32640 entries):

D (xi, x j, ∆E)

where xi and x j are scalar data values, and xi < x j; ∆E is the dis-
tance between xi and x j in the CIELUV color space.

Finally, we keep a global function table F (the number of entries
in the transfer function, usually 256):

F (rgbα, L∗u∗v∗)

where rgbα is the RGB color and opacity in the current transfer
function, L∗u∗v∗ is the corresponding CIELUV color. The global

distance table and function table are initialized at run time and are
updated when the transfer function changes.

At run time, we can quickly calculate the multiresolution error
ε for each block using Equations 5 - 11, by looking up the mean
scalar value µ and summary tables (H and C) stored in each of the
blocks, as well as the global distance table D and function table F.
The lookup relationships are as follows:

µ̃i, µ̃ j ← µ,F ;

σ̃i, σ̃ j ← H,F ;

σ̃i j ← C,D .

Whenever the user changes the transfer function, only the global
distance table and function table need update.

For data sets other than byte data, quantization is necessary in
order to reduce the size of summary tables (otherwise, the size of
these tables could be even larger than the size of actual data blocks,
and the time for error calculation would increase dramatically). For
example, one can quantize the scalar data range into 256 levels ei-
ther uniformly or based on the histogram of the whole data set. In
this way, the total size of the summary tables will remain small re-
gardless of the data type of the input volume.

Figure 1: Run-length encoding on the correspondence table C in a zigzag

manner. An example of an 8×8 table is shown here. The encoding starts from

the red circle, and follows the red arrows.

One can observe that, usually there is a strong degree of corre-
lation between parent and child blocks in the data hierarchy. This
means that in the correspondence table C, when xi is close to x j
(i.e., the entry is close to the major diagonal of the table), the fre-
quency m is large. m is smaller, actually often zero, if the entry is
further away from the major diagonal. Leveraging this observation,
we can perform run-length encoding on the correspondence table C

in a zigzag manner, as illustrated in Figure 1. The zigzag run-length
encoding not only reduces the storage of correspondence tables, but
also improves run-time performance. Testing on the RMI data set
shows that by storing the run-length encoded correspondence ta-
bles C, the total size of summary tables reduces from 208MB to
44.1MB, and accordingly, the time to update multiresolution errors
decreases from 43 seconds to 13 seconds.

4.5 GPU-Based Visibility Estimation

Obtaining the exact visibility of the multiresolution data blocks re-
quires rendering the blocks in the stage of visibility determination.
This is similar to rendering the entire hierarchy, which could be
rather slow and defeats the purpose of the visibility test. For coarse-
grained multiresolution rendering, getting an approximate visibility
of a block suffices, and the visibility computation should be done
prior to the actual rendering of blocks.

For multiresolution volume rendering, opacity corrections are
necessary to generate correct images to compensate for the vary-
ing slice distances within data blocks of different resolutions. For
a data block at the lth level of the hierarchy (l = 0 is the leaf node
level), its opacity αl is corrected from α0 as follows:

αl = 1− (1−α0)
γ−l

(12)

where α0 is the opacity corresponding to the full resolution data,
γ (= 2.0 for an octree-based hierarchy) is the refinement factor be-
tween two consecutive levels. If the opacities of multiresolution
data blocks are corrected according to Equation 12, it follows that
the visibility of a data block is independent of the resolutions of
all the occluding blocks in front of it. Therefore, we can always
render a lower resolution of the data (for example, the root of the
data hierarchy) by drawing front-to-back view-aligned slices, and
evaluate the approximate visibility of all the blocks during the slic-
ing, as illustrated in Figure 2. The visibility of a block is com-
puted as (1−α), where α is the average opacity within the block’s
screen projection on the opacity map, accumulated right before the
first slice intersecting the block (α is considered as the accumulated
opacity in front of that block). Note that a conservative way of tak-
ing the minimum opacity, commonly used in occlusion culling, is
unnecessary. For occlusion culling, the decision is to either render
or discard a block, and getting the minimum opacity is essential to
avoid producing incorrect images by leaving holes. For multires-
olution rendering, the whole volume is rendered anyway, because
the question is to select proper LODs for different regions within
the volume, rather than to render or discard a region. Therefore, it
is reasonable to get the average instead of the minimum opacity.

Figure 2: Visibility estimation via rendering a lower resolution of the data.

The visibility of a block is acquired when its nearest vertex is in-between the

current slice and the latest drawn one.

To compute the average opacity for a data block, a naive way is
to read the alpha channel of the framebuffer to an off-screen buffer
after a certain number of slices are rendered, and iterate through the
pixels that the data block projects to and obtain an average of the
opacities. This software approach is slow due to the framebuffer
reads from the GPU to the CPU. The testing time is linear to the
size of output images and the number of pixels each block projects
to. OpenGL’s extensions, such as the occlusion queries, are not
suitable for our case because it is the alpha channel and not the
depth channel that must be considered.

Figure 3: The construction of the SAT. An example of a 4× 4 table T is

shown here. The sum of any rectangular area bounded by [x0,y0] and [x1,y1]

is calculated as: T(x1,y1)−T(x0− 1,y1)−T(x1,y0− 1)+ T(x0− 1,y0− 1). Any

table entry out of bound uses zero.

Crow [3] conceived the summed area tables (SATs) that have
been used for antialiasing. The construction of such a table is lin-
ear to the number of pixels on the area being considered, in our

case the whole rendering screen. However, it only takes constant
time to retrieve the sum over any rectangular area, which is done in
one addition and two subtractions. This fits perfectly in getting the
corresponding averages from the projections of the blocks. Build-
ing a SAT can be done by reading the framebuffer, and successively
adding the columns from left to right and then the rows from bottom
to top, as shown in Figure 3. To minimize the transferring of pixels
from the GPU to the CPU, we move all operations to the GPU. In
the following, we describe our GPU reduction scheme in detail.

GPUs and fragment programs provide the means to construct
SATs. Nowadays, GPUs also support texture objects that have 32-
bit floating-point channels, which is important for SATs since the
sums require more precision. Following the same way as we build
SATs in the CPU, an immediate choice is to switch the implemen-
tation of SATs to a pbuffer in the GPU. However, this requires that
the pbuffer is treated as both an input and an output texture, which
highly depends on the kinds of hardware and graphics library avail-
able. To date, most implementations do not have this capability.
Therefore, we take an alternative and build the SATs in passes with
the support of pbuffers having double auxiliary buffers: one is the
input, and the other is the output. Both auxiliary pbuffers have the
same size as the rendering pbuffer.

Figure 4: The construction of the SAT in the GPU. An example of a 4× 4
table is shown here. Only the passes operating on the columns are illustrated.

As illustrated in Figure 4, the construction of a SAT in the GPU is
as follows: First of all, we treat the alpha values from the rendering
pbuffer as a texture and map it to two quads in the input pbuffer: the
first quad only covers the texels of the first column, and the second
covers the rest of the texture. In the first pass, each texel of the first
quad is directly output to the same position at the output pbuffer,
while each texel of the second quad adds the texel left to it as the
output. In the second pass, the auxiliary pbuffers are swapped and
the first quad doubles in size. Each texel in the first quad remains
output unchanged, and each texel of the second quad now adds the
texel two positions left to it as the output. This process continues
until the first quad is half the size of the rendering pbuffer. Then,
the process is repeated over the rows in a similar way to complete
the SAT. For a rendering screen with resolution of n2, the number
of passes needed is 2 log(n).

Getting the average opacity for a block is performed by another
fragment program that looks up the texture in the output auxiliary
pbuffer holding the SAT. The program renders a quad that covers
one pixel and has two sets of texture coordinates: the first set is the
upper-right corner of the projection of the block in query, and the
second the dimensions of that projection. With those values, the
four corners of the projection are built in the fragment program and
used to lookup the sums, which are combined to produced the sum
in that area, as shown in Figure 3. Dividing the sum by the area of
the projection we get the average for the block. The average value
is then returned to the CPU.

Finally, producing the SAT in the GPU requires that the ren-
dering of the lower resolution data is done to a pbuffer. Techni-

Figure 5: (a) shows an overview of the VisWoman data set and (b)-(d) show a zoom to the pelvis. One can observe that image (d) (image-based, 71 blocks,

7.31%) shows more details than image (b) (MSE-based, 75 blocks, 7.72%). The reference image (c) is rendered with full resolution (972 blocks).

cally, blending in a pbuffer using OpenGL blending functions is
extremely slow, so we must resort to do the blending by ourselves.
A slice of the rendering is blended in the pbuffer with a fragment
program that performs the over operator [26] of volume rendering.

4.6 LOD Selection and Rendering

At run time, the user specifies the number of blocks as a budget for
rendering. Given a viewing direction, the LOD selection is made
based on a priority queue scheme. The priority values of blocks are
set as their importance values calculated according to Equation 4
(where ε is updated per view and ν per transfer function). Thus, a
block with a higher importance value is more likely to be selected
for refinement during the wavelet tree traversal. Constrained by the
given budget, the traversal maintains the LOD as a cut through the
multiresolution data hierarchy, and refines the blocks on the cut in
a greedy manner.

The LOD selection and rendering works as follows: First, we
initialize the priority queue with the data block of the lowest reso-
lution, i.e., the root of the multiresolution data hierarchy. Then, we
successively refine the block with the highest priority value in the
queue until the budget is met. The refinement is performed by delet-
ing the block b with the highest priority value, updating the impor-
tance values of b’s eight child blocks, and inserting the child blocks
into the queue. Finally, all the data blocks in the queue are sorted
in front-to-back viewing order. These blocks are reconstructed, if
necessary, and sent to texture hardware for rendering.

As we may anticipate reusing most of the reconstructed data
blocks for subsequent frames due to the spatial locality and coher-
ence exploited by the multiresolution data hierarchy, it is desirable
to cache the data blocks that have already been reconstructed for
better performance. The user can predefine a fixed amount of disk
space and memory dedicated for the caching purpose. Upon re-
questing a data block for the rendering, we retrieve its data from the
memory, provided the block is cached in the main memory. Oth-
erwise, we need to load the data from the disk if the reconstructed
data block is cached on disk. If it is neither cached in memory nor
on disk, then we need to reconstruct the data block and load it into
the main memory. When the system runs short of the available stor-
age for caching the reconstructed blocks, our replacement scheme
will swap out a data block that has been visited least often.

5 RESULTS AND DISCUSSION

We experimented with our LOD selection and rendering algorithm
on the VisWoman and RMI data sets, as listed in Table 1. The
decision for the block size was a tradeoff between the cost of per-
forming the wavelet transform for a single data block, and the ren-
dering overhead for final image generation. For both data sets, the

data set (type) VisWoman (short) RMI (byte)
volume dimension 512×512×1728 2048×2048×1920
block dimension 32×32×64 128×128×64

volume/block size 864MB/128KB 7.5GB/1MB
non-empty blocks 9446 10499
compression ratio 2.37:1 5.60:1

Table 1: The VisWoman and RMI data sets.

Haar wavelet transform with a lifting scheme was used to con-
struct the data hierarchies. A lossless compression scheme was
used with the threshold set to zero to compress the wavelet coef-
ficients. We extended one voxel overlapping boundaries between
neighboring blocks in each dimension when breaking the original
volume data into blocks in order to produce seamless rendering.
Both hierarchies have a tree depth of six. All tests were performed
on a 3.0GHz Intel Xeon processor with 3GB main memory, and an
nVidia Quadro FX 3400 graphics card with 256MB video memory.

Figure 6: Objective image comparison in the CIELUV color space. (a) shows

the difference between Figure 5 (b) and Figure 5 (c). (b) shows the difference

between Figure 5 (d) and Figure 5 (c). The color map (c) maps ∆E to color.

Figure 5 shows the LOD rendering of the VisWoman data set us-
ing the traditional MSE-based metric and our image-based quality
metric. The full-resolution reference image is put in between for
subjective comparison. A transfer function was used to highlight
the skeleton. Similar numbers of blocks were set for both cases
for fair comparison. For the MSE-based metric, we calculated the
multiresolution error using Equation 11, while εi j is the MSE of the
scalar data values of blocks bi and b j . It can be observed that when
we rendered the data in low resolution, the LOD selection using
the image-based quality metric performs better than the MSE-based
metric.

An objective comparison was also conducted to testify the supe-
rior performance of our image-based quality metric. We calculated
the pixel-wise differences between the low resolution image and
the reference image in the CIELUV color space. The difference

Figure 8: (a) shows an overview of the RMI data set. (b) (MSE-based, 52 blocks) and (c) (image-based, 51 blocks) show a zoom to the center of the data.

threshold ∆E ≥ 6.0 gives the noticeable pixel distortion [20]. Fig-
ure 6 shows the two difference images side by side. Clearly, the
one with the MSE-based metric contains larger visual distortion.
Another rendering example of the VisWoman data set is shown in
Figure 7. Again, we can see that the image-based LOD selection
performs better than the MSE-based one.

Figure 7: (a) shows a zoom to the upper skeleton of the VisWoman data set,

rendered in full resolution. (b) (MSE-based, 58 blocks) and (c) (image-based,

55 blocks) show a closer zoom to the spine while rendered in low resolution.

Figure 8 shows the LOD selection and rendering of the RMI data
set using the two metrics. We zoomed into a portion of the data and
compared fine details after an overview. The image-based qual-
ity metric takes into account the multiresolution error and visibility
of each data block, thus puts more refinement effort on the blocks
that have larger visual contribution. Figure 9 shows the numbers
of blocks rendered in each of the ten visibility levels for Figure 8
(b) and (c) respectively. As we can see, compared with the one
with MSE, the image-based one selected more blocks with higher
visibility. The images in Figure 8 as well as the chart in Figure 9
confirm the effectiveness of our image-based LOD selection algo-
rithm.

Figure 9: The numbers of blocks rendered in each of the ten visibility levels

for Figure 8 (b) and (c) respectively.

We also experimented with our summary table scheme for up-
dating the multiresolution errors. For the RMI data set, it took
44.1MB to store the summary tables and 13 seconds to update the
multiresolution errors. For the VisWoman data set, the storage size
was 9.22MB and the time for error update was 5 seconds. Com-
pared with the original data sizes, the storage overhead was only
0.574% and 1.067% for the RMI and VisWoman data sets respec-
tively. The summary table scheme proved very efficient in response

to the transfer function changes with negligible storage overhead. A
rendering example of the VisWoman data set is shown in Figure 10,
where a different transfer function was used to highlight both the
skin and the skeleton. We zoomed into the left foot and rendered it
close to full resolution. Although the two methods generated closer
results as we approached the full resolution, it can be seen that the
MSE-based one still contains much noise coming from the 3D test
bed surrounding the cadaver (the blocks corresponding to the test
bed have larger MSEs yet less visual importance than the blocks
corresponding to the foot.).

Figure 10: (a) (MSE-based, 97 blocks) and (b) (image-based, 88 blocks)

show a zoom to the left foot of the VisWoman data set, rendered close to full

resolution. White frames are drawn in (a) to indicate some of the differences.

Testing shows that the time to perform visibility estimation is
not negligible. For instance, using the GPU reduction scheme with
image resolution of 5122, it took about 0.4 second to update the
visibility of 10499 non-empty blocks for the RMI data set. If we
perform such a test for every frame, then the frame rate would be
limited to 2.5fps. To overcome this constraint, we incorporate the
following two strategies to improve the rendering frame rates.

First, the number of block budget the user specifies is usually
much smaller than the total number of blocks in the data hierarchy.
For such a typical block budget and a given transfer function, nor-
mally a large portion of the updated visibility of blocks farther away
from the viewpoint (more likely to be occluded from the blocks in
front of them) never gets a chance to contribute to the current LOD
decision. Actually, for the RMI data set, tests show that about 30 -
50% of the total number of blocks fall into this category. In view of
this, we can only draw the front slices up to a certain percentage of
the total number of slices, and update the corresponding visibility
of blocks that are closer to the viewpoint. Any block whose visi-
bility is not updated in this run uses whatever it has from the latest
previous run. In this way, we can reduce the visibility estimation
time to around 0.24 second for the RMI data set, if we only update
60% of the front slices and blocks.

Second, the visibility of the blocks only changes a little bit if the
viewing does not change greatly. Therefore, if the angle between
the current viewing direction and the latest one with the visibility

updated is less than a threshold angle θ , we do not update the visi-
bility and use whatever we have from the latest run. Otherwise, we
need to update again. Here, θ is a predefined small angle (initial-
ized to 5 degrees in our test), and is adaptive to the zooming of the
data during the rendering.

By reducing the load to perform each run of visibility estimation
and the frequency of performing such estimations, we can reuse vis-
ibility computation and utilize frame to frame coherence, achieving
much smoother rendering and better frame rates.

After applying the two strategies for improving the performance,
we compared the timing of visibility estimation for software and
hardware approaches. With output image resolution of 5122, we
tested the RMI data set for a wide variety of block budgets (from
10 to 10000), combined with different scaling factors (from 0.1 to
10.0) and rotations. The test gave the timing range of [0.140,0.274]
for the hardware approach, and [0.226,1.009] for the software one,
both in second. This result convinces us that the solution with the
GPU is much faster and more stable than the CPU one.

6 CONCLUSION AND FUTURE WORK

The focus of this work is to develop an image-based LOD selec-
tion algorithm for large volumetric data, and produce images of
better quality compared with traditional data-based LOD selection
algorithms, under similar block budgets. In this paper, we have
presented an interactive LOD selection and rendering algorithm
through the use of an image-based quality metric. Experimental re-
sults on large scientific and medical data sets show that our image-
based LOD selection is superior to the MSE-based one.

Our approach is promising due to its generality and flexibility.
The summary table scheme greatly alleviates the dependency of
the error calculation on the transfer function, and thus allows one
to update the errors within seconds whenever the transfer function
changes. The GPU reduction scheme for visibility estimation is not
limited to multiresolution volume rendering, and is readily applica-
ble to other large volume visualization scenarios that capitalize on
the visibility information. Moreover, the hierarchical data represen-
tation and the user-specified budget for rendering make our LOD
selection scheme suitable for time-critical multiresolution volume
rendering applications. Finally, one can have different definitions
and thus different ways of measurement for the multiresolution er-
ror in Equation 4, which we would like to explore more. In the fu-
ture, we also would like to extend our method for large-scale time-
varying data visualization.

REFERENCES

[1] I. Boada, I. Navazo, and R. Scopigno. Multiresolution Volume
Visualization with a Texture-Based Octree. The Visual Computer,
17(3):185–197, 2001.

[2] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A Survey
of Visibility for Walkthrough Applications. IEEE Trans. on Visualiza-
tion & Computer Graphics, 9(3):412–431, 2003.

[3] F. C. Crow. Summed-Area Tables for Texture Mapping. In ACM
SIGGRAPH ’84, pages 207–212, 1984.

[4] J. El-Sana, N. Sokolovsky, and C. T. Silva. Integrating Occlusion
Culling with View-Dependent Rendering. In IEEE Vis ’01, pages 371–
575, 2001.

[5] D. Ellsworth, L. J. Chiang, and H. W. Shen. Accelerating Time-
Varying Hardware Volume Rendering Using TSP Trees and Color-
Based Error Metrics. In IEEE VolVis ’00, pages 119–129, 2000.

[6] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles & Practice in C (2nd Edition). Addison Wesley,
1995.

[7] A. Gaddipati, R. Machiraju, and R. Yagel. Steering Image Generation
with Wavelet Based Perceptual Metric. In Eurographics ’97, 1997.

[8] J. Gao, J. Huang, H. W. Shen, and J. A. Kohl. Visibility Culling Using
Plenoptic Opacity Functions for Large Volume Visualization. In IEEE
Vis ’03, pages 341–348, 2003.

[9] M. H. Ghavamnia and X. D. Yang. Direct Rendering of Laplacian
Pyramid Compressed Volume Data. In IEEE Vis ’95, pages 192–199,
1995.

[10] A. S. Glassner. Principle of Digital Image Synthesis, Volume 1. Mor-
gan Kaufmann, 1995.

[11] S. Guthe and W. Straßer. Advanced Techniques for High-Quality
Multi-Resolution Volume Rendering. Computers & Graphics,
28(1):51–58, 2004.

[12] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactive Rendering
of Large Volume Data Sets. In IEEE Vis ’02, pages 53–60, 2002.

[13] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast Multiresolution
Image Querying. In ACM SIGGRAPH ’95, pages 277–286, 1995.

[14] J. T. Klosowski and C. T. Silva. The Prioritized-Layered Projection
Algorithm for Visible Set Estimation. IEEE Trans. on Visualization &
Computer Graphics, 6(2):108–123, 2000.

[15] E. LaMar, B. Hamann, and K. I. Joy. Multiresolution Techniques
for Interactive Texture-Based Volume Visualization. In IEEE Vis ’99,
pages 355–362, 1999.

[16] E. LaMar, B. Hamann, and K. I. Joy. Efficient Error Calculation for
Multiresolution Texture-Based Volume Visualization. In Hierarchi-
cal & Geometrical Methods in Scientific Visualization, pages 51–62,
2003.

[17] D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Re-
finement Algorithm for Volume Rendering. In ACM SIGGRAPH ’91,
pages 285–288, 1991.

[18] M. Levoy. Efficient Ray Tracing of Volume Data. ACM Trans. on
Graphics, 9(3):245–261, 1990.

[19] X. Li and H. W. Shen. Time-Critical Multiresolution Volume Render-
ing Using 3D Texture Mapping Hardware. In IEEE VolVis ’02, pages
29–36, 2002.

[20] P. Ljung, C. Lundström, A. Ynnerman, and K. Museth. Transfer Func-
tion Based Adaptive Decompression for Volume Rendering of Large
Medical Data Sets. In IEEE VolVis ’04, pages 25–32, 2004.

[21] N. Max. Optical Models for Direct Volume Rendering. IEEE Trans.
on Visualization & Computer Graphics, 1(2):99–108, 1995.

[22] M. Meißner, J. Huang, D. Bartz, K. Muller, and R. Crawfis. A Prac-
tical Evaluation of Popular Volume Rendering Algorithms. In IEEE
VolVis ’00, pages 81–90, 2000.

[23] S. Muraki. Approximation and Rendering of Volume Data Using
Wavelet Transforms. In IEEE Vis ’92, pages 21–28, 1992.

[24] P. Ning and L. Hesselink. Vector Quantization for Volume Rendering.
In IEEE VolVis ’92, pages 69–74, 1992.

[25] C. O’Sullivan, S. Howlett, Y. Morvan, R. McDonnell, and
K. O’Conor. Perceptually Adaptive Graphics. Eurographics State of
the Art Reports ’04, 2004.

[26] T. Porter and T. Duff. Compositing Digital Images. In ACM SIG-
GRAPH ’84, pages 253–259, 1984.

[27] N. Sahasrabudhe, J. E. West, R. Machiraju, and M. Janus. Structured
Spatial Domain Image and Data Comparison Metrics. In IEEE Vis
’99, pages 97–104, 1999.

[28] J. Schneider and R. Westermann. Compression Domain Volume Ren-
dering. In IEEE Vis ’03, pages 293–300, 2003.

[29] C. Wang, J. Gao, and H. W. Shen. Parallel Multiresolution Volume
Rendering of Large Data Sets with Error-Guided Load Balancing. In
Eurographics Parallel Graphics & Visualization ’04, pages 23–30,
2004.

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Trans. on Image Processing, 13(4):600–612, 2004.

[31] R. Westermann. A Multiresolution Framework for Volume Rendering.
In IEEE VolVis ’94, pages 51–58, 1994.

[32] J. Wilhelms and A. van Gelder. Multi-Dimensional Trees for Con-
trolled Volume Rendering and Compression. In IEEE VolVis ’94,
pages 27–34, 1994.

[33] H. Zhou, M. Chen, and M. F. Webster. Comparative Evaluation of Vi-
sualization and Experimental Results Using Image Comparison Met-
rics. In IEEE Vis ’02, pages 315–322, 2002.

