
Analyzing the Yield of ExScal,
a Large-Scale Wireless Sensor Network Experiment

Sandip Bapat, Vinodkrishnan Kulathumani, Anish Arora
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210, USA

Abstract

Recent experiments have taken steps towards realizing
the vision of extremely large wireless sensor networks,
the largest of these being ExScal, in which we deployed
about 1200 nodes over a 1.3km by 300m open area.
Such experiments remain especially challenging because
of: (a) prior observations of failure of sensor network
protocols to scale, due to network faults and their spa-
tial and temporal variability, (b) complexity of protocol
interaction, (c) lack of sufficient data about faults and
variability, even at smaller scales, and (d) current in-
adequacy of simulation and analytical tools to predict
sensor network protocol behavior.

In this paper, we present detailed data about faults, both
anticipated and unanticipated, in ExScal. We also eval-
uate the impact of these faults on ExScal as well as the
design principles that enabled it to satisfy its applica-
tion requirements despite these faults. We describe the
important lessons learnt from the ExScal experiment
and suggest services and tools as a further aid to fu-
ture large scale network deployments.

1 Introduction

With the emergence of new hardware platforms, both
research and commercial, as well as the sustained de-
velopment of software architectures and development
tools over the past few years, wireless sensor networks
are envisioned to be deployed in scales of 105-106 nodes
in industrial, military, agricultural, medical and several
other applications. Based on our experience in building
wireless sensor networks, we have seen sensor networks
scale in several dimensions as shown in Table 1, the
largest of these being ExScal, in which we deployed
about 1200 nodes over a 1.3km by 300m open area.

Year Nodes Area Program size

2002 10 10 sq.m. 5KB

2003 100 500 sq.m. 30-100KB

2004 1000 250,000 sq.m. 200KB-2MB

Table 1. Evolution of sensor networks.

This substantial increase in network, deployment and
program complexity scales raises the following key con-
cerns:

Failure of sensor network protocols to scale Past ex-
periences in sensor network research [1] have shown
that scaling an individual protocol for a network that
is 10 times larger often involves redesigning the pro-
tocol itself. In addition to node failures themselves,
the main causes for failure of wireless sensor network
protocols to scale are network faults such as channel
contention, interference and fading over the wireless

medium. The extent to which these faults affect a net-
work is determined by several factors such as internode
separation, antenna polarization, presence of obstacles
and the traffic pattern in the network. Network faults
therefore have significant spatial and temporal variabil-
ity making the design of scalable sensor network pro-
tocols a challenge.

Complexity of integration Sensor network applications
are often built out of multiple protocols for low-level
services such as medium access, reliable communica-
tion, sensing, time synchronization, etc., and inte-
grating these protocols raises the following challenges.
First of all, system correctness is hard to reason about
in the presence of complex interactions between the
various protocols. Secondly, optimizing the perfor-
mance of such complex systems often involves simul-
taneous tuning of parameters across multiple proto-
cols which may have conflicting requirements. For ex-
ample, increasing the memory allocation for routing
buffers may improve communication performance, but
perhaps at the cost of memory available for filtering
windows in sensory processing, leading to increased
noise of false positives.

Lack of sufficient fault data Designing large scale wire-
less sensor networks is further complicated by the fact
that there is little data on faults, their variability or
their impact on applications at small and large scales.

Unpredictability of network behavior Due to the lack
of sufficient data about faults occurring in a large scale
network, there is also a dearth of simulation and an-
alytical tools that realistically model scaling effects.
This makes it hard to predict the behavior of sensor
network protocols and often forces network designers
to be conservative in allocating resources to the net-
work.

Given these scaling concerns, we present in this paper,
data and findings from ExScal, a complex, multi-tier
and multi-phase, large scale sensor network field ex-
periment that we conducted over a 15 day period in
December 2004, for detection, classification and track-
ing of different types of intruders over an extended ge-
ographical area of 1.3km by 300m. We analyze the
impact of faults on ExScal based on the performance
or yield of each of its operational phases. We define
yield as the ratio of measured performance to the ideal
performance.

Goals of the paper
(i) Use real experimental data to identify the types and
characteristics of faults that can occur in a large scale
sensor network,

(ii) validate our design of ExScal by analyzing the vari-
ability of these faults and their impact on the overall
yield of the network,

1

(iii) summarize key lessons learnt and identify areas
where our design was either too conservative or inade-
quate, and

(iv) identify additional services and tools to help net-
work managers choose configuration parameters that
best satisfy the overall system requirements.

Key findings of the paper We find the overall yield
of ExScal to be 72.83%. About 6% nodes become com-
pletely inoperational over the 15 day period due to en-
vironmental effects and these failures have a uniform
spatial distribution. The end-to-end network routing
yield is 85.61% and by appropriate design of our net-
work protocols we achieve a uniform spatial distribu-
tion of network reliability. Since we instrument ExScal
with adequate redundancy, it is able to tolerate these
uniformly distributed faults.

Certain faults such as node localization faults are spa-
tially correlated while others like the failure of a back-
bone node are likely to induce faults that are spatially
correlated. We design our protocols to tolerate such
faults. We also encounter some unanticipated faults
such as nodes which get stuck during reprogramming
and byzantine sensor nodes which may report up to 15
false detections per minute. We handle such unantici-
pated faults by enforcing high level management poli-
cies or by using dynamic reconfiguration to instrument
tolerance components such as detectors and correctors.

By handling anticipated faults through design and
unanticipated faults with human-assisted management
tools, ExScal is able to meet its specifications.

However, our design of ExScal is conservative due to
lack of prior data about faults to predict the network
yield at this scale. We find that the excess redundancy
in ExScal can be used to increase system lifetime.

We also observe that reliable measurement of network
state remains a challenge due to the unreliability of
multi-hop wireless communications.

Organization of the paper We present previous re-
sults related to ours in Sec. 2. In Sec. 3, we describe
ExScal and its operation. We then discuss the exper-
imental methodologies in Sec. 4. In Sec. 5, we first
present yield data for individual subsystems; deploy-
ment in Sec. 5.1, reprogramming in Sec. 5.2, localiza-
tion in Sec. 5.3 and ExScal Op-Ap in Sec. 5.4. We then
present the net yield of ExScal in Sec. 5.5. We discuss
key takeaways and lessons learnt in Sec. ?? and make
concluding remarks and discuss future work in Sec. 7.

2 Related Work

As described in Sec. 1, the network size and appli-
cation complexity of sensor network deployments is
growing substantially. Existing sensor networks can
be categorized into two types: low duty-cycle, peri-
odic sensing applications versus low latency, always-
on sensing application. Habitat monitoring [2–4] and
structural monitoring [5] are typical examples of the
former whereas intrusion detection [1] and shooter lo-
calization [6] are some examples of the latter; ExScal
belongs to the latter class.

Szewczyk et al [4,7] present detailed analysis of experi-
mental results over a 4 month deployment of 150 sensor
nodes for habitat monitoring. The key results from this
experiment include lifetime analysis and measurements

for the deployed system and analysis of routing perfor-
mance over time. This study also addresses some of the
node design and deployment issues and unanticipated
faults observed during the experiment. Similar results
about other periodic monitoring applications can also
be found in [8, 9].

There are significant differences, however, between the
requirements for an application like habitat monitoring
and one like ExScal. ExScal is a real-time event detec-
tion system as opposed to a periodic sensing applica-
tions. As such, it is more sensitive to faults such as false
positives, network unreliability and latency. Van Dyck
and Miller [10] have proposed a simulation framework
and performance criteria for event detection systems.
Our study hopes to provide an experimental data point
to address some of the issues they identify.

Cerpa et al [3] and others have proposed the use of
multi-tier network design to achieve scalability in sen-
sor networks. ExScal uses a multi-tier architecture de-
signed to handle thousands of low-level devices and
hundreds of higher tier nodes forming their own multi-
hop wireless ad hoc network, which is again the largest
such experiment till date. ExScal thus provides valida-
tion of the scalability of using a multi-tier, hierarchical
network.

3 ExScal System Overview

In this section, we present an overview of ExScal with
respect to its requirements, architecture and operation.

3.1 Requirements

The three main requirements of ExScal are:

• Cost effective coverage: To cover a large region
at low cost, ExScal needs to scale sensing and com-
munication ranges of nodes, use a topology designed
with minimal redundancy to get efficient coverage and
maintain low power consumption to maximize system
lifetime.
• Quality of service: ExScal needs to provide accu-
rate and timely performance, i.e. low false positives,
false negatives, misclassifications and tracking error in
near-real-time execution, and be robust by tolerating
deployment errors and component faults.
• Low human involvement: To be easily usable even
at large scale, ExScal needs to have minimal physical
human involvement, implying a need for services en-
abling easy operation, monitoring and reconfiguration
of the network.

3.2 Multi-tier design

To guarantee network reliability and keep end-to-end
latency bounded, ExScal uses a three-tier network de-
sign. The lowest tier, Tier-1, consists of XSMs (for
eXtreme Scale Motes) [11] which are derivatives of the
Mica2 mote [12]. XSMs perform the tasks of sensing
and detection using onboard magnetometer, acoustic
and PIR (for passive infrared) motion sensors and com-
municate detected events to a local base mote. Each
local base mote aggregates detections from an average
of 50 XSMs and is connected to a Tier-2 node called
the XSS (for eXtreme Scaling Stargate) [13] through a
51-pin connector interface. XSS nodes have a 400 MHz
processor, 64MB RAM and 32MB flash memory and

2

Figure 1. ExScal network topology.

are thus more resource-rich than XSMs. Each XSS has
a GPS device and can communicate reliably over sev-
eral hundred meters using a 2.4GHz radio, connected
to a 5 ft tall, 9dBi omnidirectional antenna. XSS nodes
form their own peer-to-peer ad hoc communication net-
work using the IEEE 802.11b MAC protocol. This net-
work is rooted at a special XSS node that is connected
via wired ethernet to a Tier-3 node. The Tier-3 node
is a laptop or a PC running the classification, track-
ing and visualization applications and also serves as
the command and control station for network manage-
ment.

Network Topology Fig. 1 shows the topology of
the ExScal network which consists of 983 XSMs, rep-
resented by dots, arranged in two regions. The dense
region at the top consists of 5 rows with 140 XSMs each
at a separation of 9m arranged in a regular hexagonal
grid. The sparse consists of two XSM lines starting at
90m from the dense region and 90m from each other.
These XSM lines enable us to track intruder motion
after it has left the dense region. Fig. 1 also shows 45
XSS nodes, represented by triangles, arranged in a 15 x
3 grid with 90m separation. The dense region thus has
a total of 686 XSMs and 15 XSSs resulting in about 50
XSM nodes per XSS.

To demonstrate scalability of multi-tier design, ExScal
also deployed 203 XSS nodes in a 29 x 7 grid over the
same area for experiments involving the Tier-2 ad hoc
communication protocols [14].

Sensing and communication coverage ExScal uses
influence field estimation [15] to classify and track de-
tected intruders. Given the sensing ranges for each
intruder as shown in Table 2 and an empirically mea-
sured rate of false positives, we calculate the minimum
density required to distinguish between the intruder
types with high probability. However, this calculation
does not take into account the effect of any node or
network faults. In the absence of prior estimates for
these faults, we conservatively select network density
to be twice the minimum required. This translates to a
9m internode separation between XSMs in the ExScal
topology. ExScal thus has a 100% planned redundancy
in sensing. The communication range of XSMs is 30m,
so redundancy in communication is even higher than
in sensing.

Intruder type PIR Acoustic Magnetometer
Person 12m - -
SUV 25m 30m 7m
ATV 15m 50m 3m

Table 2. Sensing range for intruder types in ExScal

Further details about design considerations, coverage
calculations and possible optimizations for the ExScal
topology can be found in [16].

3.3 Multi-phase operation

To manage application complexity, the operation of
ExScal is broken down into the following phases.

• Pre-Deployment The first phase of ExScal con-
sists of a default application for all XSMs. This appli-
cation, which we call Trusted Base has the ability to
download new programs using the Deluge [17] repro-
gramming protocol and the ability to perform certain
management functions like sleep/wakeup and network
health querying using the Sensor Network Management
System (SNMS) [18] protocol. The Trusted Base also
includes a deployer response application. This appli-
cation is enabled when the XSM is turned on during
deployment, and sends out Hello messages containing
the unique identifier of the XSM and emits an audible
beep as confirmation of its liveness.

• Deployment The deployment process consists of
two steps. In the first step, the grid topology is marked
on the ground using techniques from civil engineer-
ing to an accuracy of a few centimeters. Marked grid
points represent ideal node positions. In the second
step, human deployers place the XSMs and the XSSs
at the marked grid points and power them on. The
Hello messages sent by the deployer response applica-
tion on an XSM are received by a mote attached to a
hand-held XSS node carried by the deployer. The de-
ployer’s XSS records the node-id in this message along
with the GPS location of that point where the node
has been deployed in a file on the XSS. Thus, at the
end of the deployment process, the network deployers
have a list of node-ids and their corresponding GPS
co-ordinates.

•Reprogramming The reprogramming phase is used
to download new application programs from the Tier-
3 node to the entire network and is a recurring phase
in ExScal operation. Tier-2 applications and proto-
cols run on XSSs as Linux processes hence reprogram-
ming Tier-2 nodes consists of replacing an existing ex-
ecutable with a new one. To download a new program
on Tier-1 XSMs, we use the Deluge protocol in the
Trusted Base. The new Tier-1 program is first down-
loaded to the XSS nodes which in turn execute the
Deluge protocol to download it to the entire XSM net-
work.

• Localization The next phase of ExScal, which we
call OASLOC for Operator Assisted Localization, in-
volves localization of deployed nodes. To perform lo-
calization, (node-id, GPS) pairs collected by each de-
ployer’s hand-held XSS are first downloaded on the
central Tier-3 node and merged. This list is then fed to
a geometric program which we call Snap-to-Grid, run-
ning on the Tier-3 node. Snap-to-Grid uses a template
of ideal grid positions and performs a series of rotation,
translation and heuristic-based matching operations to
map each node-id to a grid position in the template.
Fig. 2 illustrates the operation of OASLOC.

A similar strategy is used to localize Tier-2 XSS nodes,
the key distinction being that XSS devices directly
communicate their node-id and GPS locations to the
Tier-3 node using an efficient flooding-based algorithm.
The Tier-2 grid positions are communicated directly
to the XSSs using the same flooding service, while the

3

(a) (b)

Figure 2. OASLOC Snap-to-Grid process: The per-
fectly spaced vertical lines in (a) form the ideal grid
template to which the collected GPS positions are
mapped in (b).

Tier-1 grid locations are communicated to the XSMs by
first sending them to the nearest XSS node which then
initiates a controlled flooding algorithm called Epicast
to forward these to the respective XSMs.

• ExScal Op-Ap Upon localization, the nodes are
ready to execute the main sensing and intrusion de-
tection application, which we call Op-Ap for Operator
App. Op-Ap uses a routing protocol called GridRout-
ing [19] to communicate its detections to the local base
node. GridRouting uses the output of OASLOC to con-
servatively select a set of potential parents with stable,
reliable links for each XSM. The ExScal Op-Ap also
uses an implicit acknowledgement based retransmission
protocol called ReliableComm [20] to improve per-hop
reliability. The routing reliability of Op-Ap at Tier-1
is thus the reliability provided by GridRouting using
ReliableComm. Detections received at a Tier-2 node

Figure 3. ExScal Op-ap Tier-1 component diagram.

are communicated to the central Tier-3 node where
they are used to classify and track the detected intrud-
ers. This Tier-2 convergecast uses a beacon-free rout-
ing protocol called UniComm1, which uses data traffic
to perform link-estimation for selecting next-hop par-
ents.

Fig. 3 shows the component diagram of the ExScal Op-
Ap at Tier-1.

3.4 Central Command and Control

ExScal provides the network operator with a central
command and control console at the Tier-3 node. From
this console, the network operator issues commands for
reprogramming, power management (sleep/wake-up)

1This paper is currently under anonymous submission, so we
are unable to provide a reference

or issues queries to collect information about network
state. These commands and queries are first communi-
cated over the Tier-2 network to all XSSs which then
relay them to the XSM network. Conversely, responses
are aggregated from the XSMs at the nearest XSS and
sent to the Tier-3 operator console using UniComm.

4 Experimental Methodology

In this section, we discuss the setup for the ExScal
experiments and data collection, and the method used
to calculate yield results in this paper.

Data collection from dense region As shown in
Fig. 1, the ExScal deployment consists of two regions,
one dense and the other sparse. Since classification
and high-accuracy tracking of intruders are performed
in the dense region where network contention effects
are worse, we present numerical analysis for data col-
lected from the dense region only so that our results
are not affected by the heterogeneity in deployment.
The dense region consists of 686 XSMs deployed in 5
rows and 15 XSS-mote pairs. We have made the raw
data collected from the entire network over the entire
experimentation period publicly available [21].

Phase by phase yield measurement We identify
faults occurring in each operational phase of ExScal
and analyze their impact by measuring the yield of that
phase. We also analyze the yield of each tier wherever
applicable. Finally, we discuss the impact of the faults
in one phase on the yield of subsequent phases.

To calculate yield, we need to know the state of the
network – ground truth – at the beginning of each
phase. We now describe our methodology to measure
the ground truth.

Ground truth methodology ExScal uses the SNMS
protocol [18] to collect information about the state
of the network by querying certain pre-specified at-
tributes. The SNMS multi-hop querying protocol firsts
builds a spanning tree rooted at a base node over which
query results are aggregated at the base. Ideally, this
network based querying should enable us to gather
state information from the whole network accurately
and measure the performance of other protocols. How-
ever this method is inadequate, as shown in Table 3.

base stations(B) # responding nodes(N) Average N/B
4 117 (17%) 29.25
15 334 (48.7%) 22.27

Table 3. SNMS multi-hop query reliability

Table 3 presents data for two types of SNMS queries
with varying number of base stations. The data for
number of responding nodes has been averaged over
multiple basic SNMS queries wherein each node replies
with its node-id. This data indicates that the number
of query responses increases with the number of base
stations used. We thus obtain the most responses when
each of the 15 XSS-mote pairs is used as a base station
for an SNMS query tree. Even so, on average, an SNMS
query only returns information from about half of the
deployed network.

The data presented above illustrates that while net-
work querying is useful to gain some confidence about
the state of an arbitrary network, the reliability of
multi-hop querying using SNMS is inadequate for

4

ground truth measurement. We also find that mul-
tiple executions of an SNMS query only increase its
reliability marginally.

We therefore use application data from the Op-Ap
phase along with results of multiple SNMS queries.
We instrument additional information to be part of the
application data that helps infer the yield of previous
phases. By piggybacking this information on applica-
tion traffic, we eliminate the need for additional mes-
sages for network state measurement. Moreover, since
we choose the routing protocol that gives us the best
reliability in each application phase, we are able to ex-
ploit this higher reliability for collecting ground truth
data.

Inference methodology Upon detecting an in-
truder, an XSM sends out a message to its local tier-2
base station that contains its grid location, a sequence
number and a timestamp. An XSM receives its grid
location through the localization phase. If a node does
not have this grid location due to localization faults,
it uses its unique software id assigned in the Trusted
Base. Nodes using their software id are thus inferred
to be affected by localization faults. Similarly, missing
sequence numbers in messages received from a node
provide information about the network reliability.

At Tier-2, each base station appends its own id, se-
quence number and timestamp, and forwards the mes-
sage to the Tier-3 node. This information is used to
calculate the reliability at Tier-2 in a similar manner.

The application of this approach is illustrated in more
detail in the following sections where we calculate the
yield of each operational phase in ExScal.

5 ExScal Yield Analysis

In this section, we present data about faults occurring
in each application phase and measure their impact.
We then calculate the net yield of ExScal and show
that it meets its requirements.

5.1 Deployment Phase

ExScal is designed for an outdoor setting with a large
number of (previously untested) devices, hence de-
ployed nodes are subject to environmental elements.
Over the 15 day experimentation period, deployed
nodes were left in an open area where they were ex-
posed to passing vehicles or wildlife that crushed some,
heavy rain that caused leakages and heavy wind that
toppled some and reduced their communication range.
A more serious fault was the failure of an XSS device
since a single XSS was responsible for aggregating data
from roughly 50 XSM nodes. We say a node is up if
it is known to be working in at least one application
phase and failed otherwise.

Experiment design We first measure ground truth
for a section of 100 XSM nodes. This 100 node section
is small enough that we can reliably collect fault data
from it on an ongoing basis, yet large enough to capture
most interesting faults that could occur in other sim-
ilar sections. We then extrapolate the data from this
section to estimate the fault rate for the whole net-
work. To verify this estimate, we use the methodology
described in Sec. 4. Specifically, we log all messages
received from the network during the entire 15 day pe-
riod. These messages are generated during different

application phases and communicated using different
routing protocols. We then count all unique nodes
from which at least one message is received, i.e. the
number of up nodes as defined above. This number is
then compared to the estimated value to derive a lower
bound on the yield of the deployment phase. The Tier-
2 XSS nodes, being much smaller in number and having
more resources, are wirelessly accessible for collecting
ground truth data about faults.

nodes (XSM + XSS) 701 (686 + 15)
failed XSMs in one section 5
Estimated # failed XSMs 35
failed XSSs 1
up nodes 647

Table 4. Deployment fault data

Results Table 4 compares the estimated and observed
values for deployment yield. Based on the fault data
collected for one section, the number of XSM failures
for the whole network is then estimated to be 35
implying that 651 XSMs should be up. It can be seen
from Table 4 that the measured yield (647 nodes)
closely matches the estimated value (651 nodes).

Result 5.1(a) The yield of the ExScal deploy-
ment phase is 94.31%; implying a fault rate of at most
5.69%.

(a) 100 node region (b) 50 node region
Figure 4. Spatial distribution of deployment faults

We also calculate histograms of the number of deploy-
ment faults in different regions to obtain their spatial
distribution. Fig. 4 plots two such histograms for
regions of sizes 100 nodes and 50 nodes respectively.
The flat shape of both histograms in Fig. 4 offers
evidence that the spatial distribution of deployment
faults in ExScal is uniform.

Result 5.1(b) Deployment faults are spatially uniform.

Observation 5.1(c) We observe deployment fail-
ures to have a temporal distribution as well. At
the time of deployment, each node is verified to be
up using the audible beep in the deployer response
application. In the 100 node section that we closely
monitor, we discovered 1 failed node after 3 days, 3
failed nodes after a week and 5 failed nodes at the end
of the 15 day period, indicating a temporal attrition
rate for deployed nodes.

Impact of deployment faults A failed node in the
ExScal network cannot participate in any of the re-
maining phases of the application. Deployment faults
are thus additive and impose an upper bound on the
net yield.

5

5.2 Reprogramming Phase

Recall that the Deluge protocol in the Trusted Base is
used to reprogram XSMs with a new application image.
Deluge divides an application image into smaller pages
which are downloaded one at a time and stored in the
external flash on an XSM. An XSM can be rebooted to
this image only if it has downloaded all pages correctly.
Deluge is epidemic, so a node with a partial application
image continually tries to download missing pages from
neighbors that may have them. We identify two types
of reprogramming faults observed in ExScal.

• Initialization faults: We say a node has an initializa-
tion fault if it cannot execute the Deluge protocol due
to flash initialization errors during startup.

Restarting nodes with initialization faults often re-
sults in successful flash re-initialization, however, it
is not feasible to detect and restart individual failed
nodes at large scale. Also, since this fault is unantic-
ipated and occurs in the Trusted Base which cannot
be reprogrammed, we are unable to instrument detec-
tor/correctors to recover from this state.

• Lagger nodes: We say a node is a lagger if it can
participate in the Deluge protocol, but progresses at a
much slower rate than its neighbors. In the worst case,
a lagger is always stuck trying to download the first
page of the new image.

Laggers have a potentially disastrous effect on the net-
work due to the epidemic nature of Deluge; they reduce
the lifetime of nodes in their neighborhood due to their
repeated requests for message transmissions as well as
flash operations. Our offline measurements show that
the current drawn by an XSM is nearly doubled due to
extra message transmission and flash read operations.
Also, the number of neighbors for an XSM in the ExS-
cal topology is between 10 and 20. Thus, even a small
fraction of laggers can significantly reduce the lifetime
of a large number of nodes. Another problem caused
by laggers is persistent reprogramming traffic in the
network that causes higher contention for application
messages. This leads to reduced reliability, increased
latency and degraded application performance.

Experiment design The network operator of ExS-
cal downloads a new application image on XSMs run-
ning the Trusted Base application. The operator then
queries the network repeatedly to monitor the progress
of this download over the network. As described in
Sec. 4, this query provides only statistical assurance
that the network has completed the download process.
The operator then issues a reboot command to switch
from the Trusted Base into the desired application im-
age. As before, the yield of reprogramming cannot
be measured directly by querying the network; it is
inferred from data collected in the subsequent appli-
cation phase. Specifically, we measure the number of
XSMs from which application messages for the newly
downloaded program are received. This represents the
lower bound for reprogramming yield since these XSMs
must have finished their download to be running the
new application.

Results The data collected by repeated querying
of XSMs during program downloads shows that 5%
of the XSMs are affected by initialization faults
and thereby cannot download new applications. We
find the number of laggers to be 0.5%. Finally, the
data collected from the subsequent application phase

contains messages from 93% of the up nodes.

Result 5.2(a) The yield of the ExScal reprogramming
phase is 93%; with 5% initialization faults and 0.5%
lagger nodes.

Although laggers are an unanticipated fault, our
multi-phase design of ExScal helps contain their
impact. Fault containment is achieved through the
management policy of including Deluge only in the
Trusted Base and not in other applications. Thus,
when the operator issues a reboot command to start
the next phase, laggers no longer have neighbors that
can satisfy their Deluge requests and become quies-
cent. Note that since network querying only gives us
statistical estimates of network state, some non-faulty
nodes could still be in the download process when
the operator issues the reboot command. However,
from Result 5.2(a) we see that the number of such
nodes can be at most 1.5%. This penalty is easily
outweighed by the energy and performance benefits
for nodes that would otherwise be adversely affected
by laggers.

Result 5.2(b) Reprogramming faults are contained in
ExScal by policy based management; the performance
penalty for this containment is at most 1.5%.

Reprogramming faults follow a random uniform
spatial distribution as expected, since both initial-
ization faults which occur due to timing errors at
startup and laggers which occur due to hardware
flash errors or low battery are random events. We
again calculate the histograms for number of correctly
reprogrammed nodes in regions of different sizes to
study the spatial distribution of reprogramming faults.
Fig. 5 shows the histograms for regions of 100 and 50
nodes respectively and once again offers evidence of
the spatial uniformity of reprogramming faults.

(a) 100 node region (b) 50 node region
Figure 5. Spatial distribution of reprogramming

Result 5.2(c) Reprogramming faults are spatially uni-
form

Impact of reprogramming faults Reprogramming
faults result in unavailability of affected XSMs for run-
ning the subsequent application phase.

5.3 Localization

As described in Sec. 3, ExScal uses OASLOC for local-
izing deployed nodes. We observe the following types
of faults during OASLOC.

• Hole fault: We say a node has a hole fault if it is not
assigned a grid position by the localization protocol.

Hole faults occur as a result of deployment errors such
as failing to turn on a deployed node or not waiting
long enough for the hand-held GPS device to obtain

6

an accurate reading. A burst of hole faults may occur
in in regions with poor GPS reception.

• Mapping fault: We say a node has a mapping fault
if it is assigned a grid position other than the one it is
deployed at.

Mapping faults occur as a result of drifts in GPS values
collected for nodes spaced only 9m apart and due to
the heuristics in the Snap-to-Grid algorithm. A burst
of mapping faults may occur when GPS drifts cause
multiple successive nodes to appear shifted from their
actual locations.

• Network fault: We say a node has a network fault if
it does not receive its assigned grid position.

A network fault may occur due to one of two reasons,
either the node fails to execute the Epicast protocol
due to a reprogramming fault, or a loss is encountered
during Epicast.

Experiment design Localization yield is calculated
as follows. During the deployment phase, in addition
to the (id,GPS) data collected on the hand-held XSS,
network deployers manually record the order in which
XSMs are deployed. The output of the Snap-to-Grid
program is then compared with this ground truth to
detect holes and mapping faults. The spatial distribu-
tion of these faults is used to calculate the burstiness of
each type. As before, network faults cannot be directly
measured and are inferred from messages received in
the Op-Ap phase as follows. Op-Ap uses a node’s grid
position as the source address in its messages. If a node
has not received its grid position, it uses its software
id whose domain is different from the domain of grid
positions. Thus, by observing the source field for mes-
sages received during the Op-Ap phase, we calculate
the number of nodes affected by network faults.

Fault type # affected nodes Burst size

Min Avg Max

Hole 6.1% 1 1.4 6

Mapping fault 3.2% 1 1.7 8

Network fault 2.1% 1 1 1

Total 11.4%

Table 5. OASLOC fault data.

Results Table 5 shows the number of nodes affected
by each type of localization fault. We find that the
maximum distance by which a node affected by a map-
ping fault is displaced is 10m or one diagonal grid po-
sition.

Result 5.3 The measured yield of the ExScal localiza-
tion phase is 88.6%; implying that 11.4% nodes were
affected by localization faults.

Impact of Localization Faults As described in
Sec. 3, GridRouting in Op-Ap uses the output of
OASLOC to compute a set of potential parents with
stable, reliable links for each node. Nodes affected by
localization faults can thus have no parents or incor-
rect parents assigned to them. Although GridRouting
is designed to operate in the presence of localization
faults, its performance is marginally affected due to
sub-optimal choice of links. Also, as seen from Table 5,
localization faults are occasionally bursty, although in
general they too occur randomly. However, as we shall
see in the next subsection, GridRouting preserves uni-
formity of routing despite the presence of occasional

bursts of localization faults.

5.4 Op-Ap Phase

Recall that Op-Ap performs the tasks of detecting in-
truders and communicating its detections to the central
Tier-3 node. We identify two types of faults observed
during the Op-Ap phase.

• Byzantine sensor: We say a sensor node is byzantine
if its rate of false detections exceeds a certain threshold.

A sensor may become byzantine if it is deployed in ad-
verse environments like tall grass, where wind-induced
motion may trigger false PIR detections. Extreme
heat, rain and wind may also lead to persistent false
positives. Finally, nodes may observe arbitrary values
while sensing if their battery voltage falls below a crit-
ical value. Just like laggers in reprogramming, byzan-
tine sensors impose high load on other nodes that have
to route their false detections and create network traffic
that interferes with real detection messages.

• Routing fault: We say a message is affected by a rout-
ing fault if it does not reach the central Tier-3 node.

Routing faults occur due to fading, contention and con-
gestion in the network and may occur at Tier-1 or at
Tier-2.

Experiment design To determine the number of
byzantine sensors, we instrument each node with a de-
tector that continually monitors the rate of detections
in that node. Whenever this rate exceeds a threshold
determined by the expected level of intruder activity
in the network, the detector flags this node as a byzan-
tine sensor, logs this detection to flash and also sends
a diagnostic message to the Tier-3 node. Likewise, if
the rate falls below the threshold, the detector unflags
this node. We measure the number of such diagnostic
messages in the network to determine the number of
byzantine sensors.

To measure routing faults, we instrument each node
to send messages according to some traffic pattern.
Each message contains the id of the node, a sequence
number, a time-stamp and a traffic pattern identifier.
These messages are first received and logged at the lo-
cal base-XSS node and then sent to the Tier-3 node
where they are also logged. Routing faults at each tier
and for end-to-end communication are then computed
by taking the ratio of the number of received messages
to the number of sent messages.

Traffic patterns The basic traffic pattern in ExScal
Op-Ap is one in which a set of nodes detecting an
intruder report their detections to the nearest Tier-2
node, which then forwards them to the Tier-3 classi-
fier and tracker. While this traffic pattern is suitable
for event detection systems, it may not necessarily ap-
ply to other kinds of applications. Also, in practice,
periodic traffic like timesync and routing beacons, or
bursty traffic like false positives, interferes with Op-Ap
detection messages. We select three traffic patterns as
defined below, which we feel are general enough to be
used in other types of sensor network applications and
are better indicators of routing reliability in Op-Ap.

• Low-freq: In the low-freq traffic model, each XSM
sends a message to the Tier-3 node every 120 seconds.

• High-freq: In the high-freq traffic model, each XSM
sends a message to the Tier-3 node every 20 seconds.

7

• Bursty: In the bursty traffic model, each XSM sends
a message at the same time, creating a message burst.
The bursty traffic pattern may be applicable for event
detections that are geographically far-reaching, e.g.,
acoustic shooter localization [6], or caused by a network
wide false alarm, e.g., thunder or an airplane triggering
acoustic detections across a large region.

Note that in all 3 experiments, no aggregation at Tier-
2 is used. Aggregation reduces Tier-2 traffic to very
few, if not a single message, in which case UniComm
has been shown to be almost 100% reliable.

Remark on message generation. For the low-freq and
high-freq traffic patterns, each XSM uses a local timer
to generate periodic messages. In the bursty case, a
command is flooded from the Tier-3 node to all Tier-2
nodes which then flood the Tier-1 network with this
message. Nodes wait a fixed amount of time for the
flood to subside before sending their message. Our ex-
perimental measurements show that the effects of the
reliability and latency of the command message propa-
gation on traffic burstiness are relatively insignificant.

Results We measure the number of byzantine
sensors in the network to be 1% and the rate of
false detections in a byzantine sensor to be as high
as 15 per minute. We also observe the distribution
of byzantine nodes in the network to be randomly
uniform. Note that correlated fault positives due to
phenomena such as thunder or an airplane do not
constitute byzantine behavior. We also instrument
each node with a corrector that suppresses messages
for false detections within a node which is flagged
as byzantine. This detector/corrector pair thus min-
imizes the impact of a byzantine sensor on other nodes.

Result 5.4(a) The number of byzantine sensors
measured in ExScal Op-Ap is 1%. Byzantine sensor
faults are contained in ExScal by instrumenting detec-
tors and correctors.

Table 6 lists the routing yield in terms of the
net average routing reliability and the average routing
reliability for nodes with and without localization
faults, as measured at the Tier-1 base station mote.
The data in Table 6 shows that the low-freq traffic has

Low-freq High-freq Bursty
Net average reliability 86.72% 58.32% 60.17%
Average reliability
with no localization fault 89.36% 70.95% 79.7%
with localization faults 74.74% 50.97% 60.35%

Table 6. Yield of ExScal Op-Ap Tier-1 routing

the highest average reliability and the least variance
as expected. The traffic load generated by intruders
in ExScal is in fact lower than in the low-freq case.
The common case Tier-1 routing reliability of Op-Ap
is thus even higher and more uniform than in Table 6.
We therefore use the yield obtained for the low-freq
case as the yield of the ExScal Op-Ap. Fig. 6 plots the
average routing reliability at Tier-1 as a function of
the distance from the local base node. The maximum
distance in this graph represents the farthest distance
between an XSM and its nearest base-XSS node.
Although reliability gradually decreases with increas-
ing distance, we again observe that the reliability
distribution is uniform for low-freq traffic. Fig. 6 also
offers evidence that despite localization faults which
may be non-uniform, the Op-Ap phase has high and

Figure 6. Routing reliability distribution at Tier-1

uniform routing reliability.

Result 5.4(a) The routing yield at Tier-1 for
ExScal Op-Ap is 86.72% and has a uniform spatial
distribution. Localization faults have a marginal
impact on the yield of Op-Ap routing.

End-to-end reliability Table 7 lists the end-to-end
routing performance of ExScal and its breakdown at
both tiers. It can be seen that Tier-2 has high routing

Low-freq High-freq Bursty
Tier-1 reliability 86.72% 58.32% 60.17%
Tier-2 reliability 98.73% 94.55% 96.86%
End-to-end reliability 85.61% 55.14% 58.28%

Table 7. End-to-end routing yield

reliability for all three traffic loads. Also, as seen
in Fig. 7, the routing reliability at Tier-2 is uniform
across the entire 1.26 km distance. The end-to-end
routing reliability thus has a distribution similar to
the one at Tier-1 as shown in Fig. 6.

Figure 7. Routing reliability distribution at Tier-2

Result 5.4(c) The Tier-2 routing yield for ExS-
cal Op-Ap is 98.32%, the end-to-end routing yield
is 85.27% and its distribution is uniform across the
entire ExScal network.

5.5 Net ExScal Yield

We now derive the net yield of ExScal and validate
that ExScal meets its requirements. Recall that both
deployment and reprogramming faults are uniformly
distributed and that even though some localization
faults may be non-uniform, the net routing reliability
has a uniform distribution. The net impact of faults
occurring in all of the ExScal phases on its performance

8

is thus uniform. The net ExScal yield can therefore
be calculated by normalizing the measured yield of
Op-Ap, i.e., the end-to-end routing yield at low-freq,
over the entire 686 node network, which represents the
ideal yield.

Result 5.5(a) The net yield of ExScal, measured
in the presence of faults occurring in all operational
phases, is 72.83%

Recall from Sec. 3 that ExScal is designed with 100%
redundancy. This redundancy is more than adequate
for ExScal to meet its requirements despite faults oc-
curring in each phase that reduce its net yield to
72.83%. We discuss how the excess deployed redun-
dancy of ExScal can be exploited in the next section.

6 Lessons learnt

In this section, we discuss some of the key lessons
learnt from the ExScal experiment relating to its
design principles and alternative design options. We
also discuss important issues and challenges identified
during ExScal that need to be addressed in large scale
wireless sensor network design.

Successful design principles in ExScal

The reasons for ExScal satisfying its requirements can
be traced to the use of the following design principles.

• Planned architecture to reduce cost A key challenge
in designing large scale networks is to achieve a balance
between hard performance guarantees required by the
user and minimizing cost and effort required to de-
ploy and manage the network. Researchers sometimes
assume random or probabilistic models about deploy-
ment during protocol design. Our experience with ExS-
cal shows that a planned, deterministic deployment is
not unreasonable even for large scale networks. In fact,
it is observed in [22] that we would need a significantly
higher number of nodes to achieve the same coverage
guarantees in ExScal if we use random deployment. In
practice, random deployment may also not often be
any easier than a planned deployment. We observe the
planned system architecture of ExScal to be more effi-
cient for deployment, management and operation and
more predictable in terms of overall performance.

• Multi-phase operation for performance optimization
and fault containment ExScal is a complex composi-
tion of multiple subsystems for intrusion detection, re-
programming, localization, management, etc. Put to-
gether, the resource requirements of these subsystems
exceed the resources available on an XSM. Dividing
ExScal operation into several phases thus allows us to
satisfy the processing, communication and memory re-
quirements of each phase. Multi-phase operation also
allows each subsystem to choose protocols such as rout-
ing that are optimized for its own performance whereas
resource constraints would perhaps force us to choose a
single, common protocol for all subsystems otherwise.
This design also has the advantage of fault isolation
as observed in ExScal where potentially severe repro-
gramming faults are contained by phase transition.

• Multi-tier design for reliability Studies about the
performance of multi-hop routing in wireless sensor
networks show that while different routing schemes are
well-suited for different topologies and traffic patterns,
network reliability drops significantly as network size

increases beyond 5-6 hops. ExScal uses a multi-tier
network design to limit the number of hops travelled
by a message at each tier. The maximum number of
hops traversed by a message at Tier-1 in ExScal is 4 in
the absence of faults. Projecting the distribution of re-
liability obtained in Op-Ap over distance, we estimate
that Tier-1 reliability would drop to less than 10% over
a 500m distance. The hierarchical topology in ExScal
thus helps to bound the unreliability in the network.
Even if schemes such as in-network processing are used
by the Op-Ap to process information locally, end-to-
end reliability is still an issue for collecting network
state information at the operator console.

Implementation problems in ExScal

Our experiments revealed an implementation bug in
ExScal that resulted in loss of Op-Ap message com-
munication for 21 nodes or roughly 3% of the network
due to failure of a Tier-2 node. One of the design goals
in ExScal was to separate network functions from de-
vice names to be able to bind them flexibly. However,
in the implementation of OASLOC, a Tier-2 XSS node
was inadvertently hard-coded to propagate localization
information only for nodes in its region. This imple-
mentation bug impacted nodes in the vicinity of the
failed XSS in that they did not receive their grid po-
sitions. Consequently, not only did Op-Ap detection
messages from these nodes have to traverse longer dis-
tances to reach the next XSS, but they were also forced
to do so along sub-optimal paths.

Improving ExScal performance

• Using available redundancy to increase lifetime As
described in Sec. 3, lack of prior data forced us to be
conservative while choosing sensing and communica-
tion coverages for ExScal. However, the net yield of
ExScal calculated in Sec. 5 exceeds this planned re-
dundancy. The excess redundancy in ExScal can be
used to extend its lifetime. Various power manage-
ment schemes for extending system lifetime have been
proposed for applications like ExScal [23,24]. An anal-
ysis of how and by how much the lifetime of ExScal can
be extended using such schemes can be found in [25].

• Additional services and tools for management A key
challenge faced during the design, implementation and
operation of ExScal was the lack of ground truth infor-
mation about the network. This is due to the unrelia-
bility of current protocols for querying network state.
Since different routing protocols are well-suited for dif-
ferent topologies and traffic patterns, the performance
of network querying can be improved by dynamically
choosing a routing protocol that works best for the
given network conditions. Another alternative, which
we used in ExScal is to use application data itself to
infer ground truth.

Even if ground truth information is available, a chal-
lenging task for a network manager is to maintain the
network in a configuration that best satisfies applica-
tion requirements under dynamic network conditions.
For example, if the number of active sensors in a region
falls below a critical threshold due to node faults, the
manager has to activate other sensors in that region
to maintain sensing coverage. We identify the need for
automated, online filtering of network data to extract
meaningful information such as perturbations in net-
work state or patterns in network behavior that may
be indicators of faults and identify alternate parame-
ters to restore network state.

9

We also identify a need for greater local and au-
tonomous management support. An example of such
an autonomous management technique is the use of
policy-based monitoring for dealing with false positives
in ExScal, which requires minimal human support for
specifying the policy and its associated detection and
correction actions.

7 Conclusions and Future Work

In this paper, we presented data about faults occur-
ring in ExScal, which is likely the largest wireless sen-
sor network experiment performed till date in terms
of network size and application complexity. We pre-
sented detailed experimental results to derive the yield
of individual ExScal subsystems and the overall yield of
the ExScal experiment in the presence of these faults.
These results were obtained using an experimental data
set containing more than 100,000 observations which
forms only a part of the total experimental data col-
lected for all of the individual subsystems which put
together exceeds 1 million records, which we have made
available publicly.

We also identified several key challenges not only in
the design and implementation of such large scale net-
works, but also in evaluating the performance of these
systems and proposed novel methods for dealing with
both. We validated the design principles used in ExS-
cal by demonstrating how ExScal satisfied its require-
ments.

As demonstrated by ExScal, a planned system archi-
tecture is not only easy to design, implement, deploy
and manage but it is also more efficient in terms of
cost and performance. There may be cases though
where such planned deployments may not be feasible.
In the future, we plan to study the impact of relaxing
the assumptions made in a planned system on each of
the ExScal protocols and their overall impact on the
yield of the system. We also plan to continue working
on both human-assisted and autonomous management
services identified in this paper using self-stabilization
techniques. Finally, we hope to provide tools for per-
forming large scale sensing and communication experi-
ments in real time using our 420 node, remotely acces-
sible, indoor testbed which we call Kansei [26].

References

[1] A.Arora, P.Dutta, S.Bapat, and V.Kulathumani et al.
A line in the sand: A wireless sensor network for tar-
get detection, classification, and tracking. Computer
Networks, Special Issue on Military Communications
Systems and Technologies, 46(5):605–634, 2004.

[2] A.Mainwaring, J.Polastre, R.Szewczyk, D.Culler, and
J.Anderson. Wireless sensor networks for habitat mon-
itoring. In Proceedings of WSNA’02, Atlanta, GA,
September 2002.

[3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton,
and J. Zhao. Habitat monitoring: Application driver
for wireless communications technology, 2001.

[4] R.Szewczyk, J.Polastre, A.Mainwaring, and D.Culler.
Lessons from a sensor network expedition. In Proceed-
ings of EWSN’04, January 2004.

[5] N.Xu, S.Rangwala, K.Chintalapudi, D.Ganesan,
Al.Broad, R.Govindan, and D.Estrin. A wireless sen-
sor network for structural monitoring. In Proceedings
of SenSys’04, pages 13–24. ACM Press, 2004.

[6] G.Simon, M.Maroti, A.Ledeczi, G.Balogh, B.Kusy,
A.Nadas, G.Pap, J.Sallai, and K.Frampton. Sensor
network-based countersniper system. In Proceedings
of SenSys’04.

[7] R.Szewczyk, A.Mainwaring, J.Anderson, and
D.Culler. An analysis of a large scale habitat
monitoring application. In Proceedings of SenSys’04),
November 2004.

[8] P.Zhang, C.M.Sadler, S.A.Lyon, and M.Martonosi.
Hardware design experiences in zebranet. In Pro-
ceedings of SenSys’04, pages 227–238, New York, NY,
USA, 2004. ACM Press.

[9] G.Werner-Allen, J.Johnson, M.Ruiz, J.Lees, and
M.Welsh. Monitoring volcanic eruptions with a wire-
less sensor network. In Proceedings of EWSN’04, Jan-
uary 2004.

[10] R. E. Van Dyck and L. E. Miller. Distributed sen-
sor processing over an ad hoc wireless network: sim-
ulation framework and performance criteria. In MIL-
COM, Washington,DC, USA, October 2001.

[11] P.Dutta, M.Grimmer, A.Arora, S.Bibyk, and
D.Culler. Design of a wireless sensor network
platform for detecting rare, random, and ephemeral
events. In Proceedings of IPSN’05.

[12] Crossbow Technology Inc. MPR400/410/420
MICA2 Mote. http://www.xbow.com/Products/
productsdetails.aspx?sid=72.

[13] Crossbow Technology Inc. Stargate Gateway
(SPB400). http://www.xbow.com/Products/
productsdetails.aspx?sid=85.

[14] A. Arora, P. Sinha, E. Ertin V. Naik, H. Zhang,
M. Sridharan, and S. Bapat. ExScal Backbone Net-
work Architecture. To appear as poster in MobiSys’05.

[15] Sandip Bapat, Vinodkrishnan Kulathumani, and An-
ish Arora. Reliable estimation of influence fields in un-
reliable sensor networks. OSU Technical Report OSU-
CISRC-8/04-TR49, 2004.

[16] S.Kumar and A.Arora. ExScal Topology for Node
Deployment, ExScal Note Series, ExScal-OSU-EN00-
2004-01-30. .

[17] J.Hui and D.Culler. The dynamic behavior of a data
dissemination protocol for network programming at
scale. In Proceedings of SenSys’04. ACM Press.

[18] G.Tolle and D.Culler. Design of an application-
cooperative management system for wireless sensor
networks. In Proceedings of the EWSN’04.

[19] Y.Choi, M.Gouda, H.Zhang, and A.Arora. Routing
on a logical grid in sensor networks. Technical Report
TR04-49, The University of Texas at Austin, 2004.

[20] H.Zhang, A.Arora, Y.Choi, and M.Gouda. Reliable
bursty convergecast in wireless sensor networks. In
Proceedings of MobiHoc’05.

[21] OSU NEST ExScal Team. Experimental data from
ExScal. http://www.cse.ohio-state.edu/~bapat/
exscaldata.

[22] S.Kumar, T.H.Lai, and J.Balogh. On k-coverage in
a mostly sleeping sensor network. In Proceedings of
MobiComm 2004, pages 144–158.

[23] Q.Cao, T.Abdelzaher, T.He, and J.Stankovic. To-
wards optimal sleep scheduling in sensor networks for
rare event detection. In Proceedings of IPSN’05.

[24] J.Polastre, J.Hill, and D.Culler. Versatile low power
media access for wireless sensor networks. In Proceed-
ings of SenSys’04.

[25] S.Kumar, A.Arora, and T.H.Lai. On the Lifetime
Analysis of Always-On Wireless Sensor Network Ap-
plications. Technical Report OSU-CISRC-5/05-TR28,
The Ohio State University, 2005.

[26] OSU NEST ExScal Team. Kansei: Sensor Testbed For
At-Scale Experiments. http://www.cse.ohio-state.
edu/kansei.

10

