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Abstract

This paper shows that the elimination of fault-agnostic instability, the instability caused by fault-

agnostic distributed control, substantially improves BGPconvergence speed. To this end, we first clas-

sify BGP convergence instability into two categories:fault-agnostic instabilityanddistribution-inherent

instability; secondly, we prove that it is impossible to eliminate all distribution-inherent instability in

any distributed routing protocol; thirdly, we design the Grapevine Border Gateway Protocol (G-BGP) to

show that all fault-agnostic instability can be eliminated. G-BGP eliminates all fault-agnostic instabil-

ity under different fault and routing policy scenarios by (i) piggybacking onto BGP UPDATE messages

fine-grained information about faults to the nodes affectedby the faults, (ii) rejecting obsolete fault

information, and (iii) quickly resolving the uncertainty between link and node failure as well as the

uncertainty of whether a node has changed route.

We evaluate G-BGP by both analysis and simulation. Analytically, we prove that, by eliminating

fault-agnostic instability, G-BGP achieves optimal convergence speed in several scenarios where BGP

convergence is severely delayed (e.g., when a node or a link fail-stops), and when the shortest-path-first

policy is used, G-BGP asymptotically improves BGP convergence speed except in scenarios where BGP

convergence speed is already optimal (e.g., when a node or a link joins). By simulating networks with

up to 115 autonomous systems, we observe that G-BGP improvesBGP convergence stability and speed

by factors of 29.4 and 10.2 respectively.
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1 Introduction

The Border Gateway Protocol (BGP) is used to coordinate routing among autonomous systems (simply

called ASes hereafter) in the Internet [15]. Theoretically, BGP does not guarantee convergence and allows

persistent route oscillations in several scenarios, such as conflicting routing policies and improper IBGP

configurations [4, 12, 13]. In practice, however, most ASes in the Internet use the shortest-path-first route

ranking policy (whereby a path with the least hop count is chosen), and as a result, BGP converges with high

probability [18, 25]. In addition, for cases where the shortest-path-first policy is not used, solutions have

been proposed to avoid persistent route oscillations in BGP[4, 9, 12, 13].

Our problem of interest, therefore, is the scenario where BGP does converge, but its convergence exhibits

instability (i.e., allowing unnecessary route changes) and is potentially slow (e.g., taking up to 15 minutes

after the disconnection of a single AS [17, 18]). Instability during convergence is undesirable. First, it

increases the probability of message reordering, which is not only undesirable for multimedia applications,

but also increases the probability of undesirable timer expiration in protocols such as TCP and IP. Second,

instability increases delay jitter in packet delivery. Andfinally, instability increases packet loss (e.g., due

to TTL expiration) [17]. Slow convergence of BGP is also undesirable, because it not only deteriorates

packet delivery, but also amplifies the effect of BGP-related problems under stressful conditions such as the

Code Red/Nimda attack [26]. Moreover, the two sub-problemsare related: the interaction of unstable BGP

convergence and the BGP route flap damping, for instance, candelay BGP convergence further, in addition

to entailing loss of reachability for hours [20].

Related work. To improve BGP convergence speed, the methods of “consistency assertions” [23] and

“ghost flushing” [6] have been proposed. The former capturesconsistency properties between neighboring

nodes, and the latter withdraws old routes faster than propagating new routes. However, “consistency asser-

tions” do not deal with slow BGP convergence that results from inconsistency between nodes multiple hops

away, and neither of the two approaches can remove all convergence-malign instability, the major cause for

slow BGP convergence (to be discussed in Section 3.1). Moreover, the nature of different types of instability

during BGP convergence, the fundamental limits on improving BGP convergence stability and speed, and

the impact of fault types and routing policies on protocol convergence behaviors are not the focus of [23]

and [6]. In addition, the “consistency assertions” method propagates the entry-router-id, which is essentially

an attribute below instead of at the level of ASes, of one AS toother ASes, thus local changes of entry-router

within an AS (even when the AS-path does not change) will propagate to other ASes, which are potentially

far away, and leads to propagation of unnecessary route-changes.

An application-layer approach, resilient overlay networks [2], is also proposed to deal with slow BGP

convergence. But the approach is not scalable in the sense that each node in a network maintains information

about the whole network, and the approach does not improve the convergence behaviors of BGP.

In [17] and [18], the delayed BGP convergence and the impact of Internet policy as well as topology

on BGP convergence are studied. But the study considers onlythe shortest-path-first policy, and does not

consider scenarios where a node or a link joins. In [22], a real-time model for BGP convergence is proposed,

but the analysis only considers the case when a destination node joins a network. Moreover, no solution for

improving BGP convergence behavior is proposed in [17], [18] and [22].

Contributions of the paper. We study the nature of instability during BGP convergence and classify the

instability into two categories: fault-agnostic instability and distribution-inherent instability. Fault-agnostic

instability is the major cause for slow BGP convergence, anddistribution-inherent instability is intrinsic to
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distributed protocols. To understand the fundamental limit on improving BGP convergence, we prove that it

is impossible to eliminate all distribution-inherent instability in any stateful distributed routing protocol.

Then, we refine BGP to obtain a new protocol G-BGP (forGrapevine-BGP) that eliminates all fault-

agnostic instability. G-BGP achieves this via three mechanisms: First, it propagates fine-grained information

about faults to the nodes that are affected by the faults; Second, it rejects obsolete fault information, by

enforcing a total order on all the fault information regarding the same AS that is sent out from the AS

at different time; Third, it quickly resolves the uncertainty between link and node failure as well as the

uncertainty of whether a node has changed route.

Towards analyzing the convergence behaviors of G-BGP and BGP, we introducepolicy graphsas a

modelling tool for inter-AS routing. Using policy graphs, we prove that G-BGP eliminates all fault-agnostic

instability under different fault and routing policy scenarios. We also prove that, by eliminating fault-

agnostic instability, G-BGP converges at an asymptotically optimal speed in several scenarios where BGP

convergence is severely delayed (e.g., when a node or a link fail-stops), and when the shortest-path-first

policy is used, G-BGP asymptotically improves BGP convergence speed except in scenarios where BGP

convergence speed is already optimal (e.g., when a node or a link joins).

We also evaluate G-BGP by simulation with realistic Internet-type network topologies. The simulation

shows that, for networks with up to 115 ASes, G-BGP improves BGP convergence stability and speed by

factors of 29.4 and 10.2 respectively, and the improvement in G-BGP increases as network size increases.

The simulation also shows that, when routing policies otherthan “shortest-path-first” are used, G-BGP

improves BGP convergence stability and speed in all fault scenarios.

Moreover, G-BGP is scalable along a number of dimensions. First, fault information, most of which

is piggybacked in UPDATE messages, consumes little networkbandwidth, and fault information is either

not stored or only temporarily stored at nodes. Second, the degree of improvement in G-BGP increases

as network size increases. Third, G-BGP does not expose additional intra-AS attributes and thus does not

introduce additional instability that is due to local statechanges within an AS. And finally, each node only

maintains routes of its immediate neighbors.

Organization of the paper. In Section 2, we present the network model, fault model, as well as protocol

notation, and we briefly describe BGP. In Section 3, we study the nature of BGP convergence instability and

present the G-BGP design. Then, we introduce policy graph inSection 4, and in Section 5, we analyze the

convergence stability as well as speed in G-BGP and BGP. We present our simulation results in Section 6. In

Section 7, we discuss the implementation as well as deployment considerations of G-BGP, and we discuss

approaches to reducing distribution-inherent instability. Section 8 concludes the paper.

2 Preliminaries

In this section, we present the network model, fault model, and protocol notation. We also briefly describe

the Border Gateway Protocol (BGP).

Network model. A networkG is an undirected graph(V,E, P ), whereV andE are the set of nodes (i.e.,

BGP speakers) and the set of links in the network respectively, andP is the function that defines the routing

policies of each node.V is divided into several subsets, each of which is an AS; nodeswithin the same AS

are connected (AS partition is discussed in Section 7). Eachnode has a unique node-id, and all the nodes

in the same AS have the same AS-id. For a nodei, the id of its AS is denoted byi.AS. For any two nodes
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i andj, (i, j) is in E if i andj can communicate with each other directly, or ifi andj are in the same AS.

For any two ASesI andJ , there is achannel(I,J ) betweenI andJ if there exist two nodesi andj such

thati ∈ I, j ∈ J , and(i, j) ∈ E. For an ASI and a nodej, I is a neighboring AS ofj if there is a channel

betweenI andj.AS. For a nodei, its neighboring nodej is aninternal neighborif j is in the same AS as

i; otherwise,j is anexternal neighborof i.

Message transmission between nodes is reliable, and message passing delay across a link is bounded

from below and from above byLd andUd respectively.

There is a clock at each node. The ratio of clock rates betweenany two nodes is bounded from above

by α, but no extra constraint on the absolute values of clocks is enforced. (α tends to be quite small, given

today’s high-precision clocks.)

For clarity of presentation, we only consider one destination d, an address prefix representing a set of

nodes in an ASd.AS. (Our protocol readily applies to other destinations.)

Fault model. A node or a link isup if it functions correctly, and it isdownif it fail-stops. In a network, an

up node or link can fail-stop and become down; a down node or link can become up and join the network;

routing policies of ASes can change. A channel(I,J ) is up if there is at least one up link between ASes

I andJ ; otherwise, the channel is down. An AS is up if there is at least one up node in the AS; otherwise,

the AS is down.

The fail-stop of a node is divided into two categories:graceful fail-stopwhere a node announces to its

neighbors when it fail-stops, andgross fail-stopwhere a node fail-stops silently. An AS fail-stops gracefully

if all the nodes in it fail-stop gracefully.

Due to faults, a networkG may change dynamically in the sense that its topology or routing policy

function changes, where the topology ofG is the subgraphG′(V ′, E′) of G(V,E) such thatV ′ = {i : i ∈

V ∧ i is up} andE′ = {(i, j) : i ∈ V ′ ∧ j ∈ V ′ ∧ (i, j) ∈ E ∧ (i, j) is up}. To reflect changes in network

topology and routing policy function, we regard the state ofG as the union of the network topology, the

routing policy function, and the state of all the up nodes, with the state of a node being the values of the

variables maintained at the node. At a network stateq, the network topology and the route of a nodei are

denoted byG.q(V.q,E.q) andi.AS-path.q respectively.

Protocol notation. We write protocols using the guarded command notation [10].At each node, the

protocol consists of a finite set of variables and actions. Each action consists of two parts: guard and

statement. For convenience, we associate a unique name witheach action. Thus, an action has the following

form:

〈name〉 :: 〈guard〉 −→ 〈statement〉

The guard is either a boolean expression over the protocol variables of the node or a message reception oper-

ation; the statement updates zero or more protocol variables of the node, and/or sends out some message(s).

An action is enabled if its guard evaluates to true. An actionis executed only if it is enabled. To execute an

action, its statement is executed atomically.

Border Gateway Protocol (BGP). In BGP, UPDATE messages are passed between nodes to convey routing

information. To reduce instability, BGP employs a MRAI timer (which is 30 seconds by default) such that

a node sends out at most one non-withdrawal UPDATE message within any MRAI time. Two neighboring

nodes also periodically exchange Keep-Alive messages to monitor the state of the link between them.
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BGP UPDATEs are route records that include the following attributes (among others):

nlri : network layer reachability information (i.e., the destination address);
next hop : the next hop;
AS path : ordered list of ASes traversed, with more-recently-visited ASes placed

in front of less-recently-visited ASes;
local pref : local preference;
med : multi-exit discriminator.

Each router is associated with a 3-tuplerank(r), defined as〈r.local pref, 1
|r.as path| ,

1
r.next hop〉. For the

destinationd, a nodei chooses its route via the following two steps [24]:

• First, among all the routes learned from a neighboring AS,i only considers the route with the lowest

medvalue;

• Second, for all the routes to be considered,i ranks them in lexical order byrank(·), andi selects as

its route the one with the highest rank.

[24]. Given a router available to a nodei, attributer.local pref is determined by theroute ranking

policy of i. We call the ranking policy that assignsr.local pref to a constant value theshortest-path-first

policy or theSPF policy, where a route with the shortest AS-path ranks the highest. We call a route ranking

policy other than the SPF policy anon-SPF policy.

Besides route ranking policy, routing policies such as export and import policies are used in BGP. The

export policy of a nodei defines the set ofexport neighbors ofi to which i announces its route; the import

policy of i defines the set ofimport neighbors ofi whose routes are accepted byi. If a nodei exports routes

to or imports routes from a node in a neighboring ASJ , we say, for convenience,i exports routes to or

imports routes fromJ respectively. It is recommended as well as the common-practice that nodes within

the same AS share the same routing policies [14, 24].

3 The G-BGP protocol

The objective of this paper is to design a protocol that, given a network and a destination where BGP

converges in the presence of faults, reduces the number of route changes during BGP convergence, as well as

the time taken for BGP to converge. To achieve the objective,we first study the nature of BGP convergence

instability and its relationship to BGP convergence speed;we then design protocol G-BGP to improve BGP

convergence stability and speed.

3.1 Instability during BGP convergence

We identify fault-agnostic instability and distribution-inherent instability, analyze their causes, and discuss

their relationship with BGP convergence speed.

Fault-agnostic instability. Fault-agnostic instability is the type of instability thatis incurred at a node

which adopts an invalid route even though some information regarding the fault that invalidates the route

has reached the node. Fault-agnostic instability and its propagation are the major causes for slow BGP

convergence, as observed in [17], [20], etc..
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In BGP, when a fault occurs in a network, certain coarse-grained information about the result of the fault,

such as an UPDATE message signalling a modified or a withdrawnroute, is propagated so that the network

eventually converges to a stable state. However, the coarse-grained information does not tell what exactly

the fault is or where the resulting route changes first occurred. Therefore, when a node receives the coarse-

grained information, the node may still adopt a route invalidated by the fault, in which case unnecessary

route changes (i.e., instability) is incurred. The instability incurred at a node can propagate to others and

delay the convergence of BGP. Even worse, instability can activate route-flap damping, which suppresses

routes going through unstable nodes, leading to a loss of reachability as well as a delay in BGP convergence

(potentially for hours) [20].

To give an example, let us consider a network stateq where the network topology and the routing tree

rooted atd are shown in Figures 1(a) and 1(b) respectively; for the three backup routes ofg at stateq, route
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(a) Network topology
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(b) Routing tree

Figure 1: An example network state. For simplicity, each node in the figure also represents its AS.

[f, b, a, d] ranks the highest, followed by[j, h, a, d], and[c, w, d] ranks the lowest. Ifa fail-stops at stateq,

nodesm, f , andj will withdraw their routes[m, b, a, d], [f, b, a, d], and[j, h, a, d] respectively. However,

the resulting route-withdrawal UPDATE messages do not signal the fact thata and its associated links have

fail-stopped. Therefore, iff has not withdrawn[f, b, a, d] whenm withdraws[m, b, a, d] (due to different

delays along the two routes),g will adopt [f, b, a, d] as its route even though[f, b, a, d] has been invalidated

by the fail-stop ofa. Similarly, if j has not withdrawn[j, h, a, d] when f withdraws [f, b, a, d] later, g

will adopt [j, h, a, d] even though it has also been invalidated by the fail-stop ofa. g will not change to

its final stable route[c, w, d] until j withdraws[j, h, a, d]. Therefore,g changes route three times during

convergence, with the first two changes being unnecessary. Even worse, the unnecessary route changes atg

can propagate and cause unnecessary route changes at other nodes, such asm, l, f , andb, wheng announces

[g, f, b, a, d] or [g, j, h, a, d] to its export neighbors.

Distribution-inherent instability. Distribution-inherent instability is the type of instability that is incurred

(i) at a node which adopts an invalid route because no information regarding the fault that invalidates the

route has reached the node, or (ii) at a node which adopts a valid route that becomes either invalid or lower-

ranked than some other route later.

To give an example of type-(i) distribution-inherent instability, let us consider again the network stateq

as shown in Figure 1. If nodeb and link(a, h) fail-stop simultaneously, and ifm as well asf withdraws its

route earlier thanj does, then no information that is generated due to the fail-stop of(a, h) will have reached

g when it receives the route-withdrawal messages fromm andf . Therefore,g will choose[j, h, a, d] as its

new route, which will be withdrawn later. Thus, an unnecessary route change is incurred atg before it

chooses its final stable route[c, w, d].

To give an example of type-(ii) distribution-inherent instability, let us consider a network state where
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the network topology is the same as that in Figure 1(a) but no node has learned any route tod. Thend will

announce its existence, and other nodes such asa, b, m, andf will learn their routes gradually. Iff exports

its route tog earlier thanm does,g will choose[f, b, a, d] as its route first. Whenm exports[m, b, a, d] to g

later,g will change its route to[m, b, a, d], since[m, b, a, d] ranks higher than[f, b, a, d] does. Thus, there is

an unnecessary route change atg, even though the route[f, b, a, d] adopted byg is valid.

Unlike fault-agnostic instability, distribution-inherent instability does not cause long delay in BGP con-

vergence (as observed in Section 6 and in [20]). Moreover, distribution-inherent instability exists in every

distributed routing protocol, as proved in

Theorem 1 (Impossibility of eliminating all distribution- inherent instability) In a network, if message

passing delay along links is greater than zero, route ranking policies are not shared among ASes, and faults

are independent of one another, then it is impossible to eliminate all distribution-inherent instability in any

stateful distributed routing protocol.

Proof: In inter-AS routing, besides network topology and export as well as import policies, route ranking

policies adopted at ASes determine the route chosen by an AS.When route ranking policies are not shared

among ASes (which is the common practice in Internet), a nodej cannot predict the route taken by other

nodes even ifj can learn the whole network topology, the export and import policies of other ASes. There-

fore, a node can only choose and set up its route based on the routes adopted by its import neighbors. This

fact, together with unpredictability of faults and greater-than-zero link delay, results in the impossibility of

completely avoiding distribution-inherent instability as explained below.

When faults occur in a network, the routes of those nodes where the faults have occurred may change.

Then the export neighbors of these nodes may change accordingly. A nodek may choose as its route a route

r exported from one of its import neighborsk′ beforek learns the best router′ available tok, andr is a

temporary route fork even thoughr may be the final stable route (i.e., the best route available)of k′. This

is due to the following two reasons:

a) The best router′ available tok in a given network topology and certain routing policies mayreachk

after a less preferred router available tok has reachedk, because message passing delay along different

routes are different as well as non-zero;

b) k cannot predict for sure the existence ofr′ or the delay between the receipt ofr andr′, because routing

policies are not shared among ASes.

Therefore, there are two alternativesk can adopt:

• k always chooses the best route it has learned of so far: in thiscase, it is trivially true thatk may

chooser before it choosesr′.

• k waits for some timetk before choosing the best route it has learned afterk has learned some

change(s) in network state: in this case, we can always construct an instance of the problem where

there exists somek that chooses a less preferred router beforek learns the best router′ available

to it.

Consider a network where the topology is a complete graph andthe number of nodes is greater than

4, then for any set of valuestk′′ for every nodek′′ in the network, we can always find four values

tk0, tk′ , tk, andtk1 such thattk0 + tk′ > tk > tk1. If the routing policy at nodek is such thatk

prefers route that goes throughk0 andk′ to route that goes throughk1, thenk chooses the route
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that goes throughk1 (i.e., the router) before it learns the more-preferred route that goes through

k0 andk′ (i.e., the router′).

Therefore, a nodek may choose and advertise to its export neighbors some temporary routes before it

reaches its final stable state.

Thus, generally speaking, for a nodei, when it has received some routes exported from its import

neighbors after the occurrence of faults,i may choose as its route to the destination the router from one

import neighborj such thatr is a transient route ofj.1 Therefore,i has to change its route afterj changes

its route fromr to its final stable router′, and instability (i.e., extra route-change) is incurred ati. This

instability is the kind of distribution-inherent instability where the adopted route at a node is valid but is

transient. This kind of distribution-inherent instability is partly inherent with the fact that the routing policies

are not shared among ASes, and is impossible to completely avoid in any distributed routing protocols.

In distributed routing protocols, the propagation of the kind of instability where the adopted route at a

node is valid but transient can result in the other kind of distribution-inherent instability where the adopted

route is invalid because no information about the invalidity of the route could have reached the node when

it decides to adopt the route. (The reasoning is the same as that for proving that there existsk that chooses

a router before learning its final stable router. For simplicity, we omit it here.) Following the example

discussed in the last paragraph, afterj changes its route fromr to r′, we consider another nodek that

chooses as its route a router′′ that includesr when no (implicit or explicit) information regarding the route

change fromr to r′ at j has reachedk due to non-zero link delay. Thenk will change its route at least once

more later on, sincej is not using router′ anymore.

Moreover, if multiple faults occur in a network simultaneously, there can also exist the kind of distribution-

inherent instability where the adopted route is invalid because no information about the invalidity of the route

could have reached the node when it decides to adopt the route. Following the same reasoning for proving

the existence ofk that chooses a router before learning its final stable router, we can always find two inde-

pendent faultsF1 andF2 that occur to two different nodes and another nodek such that some information

aboutF1 reachesk earlier than information aboutF2 does, which makesk choose a router′′ that has been

invalidated byF2 before information aboutF2 could reachk because of non-zero link delay. Thenk will

change its route at least once more later on sincer′′ is an invalid route.

2

Therefore, we focus on the mechanisms as well as the impact ofeliminating fault-agnostic instability;

we only briefly discuss approaches to reducing distribution-inherent instability in Section 7.

3.2 G-BGP design

To eliminate fault-agnostic instability, we develop protocol G-BGP that refines BGP with the following

mechanisms:

Propagating information about faults. In BGP, fault-agnostic instability is incurred at a node which

adopts an invalid route due to the lack of fine-grained information about faults. Therefore, in G-BGP,

1This is because message passing delay along links is greaterthan zero, routing policies is not shared among ASes, and inde-
pendence of faults that happen at different time or to different ASes. Detailed proof is the same as that for proving thereexistsk

that chooses a router before learning its final stable router. For simplicity, we omit it here.
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necessary fine-grained fault information is propagated when a fault occurs; when the affected nodes receive

the fault information, they are able to learn the fault or itsimpact and avoid using any route that is invalidated

by the fault. On the other hand, fault information is propagated only if the corresponding fault invalidates

the existing route of some node; and fault information is either not stored or only temporarily stored at a

node for a bounded time.

When a fault occurs, the information being propagated depends on the type of the fault. In general, as

a result of the fault, one or more nodes in the network may change their next-hops in forwarding traffic, in

which case necessarypoints of channel-withdrawalor points of segment-withdrawalare propagated to the

affected nodes to reflect the fact that certain channels or route segments are not used in forwarding traffic

any more. In the case when all the nodes in an AS fail-stop, when the channel between two ASes fail-stops,

or when a node joins the network, apoint of AS-failure, apoint of channel-failure, or apoint of node-joinis

also propagated respectively.

Rejecting obsolete fault information. In a network, message passing and processing delay along different

routes may differ, thus a fresher message containing some fault information regarding an AS may reach a

node earlier than a staler message containing some obsoletefault information regarding the AS. This can

lead to fault-agnostic instability, if the obsolete fault information is used. To avoid using obsolete fault

information, G-BGP verifies the freshness of each piece of fault information upon receipt, which is enabled

by enforcing a total order on all the fault information regarding the same AS that is sent out from the AS at

different time.

Localized uncertainty resolution. When a nodei detects that a link(i, j) has fail-stopped with the existing

fault detection mechanisms in BGP (e.g., neighboring nodesperiodically exchange Keep-Alive messages),i

cannot ascertain whether its neighborj and the neighboring ASj.AS are up or down. This uncertainty, if left

unresolved, can lead to fault-agnostic instability. For example, at the network stateq as shown in Figure 1,

if a fail-stops, b can only ascertain that link(b, a) has fail-stopped, butb cannot ascertain whethera is

down. Therefore, only the point of channel-failure information signaling the fail-stop of(b, a) is propagated

to g; thusg only knows that(b, a) has fail-stopped, butg is uncertain whethera is still up and whether

[j, h, a, d] is valid. In BGP,g adopts[j, h, a, d] by “assuming without proof” that it is valid, which results in

fault-agnostic instability.

Similarly, when a nodei receives a point of segment-withdrawal or a point of node-join information

which signals that nodes in an ASJ other thani.AS may have changed routes, fault-agnostic instability

can occur, ifi adopts a route going throughJ by simply assuming (without proof) that nodes inJ have not

changed routes.

To avoid fault-agnostic instability caused by the uncertainty regarding the state of an AS or a route,

G-BGP resolves the uncertainty by gathering proof of the state of the suspected AS or route. To expedite

potential uncertainty resolution operation, G-BGP uses the mechanisms of “quickly marking suspectable

invalid routes” and “collaboratively clarifying state”. Moreover, uncertainty resolution in G-BGP is local

in the sense that, usually, only nodes close to the suspectedAS need to resolve the uncertainty, but nodes

farther away do not, which is the case especially in highly connected networks such as the Internet [8].

We elaborate on the above mechanisms in the following subsections.
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3.2.1 Propagating fault information in a bounded manner

Towards enabling nodes to generate appropriate fault information in the presence of faults, the intra-AS

coordination in BGP is enhanced as follows: each nodei informs the other nodes in its AS of the route

of i itself, the neighboring ASes to whichi has exported its route, and the neighboring ASes to whichi

is connected via an up-link. By the enhanced intra-AS coordination, every nodej can decide (i) whether

there is another node inj.AS whose route goes through the same neighboring AS asj, (ii) whether there is

another node inj.AS that has exported route to some neighboring AS whichj has exported route to, and

(iii) whether the channel to a neighboring AS is up.

Then, necessary fault information is generated as follows in the presence of faults.

Point of channel-withdrawal. When a nodei changes from a routeR = [J , . . . , d.AS] to another non-

empty one[J ′, . . . , d.AS] with J ′ 6= J , i will not use any link between ASesi.AS andJ in forwarding

traffic to d. In this case, ifR is still valid2, but no link betweenJ andi.AS is used by any node ini.AS, i

will generate apoint of channel-withdrawal〈[i.AS,J ]〉, unlessi has received it from some other node, to

signal the fact that every route going through route segment[i.AS,J ] has become invalid. For convenience,

we call(i.AS,J ) a withdrawn-channel.

Special cases are when an AS changes its import or export policy. When an ASI changes its import

policy such that nodes inI should not import routes from a setS of neighboring ASes, a nodei in I should

generate the set of points of channel-withdrawal{〈[I,K]〉 : K ∈ S}, unlessi has received it from some

other nodes. Similarly, whenI changes its export policy such that nodes inI should not export routes to a

setS′ of neighboring ASes, a nodei in I should generate and send the set of points of channel-withdrawal

{〈[K′,I]〉 : K′ ∈ S
′} to its external neighbors, if any, to whichi has exported its route.

Point of segment-withdrawal. If some node ini.AS is still using a link betweenJ andi.AS when a node

i changes from a valid routeR = [J , . . . , d.AS] to another non-empty one[J ′, . . . , d.AS] with J ′ 6= J , i

should not generate the point of channel-withdrawal〈[i.AS,J ]〉; otherwise, valid routes can be mistakenly

regarded as invalid. In this case,i calculates the setS of its neighboring ASes such that, for everyK ∈ S, i

has exported routeR toK, but there is no node ini.AS that has exported its route toK and is still using any

link betweenJ andi.AS. i also calculates the setS
′ of its neighboring ASes such that, for everyK′ ∈ S

′,

i has exported routeR to K′, and there is at least one node ini.AS that has exported its route toK′ and is

still using a link betweenJ andi.AS

Then, for every ASK ∈ S, route segment[K, i.AS,J ] will not be used by any node inK after i

exports its new route toK, thus every route going through[K, i.AS,J ] becomes invalid; However, for

an ASK′ ∈ S
′, some node inK′ may still use and some other node inK′ may stop using route segment

[K′, i.AS,J ] afteri exports its new route toK′, thusi is uncertain about the validity of routes going through

[K′, i.AS,J ]. To signal the above fact whenS 6= ∅ and/orS′ 6= ∅ , i generates apoint of segment-withdrawal

〈S, S′, i.AS,J , i, t〉, wheret is the time passed sincei changes its route (t is 0 initially and increases as the

point of segment-withdrawal is propagated from one node to another). IfS′ 6= ∅, the uncertainty regarding

the validity of routes that go through[K′, i.AS,J ] for someK′ ∈ S
′ is resolved, if need be, later at nodes

close toK′ (to be discussed in Section 3.2.3). For convenience, we call[K, i.AS,J ] a withdrawn-segment

for everyK ∈ S; for everyK′ ∈ S
′, we call[K′, i.AS,J ] a suspected-segment andK′ a suspected AS.

2In the case whenR has become invalid, but the fault information ati does not invalidateR, i also regardsR as “valid”. This
can happen when G-BGP is only partially deployed and the fault happens to a network region where G-BGP is not deployed.
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Point of AS-failure. When all the nodes in an ASI fail-stop, every route going throughI becomes invalid.

To signal this fact, apoint of AS-failure〈I〉 is generated by every nodej, if any, that detects the fail-stop of

I and whose current route goes throughI.

A special case is when the destinationd withdraws its address prefix. In this case, nodes ind generate

the point of AS-failure〈d〉, since the effect ofd withdrawing its address prefix is the same as that ofd

fail-stopping.

Point of channel-failure. When a nodei with route [J , . . . , d.AS] detects that its link to ASJ has fail-

stopped,i will check if the channel betweeni.AS andJ is up. If the channel is down,i knows that every

route going through route segment[i.AS,J ] becomes invalid. However,i is uncertain whether its external

neighbor(s) inJ is(are) up or down; thusi is uncertain whether the other channels associated withJ are

up or down. To signal the above fact,i generates apoint of channel-failure〈[i.AS,J ], t〉, wheret is the

time passed since the channel-failure is detected. The uncertainty regarding the state ofJ and its associated

channels is resolved, if need be, later at nodes close toJ . For convenience, we callJ a suspected AS.

Point of node-join. When a nodei joins a network and exports its route to a setS of neighboring ASes,

nodes in those ASes may change their routes to those going throughi.AS, which is, however, uncertain to

i. To signal the above fact,i generates apoint of node-join〈i.AS, S, i, t〉, wheret is the time passed since

i joins the network. The uncertainty regarding whether nodesin an ASK in S have changed their routes to

those going throughi.AS is resolved, if need be, later at nodes close toK. For convenience, we call every

K in S a suspected AS.

How G-BGP uses and propagates fault information in a boundedmanner. As discussed above, when

a fault occurs, some node close to where the fault has occurred will generate, if need be, the corresponding

fault information. The newly generated fault information,if any, is piggybacked onto the UPDATE messages

that the node sends to its export neighbors.

When a nodei receives an UPDATE message piggybacked with some fresh fault information, i first

modifies the information, if need be, as follows:

• i changes every point of segment-withdrawal〈S, S′,I,J , i′, t〉 wherei.AS ∈ S
′ and every point of

node-join〈K, S′′, k′, t〉 wherei.AS ∈ S
′′, if any, by removingi.AS from S

′ andS
′′ respectively, since

i is sure about the state of its own AS (i.e.,i.AS).

• i removes every point of channel-withdrawal〈[J , i.AS]〉, every point of segment-withdrawal〈S, S′,

J , i.AS, j′, t〉, the point of AS-failure〈i.AS〉, every point of channel-failure〈[J , i.AS], t〉, and every

point of node-join〈i.AS, S, i′, t〉, if any, sincei will not choose any route that goes through its own

AS (i.e.,i.AS).

i also removes every point of segment-withdrawal〈S, S′, i.AS,J , i, t〉, if any, that is generated byi

itself.

Then, i invalidates and avoids using the routes that go through any withdrawn channel, withdrawn seg-

ment, fail-stopped AS, and/or fail-stopped channel. Moreover, if the highest ranked candidate routeR goes

through some suspected AS,i will not chooseR unlessi does not invalidateR after i resolves the associ-

ated uncertainty. Ifi changes route after processing the UPDATE message,i sends to its export neighbors

an UPDATE message piggybacked with the fault information that i knows of, theni deletes the fault in-

formation without storing it. On the other hand, ifi does not change route,i will not propagate any fault
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information to its external neighbors; instead,i only propagates its newly-learned fault information to its

internal neighbors, to guarantee that nodes in the same AS have a consistent view of faults and their impact.

Therefore, information about faults only propagates to thenodes, as well as their immediate neighbors, that

change routes due to the faults; consequently, the propagation of fault information is bounded.

When a nodej does not change route after receiving some fault information, j will store the fault

information temporarily for up toU time,3 whereU is the upper bound on the convergence time of BGP

after a fault occurs. Ifj does not change route withinU time after it receives the fault information,j will

delete it permanently, since any route that can be invalidated by the fault information should have been

invalidatedU time afterj receives the fault information. (Of course, ifj changes route withinU time after

receiving the fault information, the information will be deleted after being piggybacked onto the UPDATE

messages thatj sends out.)

When a nodej stores some fault information,j will update the information, if need be, as the network

state changes:

• When the state of its ASj.AS changes such that a nodei in j.AS uses a route going through segment

[j.AS,K] for someK and i has exported the route to a setS
′′ of neighboring ASes,j knows that

channel(j.AS,K) is up and used. Thus,j deletes the point of channel-withdrawal〈[j.AS,K]〉, the

point of segment-withdrawal〈S, S′, j.AS,K, i, t〉, and/or the point of channel-failure〈[j.AS,K], t〉,

if they are stored atj; moreover,j changes every point of segment-withdrawal〈S, S′, j.AS,K, i′ , t〉,

if any, wherei′ 6= i to 〈S \ S
′′, S′, j.AS,K, i′, t〉, and ifS \ S

′′ = S
′ = ∅ after the change,j deletes the

corresponding information.

• Whenj receives an UPDATE messagem that contains a routeR and some fresh fault information

regarding an ASK,

– if R goes through segment[K,K′] for someK′, j deletes the point of channel-withdrawal

〈[K,K′]〉, the point of channel-failure〈[K,K′], t〉, and/or the point of AS-failure〈K〉, if they

are stored atj;

– if R goes through segment[K′′,K,K′] for someK′′ andK′, j changes every point of segment-

withdrawal〈S, S′,K,K′, k, t〉 whereK′′ ∈ S, if any, by removingK′′ from S, and ifS = S
′ = ∅

after the change,j deletes the corresponding information.

Then,j reliably informs other nodes in its AS of the changes.

• For every set of points of segment-withdrawal{〈Sk, S
′
k,I,L, i′, tk〉 : k ∈ 1..n, n > 1}, if any, that

are stored atj, j integrates them into a single point of segment-withdrawal〈∩n
k=1Sk,∩

n
k=1S

′
k,I,L,

i′,mink∈1..n tk〉; similarly, j integrates every set of points of node-join{〈K, S′′
k, k′, tk〉 : k ∈ 1..n, n >

1}, if any, into a single point of node-join〈K,∩n
k=1S

′′
k, k

′,mink∈1..n tk〉.

If j has a point of channel-withdrawal〈[L,I]〉 and a point of channel-failure〈[L,I], t〉 simultane-

ously (which can happen as a result of the uncertainty resolution regarding the state ofI), j deletes

〈[L,I], t〉, so that the validity of routes going throughI will not be suspected due to the existence of

〈[L,I], t〉.

3Alternatively, we can assign each piece of fault information a lifetime ofU and decrease its lifetime as time passes by. Then a
node stores fault information with a lifetime oft′ for at most(U − t′) time.
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3.2.2 Rejecting obsolete fault information

To avoid using obsolete fault information, G-BGP enforces atotal order on all the fault information regarding

the same AS that is sent out from the AS at different time. Thisis achieved by assigning sequence numbers to

fault information such that fresher fault information regarding an AS has a larger sequence number than does

staler fault information regarding the same AS.(Unless specified otherwise, all the arithmetic operations,

including comparisons, in this section are based on “modulosome big numberM ”.)

Numbering fault information. To enable the sequence-number based information-freshness-checking ,

nodes within an ASI coordinate with each other to maintain a monotonically-increasing sequence number

I.sn for I. For every neighboring ASJ , nodes inI also maintain a local copy ofJ ’s sequence number,

denoted byI.J .sn. We assume that the synchronization delay betweenJ .sn andI.J .sn (i.e., J .sn −

I.J .sn) is bounded from above byDsn. To guarantee monotonicity in the sequence number of an AS, a

node stores the sequence number of its AS in a persistent memory; when a fail-stopped nodei joins the

network,i either gets the sequence number of its AS from some other up-node in the AS, or, if there is no

up-node other thani in the AS, it gets the sequence number from its persistent memory and increases it by

Dsn + 1.

When piggybacking fault information onto UPDATE messages that are sent to external neighbors, a

nodei attaches proper sequence number to each piece of fault information that is generated byi itself or

some other node ini.AS:

• For each piece of fault information regarding the state ofi.AS (i.e., a point of channel-withdrawal

〈[i.AS,J ]〉, a point of segment-withdrawal〈S, S′, i.AS,J , i′, t〉, the point of AS-failure〈i.AS〉, a

point of channel-failure〈[i.AS,J ], t〉, or a point of node-join〈i.AS, S, i′, t〉), i simply attaches the

sequence number(i.AS).sn. Then,i coordinate with other nodes in its AS to increase(i.AS).sn by

1.

• For every point of channel-withdrawal〈[K, i.AS]〉, if any, that is generated wheni.AS changes its

export policy such that nodes in it do not export routes to an ASK, i attaches the sequence number

((i.AS).K.sn + Dsn) instead of(i.AS).sn, since〈[K, i.AS]〉 is about the fact that nodes inK will

not use any link betweenK andi.AS in forwarding traffic.

When nodes inK receive〈[K, i.AS]〉, they coordinate with one another to increaseK.sn by Dsn + 1.

• For every point of AS-failure〈J 〉, if any, that is generated for a fail-stopped neighboring ASJ , i

attaches the sequence number((i.AS).J .sn + Dsn) instead of(i.AS).sn, since〈J 〉 is about the

fail-stop ofJ .

For fault information that is generated by nodes outsidei.AS, i simply piggybacks the information onto

UPDATE messages without changing the sequence number of theinformation.

How G-BGP rejects obsolete fault information. Towards enabling nodes in an ASI to determine the

freshness of fault information regarding another ASK, every time a nodei in I receives some fresh fault

information regardingK, i reliably notifies the other nodes inI of the information, and all the nodes inI

maintain the sequence number of the information asI.K.snM for up toTd time, whereTd is the maximum

difference in delay in propagating UPDATE messages along different routes from one AS to another. If no

node inI receives any fresher fault information regardingK within Td time afterI.K.snM was modified
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the last time, nodes inI deleteI.K.snM , which we regard as “resettingI.K.snM to −∞”. At an AS I,

I.K.snM is initially −∞ for every other ASK.

When a nodei receives an UPDATE messagem containing a routeR and some fault information,i

checks the freshness of each piece of fault information and the validity ofR as follows:

• For a piece of fault information regarding an ASK, if the sequence number of the fault information

is less than(i.AS).K.snM and the fault information signals a “withdrawn”-channel, a“withdrawn”-

segment, a “fail-stopped” AS, or a “fail-stopped” channel that is, however, in a candidate route ofi,

then the fault information must be obsolete; otherwise, thefault information is fresh, in which casei

updates(i.AS).K.snM with the sequence number of the fault information. (Note that m may contain

obsolete and fresh fault information simultaneously.)

• If m contains any obsolete fault information,R must be invalid.

After the checking above,i accepts all fresh fault information and ignores all obsolete fault information;i

also accepts the announced routeR if m contains no obsolete fault information.

3.2.3 Localized uncertainty resolution

Notations:

hops(I,J , R) : the number of inter-AS hops between ASesI andJ in a routeR = [I, . . . ,J , . . . , d.AS];
Tm : the upper bound on the time taken to process a message in BGP.

To expedite and to enhance the locality of potential uncertainty resolution, G-BGP uses the mechanisms

of “quickly marking suspectable invalid routes” and “collaboratively clarifying state”.

Quickly marking suspectable invalid routes. To resolve uncertainty, a node needs to obtain proof in-

formation from others. However, information flow can be slowin BGP due to the use of MRAI timer. To

expedite potential uncertainty resolution after a point ofsegment-withdrawal or a point of node-join is gen-

erated,purging-messagesare sent, without subject to the MRAI timer control, along invalid routes that go

through the corresponding suspected segment or AS. More specifically:

• A node i sends a purging-message to each of its export neighbors, when either of the following

conditions holds: (i)i will change its route not to go through a segment[J ,K] afteri receives a point

of segment-withdrawal〈S, S′,J ,K, j′, t〉 wherei.AS ∈ S
′; (ii) i will change its route to go through

an ASJ afteri receives a point of node-join〈J , S, j′, t〉 wherei.AS ∈ S.

• When a nodej receives a purging-message from an import neighbori, j marks as invalid the candidate

route imported fromi; moreover, if the marked candidate route is the current route of j, j re-sends a

purging-message to each of its export neighbors.

• When a nodej marks its route as invalid,j does not change its route immediately; instead,j waits for

the normal BGP procedure to stabilize its route later. On theother hand,j will remove the marking,

if its route has been marked as invalid forU time without being withdrawn or changed (i.e., the route

has become valid), whereU is the upper bound on the convergence time of BGP after a faultoccurs.
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Therefore, if a nodei sends a purging-message to its export neighbors, another nodej that has a candidate

routeR = [K, . . . , i.AS, . . . , d.AS] will mark R as invalid within(hops(K, i.AS,R) + 1) × (Tm + Ud)

time. (Given the high-performance routers and high-speed networks in today’s Internet, bothTm andUd

tend to be quite small.)

Collaboratively clarifying state. When a channel(i.AS,J ) used by a nodei becomes down,i generates

a point of channel-failure〈[i.AS,J ], t〉 to signal, in addition to the fail-stop of(i.AS,J ), the uncertainty

regarding the validity of routes going through some other channel associated withJ . In this case, only the up

nodes inJ , if any, know the exact state (i.e., up or down) of the channels associated withJ . Therefore, the

up nodes inJ propagate, without subject to theMRAI timer control,state-clarifiersregarding the channels

that fail-stop simultaneously to the nodes whose candidateroutes go through an up channel associated with

J . More specifically,

• When a nodej detects that a channel(j.AS,I) used by some node in a neighboring ASI fail-stops,4

j first calculates the setS of ASes such that, for everyI ′ ∈ S, j detects the fail-stop of(j.AS,I ′)

within Tf time before or afterj detects the fail-stop of(j.AS,I), whereTf is the delay in detecting the

fail-stop of channels. (By definition,I ∈ S.) Then,j sends to its external neighbors the state-clarifier

〈S, j.AS〉.

• When a nodek receives a state-clarifier〈S,J 〉 from another nodek′, k stores〈S,J 〉, if the route ofk

goes through a segment[I ′,J ] for someI ′ ∈ S; otherwise, if the route ofk is imported fromk′ and

goes through a segment[K,J ] for someK /∈ S, k first invalidates all of its candidate routes, if any,

that go through a segment[I ′′,J ] for someI ′′ ∈ S, thenk re-sends the state-clarifier to its export

neighbors;

• A node deletes a stored state-clarifier, if it has been storedfor U time without being used, whereU is

the upper bound on the convergence time of BGP after a fault occurs.

Therefore, if a nodej sends a state-clarifier〈j.AS, S〉 to its export neighbors, another nodek that has a valid

candidate routeR = [K, . . . , j.AS, . . . , d.AS] will receive the state-clarifier within(hops(K, j.AS,R) +

1) × (Tm + Ud) time.

How G-BGP resolves uncertainty.When the highest ranked candidate routeR = [J , . . . ,K′,K, . . . , d.AS]

of a nodei goes through some suspected ASK, i suspects the validity ofR and resolves the associated un-

certainty, if either of the following conditions holds:5

• Condition 1:i has a point of segment-withdrawal〈S, S′,I ′,J ′, i′, t〉 whereK ∈ S
′ and[K,I ′,J ′] ∈

R, or i has a point of node-join〈I ′′, S′′, i′, t〉 whereK ∈ S
′′ and[K,I ′′] /∈ R; but the point of segment-

withdrawal or the point of node-join is not piggybacked in the UPDATE message that containsR.

In this case,i regardsR as invalid ifR has already been marked as invalid, ori regardsR as valid

if R has not been marked as invalid andt ≥ α × (hops(J ,K, R) + 1) × (Tm + Ud); otherwise,i

4G-BGP changes the BGP UPDATE-send method, so that when a nodei uses the route imported from one of its import neighbors
j, i also sends its route back toj. Therefore, a nodej can decide whether its route is used by some of its external neighbors in
a neighboring AS. By letting nodes in the same AS share with each other this information, a node can decide whether a channel
between its AS and a neighboring AS is used by some node in the neighboring AS.

5If there are multiple suspected ASes inR, i resolves the uncertainty, if need be, regarding these ASes in parallel.
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judiciously waitsfor (α × (hops(J ,K, R) + 1) × (Tm + Ud) − t) time, after whichi either regards

R as invalid ifR has been marked as invalid, ori regardsR as valid otherwise.

If R is regarded as valid after the uncertainty resolution, no node whose highest ranked routeR′ goes

through the new route[i.AS,R] of i will suspect the validity ofR, since the UPDATE message that

containsR′ must also contain the point of segment-withdrawal or the point of node-join.

• Condition 2:i has a point of channel-failure〈[I ′,K], t〉 whereI ′ 6= K′.

In this case,i regardsR as valid ifi has a state-clarifier〈S,K〉 whereK′ /∈ S, or i regardsR as invalid

if i does not have such a state-clarifier yett ≥ α × (hops(J ,K, R) + 1) × (Tm + Ud); otherwise,i

judiciously waits for(α × (hops(J ,K, R) + 1) × (Tm + Ud) − t) time, after whichi either regards

R as valid ifi has a state-clarifier〈S,K〉 whereK′ /∈ S, or i regardsR as invalid otherwise.

If R is regarded as valid after the uncertainty resolution,i changes the state-clarifier into a set of

points of channel-withdrawal{〈[K′′,K]〉 : K′′ ∈ S}; i also deletes every point of channel-failure

〈[I ′′,K], t〉 whereI ′′ ∈ S, so that no node whose route goes through the route ofi, no matter be-

fore or afteri changes its route, will suspect the validity of routes goingthroughK. (Every newly

generated point of channel-withdrawal〈[I ′′,K]〉 that corresponds to a deleted point of channel-failure

〈[I ′′,K], t〉 assumes the sequence number of〈[I ′′,K], t〉; the remaining newly generated points of

channel-withdrawal do not assume any sequence numbers and are always regarded as fresh.)

By the above method of uncertainty resolution, an invalid route going through some suspected AS will

be discarded, and fault-agnostic instability as well as itspropagation is avoided. The elimination of this type

of fault-agnostic instability is essential for G-BGP to achieve asymptotically optimal convergence speed or

to asymptotically improve BGP convergence speed in severalcommon scenarios (e.g., when a node with

multiple neighboring ASes fail-stops), as proved in Section 5.

For a valid routeR that is suspected by a nodei, oncei resolves the uncertainty regarding the validity

of R, no node whose highest ranked route goes through the new route of i will suspect the validity ofR

any more. Thus, uncertainty regarding a valid route isresolved locallyin the sense that only nodes that are

relatively close to the suspected AS need to resolve the uncertainty, but nodes that are farther away from the

suspected AS need not.

Moreover, as observed in [17], the link latency as well as theprocessing delay for BGP messages is

usually significantly less than the MRAI timer. Therefore, the propagation of UPDATE messages and the

piggybacked fault information is much slower than the propagation of purging messages and state-clarifiers.

Thus, with high probability, a node need not wait to resolve uncertainty regarding a valid route; and the

waiting would be short even if need be.

3.3 Protocol G-BGP

We present G-BGP in Figure 2, where the variables and protocol actions of each nodei are presented.

(For conciseness, we skip the program for “fast marking of suspectable invalid routes” and “collaborative

clarification”.)

Variables. Each nodei maintains variablesi.poas, i.pocf , i.pocw, i.ponj, i.posw, i.AS-path, i.inval,

i.sn, i.SN , i.change, i.seqChg, i.suspect, i.adv, andi.pAdv:
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Program G-BGP.i
Parameter j : node-id; J : set of AS-ids
Var i.pocw : set of〈channel, int〉 [initialized to∅];

i.posw : set of〈AS-id set, AS-id set, channel, int, int, int〉 [initialized to∅];
i.poas : set of〈AS-id, int〉 [initialized to∅];
i.pocf : set of〈channel, int, int〉 [initialized to∅];
i.ponj : set of〈AS-id, AS-id set, int, int, int〉 [initialized to∅];
i.AS-path, i.j.AS-path, : sequence of AS-ids[initialized to∅];
i.inval : set of AS-ids[initialized to∅];
i.sn, i.j.sn, s : int [initialized to0];
i.SN : set of〈AS-id, int, int〉 [initialized to∅];
r′ : sequence of AS-ids; n, k′, k′′ : AS-id;
e : link (i.e., pair of AS-ids); l : 〈link, int, int〉 or 〈 〈AS-id, AS-ids〉, int, int〉;
t, t′, wt : time;
i.change, i.seqChg, i.suspect, i.adv, i.pAdv, i.advd : boolean[initialized tofalse];

Action
FAULT-INFO
[]
ROUTE-ADAPT
[]
ADV-RESET

Figure 2: G-BGP: improve BGP convergence stability and speed

〈A1〉 :: i changes routing policy −→
if removes J from i.im → i.pocw, i.change := i.pocw ∪ {〈j, i.AS, i.sn〉 : j ∈ J}, true fi
if removes Jfrom i.ex → i.pocw := i.pocw ∪ {〈i.AS, j, i.j.sn + Dsn : j ∈ J};

sendUPDATE(WD(i), i.pocw,∅, ∅, ∅, ∅) to J
fi
if i changes ranking policy → i.change := true fi

[]
〈A2〉 :: (j = nHop(i) ∧ link (j, i) fail-stops) ∨ (i = d ∧ i withdraws its address prefix) −→

if channel (j.AS, i.AS) fail-stops → i.pocf, i.seqChg := i.pocf ∪ {〈〈j.AS, i.AS〉, detectionT ime, i.sn〉}, true;
[] i withdraws its address prefix → i.poas, i.seqChg := i.poas ∪ {〈i.AS, i.sn〉}, true

fi
if ¬i.change → i.change, t := true, CLOCK fi

[]
〈A3〉 :: rcv UPDATE m(r, r.pocw, r.posw, r.poas, r.pocf, r.ponj, r.sn) from j −→

(∀l : l ∈ (r.pocf ∪ r.ponj) : l.tP sd := l.tP sd + Ld);
if r.sn > i.j.sn → i.j.sn := r.sn fi;
if m is not a withdrawal-UPDATE →

i.j.AS-path := r;
if ¬Obsolete(r, i) → i.inval := i.inval \ {j};

i.poas, i.pocf, i.pocw, i.posw := D(i.poas, r), D(i.pocf, r), D(i.pocw, r), D(i.posw, r);
[] Obsolete(r, i) → i.inval := i.inval ∪ {j}

if
[] m is a withdrawal-UPDATE → i.j.AS-path := ∅

fi
i.SN, i.sn, i.seqChg := adpt(i.SN, r), adpt(i.sn, r, j), chgSeq(i, r);
if i.AS-path 6= ∅ →

i.poas, i.pocf, i.pocw := M(i.poas, r.poas), M(i.pocf, r.pocf),M(i.pocw, r.pocw);
i.posw, i.ponj := M(i.posw, r.posw),M(i.ponj, r.ponj)

fi
(∀k′, k′′, s, l : 〈〈k′, k′′〉, s〉 ∈ i.pocw ∧ l ∈ i.ponj ∧ k′′ ∈ l.ASes ∧ s ≥ l.k′′.sn : l.ASes := l.ASes \ {〈k′′, l.k′′.sn〉});
if ¬i.change → i.change, t := true, CLOCK fi

Figure 3: Module FAULT-INFO
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〈A4〉 :: i.change −→
(∀l : l ∈ (i.pocf ∪ i.ponj) : l.tP sd := l.tP sd + (CLOCK − t)/α);
i.inval := (i.inval ∪ {j : Invalid(i.j.AS-path, i)}) \ {j : ¬Invalid(i.j.AS-path, i)};
if mPref(i) 6=⊥→ i.AS-path, i.adv := [i.AS,mPref(i)], false;

if (∃k′ : Suspect(k′, i)) ∧ (¬i.suspect ∨ modified(i)) →
i.suspect, t, wt, i.pAdv := true, CLOCK,max{0, 2α × maxWait(i)}, true;

[] ¬(∃k′ : Suspect(k′, i)) → i.adv := true
fi

[] mPref(i) =⊥→ i.AS-path, i.adv := ∅, true
fi

[]
〈A5〉 :: i.suspect −→

if CLOCK ≤ t + wt ∧ Invalid(i.AS-path, i) → i.suspect := false;
[] CLOCK > t + wt ∧ ¬Invalid(i.AS-path, i) →

i.suspect := false;
(∀k′, k′′, t′, s : k′ ∈ i.AS-path ∧ 〈〈k′, k′′〉, t′, s〉 ∈ i.pocf :

i.pocw, i.pocf := i.pocw ∪ {〈〈k′, k′′〉, s〉}, i.pocf \ {〈〈k′, k′′〉, t′, s〉});
fi

Figure 4: Module ROUTE-ADAPT

〈A6〉 :: (i.adv ∨ i.pAdv) ∧ mrai(i) −→
if i.pAdv ∧ ¬i.advd → i.pAdv, i.advd := false, true;

sendUPDATE(WD(i), i.pocw, i.posw, i.poas, i.pocf, i.ponj, i.sn) to (i.ex ∪ {preNHop(i)});
[] i.adv →

if diff(i) ∧ i.AS-path 6= ∅ →
if nHop(i) 6= preNHop(i) ∧ preNHop(i) /∈ i.inval →

if channel(preNHop(i), i.AS) is not used→
i.pocw, i.seqChg := i.pocw ∪ {〈〈preNHop(i), i.AS〉, i.sn〉}, true

[] channel(preNHop(i), i.AS) is still used →
i.posw, i.seqChg := i.posw ∪ {〈S(i), S′(i), i.AS, preNHop(i), i.AS, i, 0, i.sn〉}, true

fi
fi
if preNHop(i) =⊥→ i.ponj, i.seqChg := i.ponj ∪ addPoj(i), true fi
sendUPDATE(i.AS-path, i.pocw, i.posw, i.poas, i.pocf, i.ponj, i.sn) to (i.ex ∪ {nHop(i)});

[] diff(i) ∧ i.AS-path = ∅ →
sendUPDATE(WD(i), i.pocw, i, posw, i.poas, i.pocf, i.ponj, i.sn) to (i.ex ∪ {nHop(i)})

fi
if i.seqChg → i.sn := i.sn + 1 fi
i.poas, i.pocf, i.pocw, i.ponj, i.sn := ∅, ∅, ∅, ∅, i.sn + 1;
i.change, i.seqChg, i.suspect, i.adv, i.pAdv, i.advd := false, false, false, false, false, false

fi
[]
〈A7〉 :: i.SN 6= ∅ −→ (∀k, s, t : 〈k, s, t〉 ∈ i.SN ∧ CLOCK > t + Td : i.SN := i.SN \ {〈k, s, t〉})

Figure 5: Module ADV-RESET
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• i.pocw, i.posw, i.poas, i.pocf , and i.ponj denote the point(s) of AS-failure, point(s) of channel-

failure, point(s) of channel-withdrawal, point(s) of join-change, and point(s) of segment-withdrawal

thati has respectively.

• i.AS-path denotes the current route ofi, andi.inval denote the set of import neighbors ofi whose

routes are invalid.

• i.sn denotes the local sequence number ofi, andi.SN contains the sequence number of the latest

information about faults with respect to other ASes that hasreachedi. An element ini.SN that

records the sequence number for the latest information about faults with respect to an ASj is deleted

from i.SN , if i has not received fromj any information about faults for any period ofTd time.

• i.change denotes whether the network state has changed,i.seqChg denotes whether the sequence

number ofi needs to increase afteri adapts its route to network state changes;i.suspect denotes

whetheri is in the process of resolving some uncertainty,i.adv denotes whetheri is going to send out

UPDATE messages,i.pAdv denotes whetheri will send out an withdrawal-UPDATE message that

piggybacks information about faults and/or route changes beforei tries to resolve some uncertainty,

andi.advd denotes whetheri has sent out a withdrawal-UPDATE afteri.pAdv is set totrue.

i.pocw, i.posw, i.poas, i.pocf , i.ponj, i.AS-path, i.inval, and i.SN are initialized to∅; i.change,

i.seqChg, i.suspect, i.adv, andi.pAdv are initialized tofalse.

Moreover, for every neighboring node/ASj of i, i usesi.j.AS-path andi.j.sn to maintain a local copy

of the value ofj.AS-path andj.sn respectively. For convenience,i.im andi.ex are used to denote the set

of import neighboring ASes and the set of export neighboringASes of the AS ofi; temporary variablesr′,

n, k′, k′′, e, l, s, t, t′, andwt are also used.
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Actions. For clarity of presentation, we define the following notations:

WD(i) : used in a BGP UPDATE message towithdraw the last routei advertised to its export neighbors;
nHop(j, r) : the AS in router that is one-hop closer tod thanj is in r, i.e., the next hop ofj in router;
nHop(i) : nHop(i, i.AS-path);

preRoute(i) : the last route used byi before it adopts its current route;

preNHop(i) : nHop(i, preRoute(i)), If preRoute(i) = ∅ (i.e., i has no route previously),preNHop(i) = ⊥;
CLOCK : the current value of system clock at an AS;
Invalid(r, i) : r = ∅ ∨ (∃n : n ∈ r ∧ n ∈ i.poas) ∨ (∃e : e ∈ r ∧ e ∈ (LK(i.pocf) ∪ LK(i.pocw)∪ LK(i.posw)),

whereLK(i.pocf) = {〈a, b〉 : 〈〈a, b〉, t′〉 ∈ i.pocf}, LK(i.pocw) = {〈a, b〉 : 〈〈a, b〉, s′〉 ∈ i.pocw},

LK(i.posw) = {〈a, b〉 : 〈S, S′, b, a, i′, t, s〉 ∈ i.posw}

l.gAS : k if l is 〈k, s〉, 〈〈k′, k〉, t, s〉, 〈〈k′, k〉, s〉, 〈S, S
′, k, k′, i′, t, s〉, s〉, or 〈k, ASes, t, s〉;

l.ASes : ASes if l is a point of segment-withdrawal〈ASes′, ASes,I,J , i′, t′, s〉 or a point of node-join〈n, ASes, t′, s〉;
l.L : 〈k′, k〉 if l is 〈〈k′, k〉, t, s〉 or 〈〈k′, k〉, s〉;

l.sn or l.k.sn : s if l is 〈k, s〉, 〈〈k′, k〉, t, s〉, 〈〈k′, k〉, s〉, or 〈k, ASes, t, s〉;

l.k.sn : s if l is 〈v, ASes, t, s′〉 and〈k, s〉 ∈ l.ASes ;

l.tP sd : t′ if l is a point of channel-failure〈〈a, b〉, t′, s〉 or a point of node-join〈n, ASes, t′, s〉;
IN(l, r) : l ∈ r.poas ∨ l ∈ r.pocf ∨ l ∈ r.pocw ∨ l ∈ r.ponj ;

Obsolete(r, i) : (∃j, s : 〈j, s〉 ∈ i.SN ∧ (∃l : IN(l, r) ∧ l.gAS = j ∧ l.j.sn < s)) ∨

(∃k, j : k /∈ i.inval ∧ j ∈ r ∧ j ∈ k.AS-path ∧ nHop(j, k.AS-path) 6= nHop(j, r) ∧

¬(∃l : IN(l, r) ∧ l.gAS = j));

D(i.poas, r) : i.poas \ {〈k, s〉 : 〈k, s〉 ∈ i.poas ∧ k ∈ r};

D(i.pocf, r) : i.pocf \ {〈〈k, k′〉, t, s〉 : 〈〈k, k′〉, t, s〉 ∈ i.pocf ∧ 〈k, k′〉 ∈ r};

D(i.pocw, r) : i.pocw \ {〈〈k, k′〉, s〉 : 〈〈k, k′〉, s〉 ∈ i.pocw ∧ 〈k, k′〉 ∈ r};

D(i.posw, r) : i.posw \ {〈S, S′, k, k′, i′, t, s〉 : 〈S, S′, k, k′, i′, t, s〉 ∈ i.posw ∧ 〈k, k′〉 ∈ r};

adpt(i.SN, r) : {〈k, s, t〉 : 〈k, s, t〉 ∈ i.SN ∧ ¬(∃l : IN(l, r) ∧ l.k.sn > s)} ∪

{〈k, l.k.sn,CLOCK〉 : 〈k, s, t〉 ∈ i.SN ∧ IN(l, r) ∧ s < l.k.sn} ∪

{〈l.gAS, l.(l.gAS).sn,CLOCK〉 : IN(l, r) ∧ ¬(∃s, t : 〈l.gAS, s, t〉 ∈ i.SN)};

adpt(i.sn, r, j) : max{i.sn,maxs{s : 〈〈j, i〉, s〉 ∈ r.pocw},maxs{s : 〈j, ASes, t, s〉 ∈ r.ponj ∧ 〈i, s′〉 ∈ ASes}};

(note:maxs{s : FALSE} = −∞)
chgSeq(i, r) : (∃s, l : 〈〈j, i〉, s〉 ∈ r.pocw ∨ (l ∈ r.ponj∧ < i, s >∈ l.ASes))

i.k.SN : s if 〈k, s, t〉 ∈ i.SN ;
M(i.poas, r.poas) : {l : l ∈ (i.poas ∪ r.poas) ∧ l.sn = i.(l.gAS).SN};

M(i.pocf, r.pocf) : {l : l.sn = i.(l.gAS).SN ∧ l ∈ (i.pocf ∪ r.pocf) ∧ ¬(∃l′, l′′ : l′ ∈ i.pocf ∧ l′′ ∈ r.pocf ∧ l′ 6= l′′ ∧ l′.L = l′′.L = l.L)}∪

{〈e, max{t1, t2}, s〉 : l′ ∈ i.pocf ∧ l′′ ∈ r.pocf ∧ e = l′.L = l′′.L ∧ l′.sn = l′′.sn = i.(l′.gAS).SN}

M(i.pocw, r.pocw) : {l : l ∈ (i.pocw ∪ r.pocw)∧ l.sn = i.(l.gAS).SN};

M(i.posw, r.posw) : {l : l ∈ (i.posw ∪ r.posw)∧ l.sn = i.(l.gAS).SN};

M(i.ponj, r.ponj) : {l : l ∈ (i.ponj ∪ r.ponj) ∧ l.sn = i.(l.gAS).SN ∧ ¬(∃l′ : l′ ∈ (i.ponj ∪ r.ponj)∧ l′.gAS = l.gAS)}∪

{l : l ∈ (i.ponj ∪ r.ponj) ∧ l.sn = i.(l.gAS).SN ∧ (∃l′ : l′ ∈ (i.ponj ∪ r.ponj)∧ l′.gAS = l.gAS ∧ l′.sn < l.sn)}∪

{〈n, l.ASes ∩ l′.ASes,max{l.tP sd, l′.tP sd}, l.sn〉 : l ∈ i.ponj ∧ l′ ∈ r.ponj∧

l.gAS = l′.gAS = n ∧ l.sn = l′.sn = i.n.SN}

mPref(i) : the route of an import neighbor ofi that is valid and highest ranked ati;
mPref(i) =⊥ if none of the import neighbor ofi has a valid route;

nsd(nHop(i), l) : nodenHop(i) does not send the fault informationl to i;
Suspect(k′, i) : k′ ∈ i.AS-path ∧ ((∃k′′, t′ : 〈〈k′, k′′〉, t′〉 ∈ i.pocf) ∨ (∃l, s, s′ : l ∈ i.ponj ∧ 〈k′, s〉 ∈ l.ASes ∧ l.gAS /∈ i.AS-path∧

nsd(nHop(i), l)) ∨ (∃l : l = 〈S, S
′, I,J , i′, t, s〉 ∧ l ∈ i.posw ∧ k′ ∈ S

′ ∧ [k′,I,J ] ∈ mPref(i) ∧ nsd(nHop(i), l))),

i.e.,Suspect(k′, i) = true if k′ is a suspected AS fori;
modified(i) : variablei.AS-path is modified the current instance ofA4 execution;
MRAI : the MRAI timer used in BGP;
Pol(k′, i) : a point of channel-failure〈〈k′, n〉, t〉〉 ∈ i.pocf such thatt =max{l.tP sd : l ∈ i.pocf ∧ (∃k′′, t′ : 〈〈k′, k′′〉, t′〉 = l)};

Poj(k′, i) : a point of node-joinl′ such thatk′ ∈ l′.ASes andl′.tP sd =max{l.tP sd : l ∈ i.ponj ∧ k′ ∈ l.ASes};

hops(k′, i) : the number of hops betweenk′ andi in i.AS-path

wtPol(k′, i) : hops(k′, nHop(i)) × (Tm + Ud) − Pol(k′, i).tP sd

wtPoj(k′, i) : hops(k′, i) × (Tm + Ud) − Poj(k′, i).tP sd

maxWait(i) : max{max{wtPol(k′, i) : Suspect(k′, i) ∧ Pol(k′, i) 6=⊥},max{wtPoj(k′, i) : Suspect(k′, i) ∧ Poj(k′, i) 6=⊥}}

advInfo(i) : i.suspect∧ Invalid(preRoute(i), i) ∧

¬(∃k′ : k′ ∈ preRoute(i) ∧ ((Suspect(k′, i) ∧ wtPol(k′, i) = maxWait(i))∨

(∃k′′ : Suspect(k′′, i) ∧ k′ ∈ Poj(k′′, i).ASes ∧ wtPoj(k′′, i) = maxWait(i))))

mrai(i) : i did not send any UPDATE message within the past MRAI time;

diff(i) : i.AS-path differs from the last routei has used;
S(i) : the set of export neighboring ASes ofi where there is no node whose route goes through[i.AS, preNhop(i)];

S
′(i) : the set of export neighboring ASes ofi where there may be no node whose route goes through[i.AS, preNhop(i)];

addPoj(i) : {〈i.AS, j, i, 0, i.sn〉 : j ∈ i.ex ∧ j 6= nHop(i)}.
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G-BGP consists of three submodules: FAULT-INFO, ROUTE-ADAPT, and ADV-RESET, which are

shown in Figure 3, 4, and 5 respectively:

• FAULT-INFO consists of actionsA1, A2, andA3 that generate and propagate information about

faults and network state changes, and it implements the ideas of numbered-grapevining and obsolete

information removal as discussed in Section 3.2.1 and 3.2.2.

• ROUTE-ADAPT consists of actionsA4 andA5 that adapt the routes of ASes according to faults and

state changes, and it implements the ideas of uncertainty resolution as discussed in Section 3.2.3.

• ADV-RESET consists of actionsA6 andA7 that send out BGP UPDATE messages and reset protocol

variables.

3.4 Example revisited

We revisit an example discussed in Section 3.1 and see how thenetwork will behave if G-BGP is used.

If a fail-stops when the network is at the stateq as shown in Figure 1,b will detect the fail-stop of(b, a)

and generate a point of channel-failure〈[b, a], t〉. 〈[b, a], t〉 is piggybacked with UPDATE messages and

propagated towardsg. Wheng receives the route-withdrawal UPDATE message fromm, g will learn,

via 〈[b, a], t〉, the fail-stop of(b, a) and will not adopt[f, b, a, d], even if f has not withdrawn the route.

Moreover, since route[j, h, a, d] goes through the suspected nodea, g will resolve the uncertainty regarding

the validity of [j, h, a, d]. By the uncertainty resolution,j will regard [j, h, a, d] as invalid (possibly well

beforej withdraws[j, h, a, d], since the uncertainty resolution is based on information flow speed that is

not subject to the MRAI timer control). Theng changes its route directly to[c, w, d]. Therefore, there is no

instability or instability propagation during the convergence.

4 Policy graph: concepts and properties

In this section, we first define the concept of policy graph formodelling inter-AS routing, then we present

some properties of policy graph.

4.1 Concepts

In inter-AS routing, both network topology and export as well as import policies of nodes affect the routes

available in a network. We define the concept ofpolicy graphto model the above three aspects of a network.

Policy graph is used to analyze the convergence properties of G-BGP and BGP in Section 5.

Given a stateq of a networkG and the destinationd in V.q, thepolicy graph at stateq, denoted byGp.q,

is a directed graph(Vp.q, Ep.q), where

Vp.q = {i : i ∈ V.q ∧ (∃j : (j, i) ∈ E.q ∧ j exports route toi ∧ i imports route fromj)}

Ep.q = {〈j, i〉 : j ∈ Vp.q ∧ i ∈ Vp.q ∧ j exports route toi ∧ i imports route fromj}

4.2 Properties of policy graph

In this subsection, we present the complexity of computing the policy graph at a stateq and an observation

of the structure of policy graph.
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Computational complexity. To compute the policy graphGp.q(Vp.q, Ep.q) for a networkG and destination

d at stateq, we use the breadth first graph search algorithm [7]: the search starts withd and visits every node

in G.q one by one; when the searching process visits a nodei, i is added toVp.q, the export neighbors ofi

in the policy graph (i.e.,EX(i,Gp.q)) are calculated by checking the routing policy ofi and its neighbors’

in G.q, the set of edges{〈i, j〉 : j ∈ EX(i,Gp.q)} is added toEp.q, and every node inEX(i,Gp.q) that

has not been visited is added to the list of nodes to be visited(see Figure 6 for detailed description of the

algorithm). Since the breadth first graph exploration ofG.q takesO(|V.q|+|E.q|) time, the above procedure

Policy-graph(G.q, d, P.q)
do each j ∈ V.q −→

j.color := white;
od
Q := {d};
Vp.q, Ep.q := ∅, ∅;
do Q 6= ∅ −→

j := Q.head;
Vp.q := Vp.q ∪ {j};
do each i such that (j, i) ∈ E.q −→

if j exports its route to i ∧ i imports routes from j →
Ep.q := Ep.q ∪ {〈j, i〉};
if i.color = white → i.color := black; Enqueue(Q, i) fi

fi
od
Dequeue(Q);

od
return (Vp.q, Ep.q)

Figure 6: Algorithm to compute policy graphGp.q(Vp.q, Ep.q)

to compute policy graph takesO(|V.q| + |E.q|) time too6. This result is formalized in Proposition 1.

As for complexity in computing a policy graph, we have

Lemma 1 (Complexity of computing policy graph) It takesO(|V.q| + |E.q|) time to compute the policy

graphGp.q(Vp.q, Ep.q) at a network stateq.

This is in contrast to the exponential computational complexity for dispute digraph, which is used in

[12] and [22].

Structural property. The structure of an policy graph depends on the network topology and routing policy

adopted at each AS. We analyze them as follows.

Due to historical and commercial reasons, the Internet topology is a hierarchical one with meshed inter-

connections among entities at various tiers [16, 9, 18]. On one hand, different types of ISPs, such as local

ISPs, regional ISPs, national ISPs, and transit (or international) ISPs, with customer-provider relationship

provide network infrastructures to form the Internet, and the resulted Internet takes the form of a hierarchy

of tiers in the sense that networks or ASes of local ISPs attach to those of its regional ISPs, ASes of regional

6In contrast, it takes exponential time to compute the dispute digraph which is used to analyze convergence speed of BGP in
[22].
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ISPs attach those of its national ISPs, and ASes of national ISPs attach to those of transit ISPs. Thus, the

tiers of the Internet hierarchy from lower to higher tiers are ASes of local ISPs, regional ISPs, national ISPs,

and transit ISPs. On the other hand, due to business pressure, ASes of ISPs form a peering relationship

with those of other ISPs at their geographical neighborhoodto provide transit service for one another7, thus

a rich mesh of interconnection at various tiers (i.e., local, regional, national, and transit ISPs) exists [16].

Therefore, the policy graphs for the Internet is a hierarchical one with a rich mesh of interconnection at each

tier of the hierarchy.

Moreover, [18] found that lower tier ISPs tend to possess a higher degree of peering interconnectivity

than higher tier ISPs, which means that the peering-meshes among lower tier ISPs tend to be more con-

nected than those among higher tier ISPs. However, [11] found that the average degree of AS-level Internet

topology is small8 and is between 2.6 and 2.9. Therefore, the average degree of AS is small, and the higher

an AS is in the Internet hierarchy the smaller its degree tends to be. And these properties hold for the policy

graphs of the Internet too.

In terms of routing policy, most ASes today import every route they hear from its neighboring ASes

and do not impose any filtering [18]. Export policy adopted ateach AS depends on its relationship with

its neighboring ASes: an ASi exports to its provider ASes and peering ASes only the set of routes that

either belong toi or are received from the customer ASes ofi; i exports every route it knows to its customer

ASes [19]. Therefore, given the destinationd, the policy graphs of the Internet are directed hierarchical

ones: starting atd, the directed edges go upwards first to reach the provider ASesPI of d, then to provider

ASes ofPI, and so on until reaching the transit ASesT ; then the directed edges go downwards to reach the

customer ASesCT of T , then to the customer ASes ofCT , and so on until reaching the local ASesL; for

the set of ASes that are either direct or indirect providers of d, there are bidirectional edges between peers or

customer-provider pairs; for the set of ASes that are neither direct nor indirect providers ofd, usually there

is no edge between peers and only directed edges from a provider to its customers.

Therefore, the policy graphs of the Internet are directed hierarchical ones with meshed interconnections

at various tiers of the hierarchy, and the average degree of ASes in the meshes of lower tiers tend to be larger

than that of higher tiers. An example 3-tier policy graph is shown in Figure 7.

The above observations are formalized in Proposition 1 as follows.

Proposition 1 (Directed hierarchy of policy graph) The policy graphs of the Internet are directed hierar-

chical ones with meshed interconnections at various tiers of the hierarchy, and the average degree of ASes

in the meshes of lower tiers tend to be larger than that of higher tiers.

7This is usually achieved through Network Access Points (NAPs), which are also referred to as Commercial Internet Exchanges
(CIXs), Metropolitan Area Exchanges (MAEs), or Federal Internet Exchanges (FIXs) according to contexts.

8More specifically, 87% of ASes have degrees between 1 and 3, 9%of ASes have degrees between 4 and 9, 3.1% ASes have
degrees between 10 and 27, and 0.9% of ASes have degrees larger than 28.
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Figure 7: An example 3-tier policy graph

5 Analysis of G-BGP

Given a network topologyG′(V ′, E′) and a setP ′ of routing policies for nodes inV ′, we letL ≡ (∀i : i ∈

V ′ ⇒ LH.i), whereLH.i is defined as

(i = d ⇒ i.AS-path = ∅) ∧

(i 6= d ⇒ ((d ∈ V ′ ⇒ i.AS-path = 〈i.AS,mPref(i)〉) ∧ (d /∈ V ′ ⇒ i.AS-path = ∅)))

where

mPref(i) = the highest ranked candidate route ofi.

Then, every state inL is a state where each node inV ′ has chosen its highest-ranked candidate route, and

every state inL is a stable state of G-BGP where no action of G-BGP is enabled.

In the presence of the faults discussed in Section 2, three events can occur in a network:Tdown, Tup, and

Tchange. Tdown occurs when the destinationd fail-stops (includingd withdrawing its address prefix);Tup

occurs whend newly joins the network; andTchange occurs whend is up, but some node needs to change

route as a result of some fault. Using policy graphs, we comparatively study the convergence properties (i.e.,

stability and speed) of G-BGP and BGP under different event or fault scenarios; we also study the impact of

route ranking policies.

5.1 Convergence stability

In the case ofTdown, we have

Lemma 2 (Convergence stability afterTdown) WhenTdown occurs, for both the SPF and non-SPF poli-

cies, G-BGP converges with no fault-agnostic or distribution-inherent instability;9 Both fault-agnostic and

distribution-inherent instability can occur during BGP convergence.

9The fact that G-BGP converges is proved in Section 5.2.
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Proof: WhenTdown occurs, there are several different cases: whetherd announces that it will fail-stop

before it actually fail-stops, and whetherd has one or more than one export neighbors before it fail-stops.

We call the case ofTdown whered withdraws its address prefix or announces that it will fail-stop before it

actually fail-stops asgracefulTdown, and the case ofTdown whered does not announce that it will fail-stop

before it fail-stops asgrossTdown.

We analyze the convergence property of G-BGP as follows.

• In the case of gracefulTdown, a point of AS-failure〈d〉 will be propagated along UPDATE messages.

When an ASi receives an UPDATE message with the point of AS-failure〈d〉, i will add 〈d〉 to

i.poas by executing actionA3. Since the current route and all the candidate routes ofi included, the

execution of actionA4 at i will invalidate the current route and every candidate routeof i. Therefore,

after an ASi receives an UPDATE message,i will withdraw its route tod and seti.AS-path to ∅ by

executing actionA6. Moreover, wheni withdraws its route by actionA6, i also propagates the point

of AS-failure〈d〉 to its export neighbors.

The above situation happens to every ASi in the network. Therefore, all the UPDATE messages that

are propagated in the network afterTdown are withdrawal-UPDATE messages. Therefore, every AS

will only change (i.e., withdraw) its route only once beforethe network converges. Thus no fault-

agnostic or distribution-inherent instability can occur during G-BGP convergence.

• In the case of grossTdown whered only has one export neighbor, a point of channel-failure〈〈d, d′〉, timePassed〉

will be propagated, whered′ is the only export neighbor ofd. For every ASi in the network, its current

route and candidate routes must all go through link〈d, d′〉. Therefore, the convergence behavior of

G-BGP in this case is the same as that in gracefulTdown, and no fault-agnostic or distribution-inherent

instability can occur during G-BGP convergence.

• In the case of grossTdown whered has multiple export neighborsd′0, . . . , d
′
m, multiple points of

channel-failures〈〈d, d′v〉, timePassed〉 (v = 0, . . . ,m) will be propagated. For every ASi, its current

route and candidate routes must go through link〈d, d′v〉 for somev ∈ [0,m]. Wheni receives an

UPDATE message, it will add the point(s) of channel-failures and point(s) of route-changes carried

in the UPDATE message toi.pocf and i.pocw respectively by executing actionA3. Then, after

executing actionA4, if there is still some candidate routerj that has not been invalidated and goes

through link〈d, d′j〉, i will enter the process of resolving uncertainty between link-failure and node-

failure to check whether link〈d, d′j〉 has fail-stopped too. During the waiting period of uncertainty

resolution ati, the point of channel-failure〈〈d, d′j〉, timePassed〉 will reachi and be added toi.pocf ,

after whichi will invalidate routerj by executing actionA4. This process will continue until there is

no valid candidate route fori any more, at which pointi will withdraw its current route and propagates

the set of points of channel-failures it has learned to its export neighbors.

The above situation happens to every ASi in the network. Therefore, all the UPDATE messages that

are propagated in the network afterTdown are withdrawal-UPDATE messages. Therefore, every AS

will only change (i.e., withdraw) its route only once beforethe network converges. Thus no fault-

agnostic or distribution-inherent instability can occur during G-BGP convergence.

In BGP, both fault-agnostic and distribution-inherent instability may happen in BGP afterTdown, as

discussed in Section 3.1 and [17].
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2

In the case ofTup, we have

Lemma 3 (Convergence stability afterTup) WhenTup occurs,

(i) For the SPF policy, G-BGP and BGP converges with no fault-agnostic instability. Furthermore, if

message passing delay is proportional to the number of hops amessage passes, G-BGP and BGP

converge with no distribution-inherent instability.

(ii) For non-SPF policies, G-BGP converges with no fault-agnostic instability, but fault-agnostic instabil-

ity can occur in BGP; distribution-inherent instability may happen in both G-BGP and BGP.

Proof: In the case of the SPF policy, whenever an ASi changes its route in G-BGP or BGP, it changes

to a shorter route. Therefore, ifi changes its route from that learned from one of its import neighbor j

to that learned from another import neighborj′, no matter the current knowledge ofi with respect to the

actual AS-path of the route viaj′ is correct or not, the route viaj′ will always be shorter than that viaj

unless distribution-inherent instability occurs ati. Thus, if distribution-inherent instability does not occur at

i, the routei chooses in the final stable network state will be viaj′ instead ofj. Therefore, fault-agnostic

instability will not happened in G-BGP and BGP. Furthermore, if message passing delay is proportional to

the number of hops a message has passed, then an ASi always learns the shortest path fromd to i first.

Therefore an ASi will not change its route anymore once it has learned a route which is a shortest path

route tod in the case of the SPF policy. Thus, there is no instability incurred in both G-BGP and BGP in

this case.

We prove that, if message passing delay is not proportional to the number of hops a message has passed,

distribution-inherent instability can happen in BGP and G-BGP in the case of the SPF policy as follows.

We consider two ASesi and i′, with i being farther away fromd than i′ is. Supposei′ can reachd via

two routesr1 andr2, with r2 longer thanr1. However,i learns router2 earlier thanr1 due to different

delay along different routes. Later,i learns from one of its import neighborj a route that containsr2 and

sets[i, j, . . . , i′, r2] as its route tod. After this, i′ learnsr1 and changes its route tor1, and thus the kind

of distribution-inherent instability where the adopted route is valid but transient happens at this moment.

Suppose thati learns another router3 via another import neighborj′ beforei learns the route change ati′,

and thatr3 is shorter than[i, j, . . . , i′, r2] but longer than[i, j, . . . , i′, r1]. Theni will change its route tor3

even thoughr3 is longer than[i, j, . . . , i′, r1]. Later,j informs i of the newly learned route[i, j, . . . , i′, r1],

and i changes its route again to[i, j, . . . , i′, r1] that go through the import neighborj. Thus the kind of

distribution-inherent instability where the adopted route is invalid happens here.

The kind of distribution-inherent instability where the adopted route is valid but transient is even more

likely to happen in G-BGP and BGP in the case of non-SPF policythan in the case of the SPF policy, because

more preferred route of an AS is more likely to be formed laterthan some less preferred route of the AS in the

case of non-SPF policy. Since the kind of distribution-inherent instability where the adopted route is invalid

is caused by fault-agnostic instability and the kind of distribution-inherent instability where the adopted

route is valid but transient, the increase in the likelihoodof the kind of distribution-inherent instability

where the adopted route is valid but transient also increases the likelihood of the kind of distribution-inherent

instability where the adopted route is invalid.
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In G-BGP, whenever the state of an ASi changes (e.g., changing route, associated links fail-stopping),

information about the state change (e.g., point of AS-failure, point of channel-failure, point of channel-

withdrawal, and point of node-join) will be piggybacked in the first message that is sent out fromi. There-

fore, when another ASj changes its state due to the state change ati, j knows the exact change ati or

can resolve certain uncertainties, and will not use information that is invalidated by the state change ati.

Thus fault-agnostic instability is avoided in G-BGP. However, this is not the case in BGP. One example is

as follows. Suppose there exists an ASi that has two import neighborsj andj′ whose routes go through the

same ASk other thani, j, andj′. At certain momentt0, i chooses the route learned fromj as its route tod;

sometime later,k changes its route andj changes the route it advertised toi accordingly, theni may choose

the route it previously learned fromj′ as its new route in BGP, and fault-agnostic instability is incurred.

(This will not happen in G-BGP because information about thechange atk will be propagated toi andi

will learn that the route it previously received fromj′ is already invalid.)

2

In the case ofTchange, we have

Lemma 4 (Convergence stability afterTchange) WhenTchange occurs, for both the SPF and non-SPF

policies, G-BGP converges with no fault-agnostic instability, but fault-agnostic instability can occur in

BGP convergence; distribution-inherent instability can occur in G-BGP and BGP.

Proof: In G-BGP, whenever the state of an ASi changes (e.g., changing route, associated links fail-

stopping), information about the state change (e.g., pointof AS-failure, point of channel-failure, point of

channel-withdrawal, and point of node-join) will be piggybacked in the first message that is sent out from

i. Therefore, when another ASj changes its state due to the state change ati, j knows the exact change at

i or can resolve certain uncertainties, and will not use information that is invalidated by the state change at

i. Thus fault-agnostic instability is avoided in G-BGP. However, this is not the case in BGP, as shown in the

proof for Theorem 3.

2

Lemmas 2, 3, and 4 imply

Theorem 2 (fault-agnostic-instability freedom in G-BGP) When any of the eventsTdown, Tup, andTchange

occurs, G-BGP converges with no fault-agnostic instability; this holds whether or not the SPF (or some non-

SPF) route ranking policy is used.

Theorem 3 (Fault-agnostic instability in BGP) Fault-agnostic instability can occur during BGP conver-

gence in both the event ofTdown and Tchange, whether or not the SPF (or some non-SPF) route ranking

policy is used; during BGP convergence in the event ofTup, fault-agnostic instability can occur if some

non-SPF policy is used, but fault-agnostic instability does not occur if the SPF policy is used.

By Theorems 2 and 3, we see that G-BGP eliminates all the fault-agnostic instability that can occur dur-

ing BGP convergence. The elimination of fault-agnostic instability is able to avoid the type of delayed BGP

convergence that is due to the mis-interaction between BGP convergence instability and BGP route flap

damping. Moreover, by eliminating fault-agnostic instability, G-BGP improves BGP convergence speed
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substantially and achieves asymptotically optimal convergence speed in several scenarios where BGP con-

vergence is severely delayed (such as when a node or a link fail-stops), as shown later in this section and by

simulation in Section 6.

Furthermore, in the event ofTdown where BGP exhibits its worst instability, the elimination of fault-

agnostic instability in G-BGP also prevents distribution-inherent instability from happening, as shown by

Theorem 4 (Distribution-inherent-instability freedom in G-BGP after Tdown) G-BGP converges with

no distribution-inherent instability in the event ofTdown, whether or not the SPF (or some non-SPF) route

ranking policy is used.

Proof: This claim holds as a result of Lemma 2.

2

We summarize the stability during G-BGP and BGP convergencein Table 1.

Stability SPF Policy Non-SPF Policy
FAI DII FAI DII

Tdown G-BGP No No No No
BGP Possible Possible Possible Possible

Tup G-BGP No Possible No Possible
BGP No Possible Possible Possible

Tchange G-BGP No Possible No Possible
BGP Possible Possible Possible Possible

Table 1: Stability during G-BGP and BGP convergence. In the table, FAI and DII denote fault-agnostic and
distribution-inherent instability respectively.

5.2 Convergence speed

For convenience, we define the following notations:

R(i, V, q) : maxj∈V dist(i, j, q), wheredist(i, j, q) denotes the number of inter-AS hops in the shortest
path from nodei to j in the policy graphGp.q, and each inter-AS hop in a pathL in Gp.q is
a maximal-length path segment inL that consists of nodes from the same AS;

D(q) : maxj∈V.q length(j.AS-path.q), wherelength(j.AS-path.q) denotes the number of inter-
AS hops in the routej.AS-path.q;

LP(V, q) : the number of inter-AS hops in the longest simple path in the “subgraph ofGp.q on the set
V of nodes”;

hops(i,J , q) : the number of inter-AS hops between ASesi.AS andJ in the routei.AS-path.q.

We first analyze the convergence speed of G-BGP and BGP in the event of Tdown, for both the SPF

route ranking policy and non-SPF policies. In the event ofTup or Tchange, distribution-inherent instability

can happen during G-BGP convergence, which makes it difficult to asymptotically compare G-BGP and

BGP convergence speed when non-SPF policies are used. Therefore, for the scenario where eventTup or

Tchange occurs, we only analyze the case when the SPF policy is used; we study the cases when non-SPF

policies are used via simulation in Section 6.
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In the event ofTdown, we have

Theorem 5 (Convergence speed afterTdown) When a network is at a stateq0,

(i) If d fail-stops gracefully, or ifd fail-stops grossly when it has a single neighboring AS, G-BGP con-

verges withinθ(R(i, V.q0, q0)) time, which is asymptotically optimal; this holds whether or not the

SPF (or some non-SPF) route ranking policy is used;

If d fail-stops grossly when it has multiple neighboring ASes, G-BGP converges withinO(D(q0))

time, whether or not the SPF (or some non-SPF) policy is used;

(ii) If d fail-stops, it takes BGP up toθ(LP(V.q0, q0)) time to converge when the SPF policy is used and

O(n!) time when non-SPF policy is used.

(iii) R(i, V.q0, q0) ≤ D(q0) ≤ LP(V.q0, q0).

Proof: In the case ofTdown, there are several sub-cases: whetherd gracefully or grossly fail-stops, and

whetherd has one or more than one export neighbors before it fail-stops. We call the case ofTdown where

d gracefully fail-stops asgracefulTdown, and the case ofTdown whered grossly fail-stops asgrossTdown.

(Note: given that intra-AS coordination is quick and the coordination time is bounded from above by

certain small constant, and that we are interested in inter-AS coordination in inter-AS routing, the analysis

of the paper focuses at the level of inter-AS coordination. Thus, for conciseness, the unit of consideration in

our analysis is by an AS instead of a node. )

We first prove the convergence properties of G-BGP. As discussed in the proof for Theorem 2, all the

UPDATE messages are withdrawal-UPDATE messages in G-BGP whenTdown occurs. Therefore, once an

AS i withdraws its route at some time, it will not change its routeagain. Thus, to deduce the time taken for

G-BGP to converge to a state inL, we only need to deduce the time taken for the last AS to withdraw its

route tod afterd fail-stops.

• In the case of grossTdown whered has a single export neighbord′, d′ detects the fail-stop of link

〈d, d′〉 and withdraws its route tod sinced′ has no other candidate route tod. Then,d′ sends out an

point of channel-failure〈〈d, d′〉, timePassed〉 which is piggybacked in every UPDATE message. An

AS i other thand′ withdraws its route once it receives an UPDATE message, since the current route

of i and all its candidate routes go through link〈d, d′〉. Then, the time taken for G-BGP to converge

in this case depends on the time taken for the last AS to first receive an UPDATE message.

If the number of hops in the shortest path fromd to an ASi in the policy graphGp.q0 is li andli ≥ 2

(note: if li ≤ 1, theni is eitherd or d′ that does not receive any UPDATE message), then the time

taken fori to first receive an UPDATE message isθ(li). We prove this claim by induction onli as

follows:

– Base: the claim trivially holds whenli = 2, since every AS withli being 2 is an export neighbor

of d′.

– Hypothesis: the claim holds whenli = l.

– Induction: for every ASi with li beingl + 1, it must have an import neighborj with lj beingl.

By hypothesis,j must have withdrawn its route and sends out an UPDATE messageincluding

the point of channel-failure withinθ(l) time. Sincei will receive the UPDATE message within

Ud time after the message is sent out fromj, i will receive the UPDATE message withinθ(l+1),

i.e.,θ(li), time. Therefore, the claim holds whenli = l + 1.
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Since the maximum hops in the shortest path fromd to an ASi in the policy graphGp.q0 isR(i, V.q0, q0),

the time taken for G-BGP to converge in this case isθ(R(i, V.q0, q0)).

Moreover, given that it takesθ(R(i, V.q0, q0)) time for any information to travel fromd to the node

that is farthest fromd, θ(R(i, V.q0, q0)) is the lower bound on the convergence time of any stateful

routing protocols in the event ofTdown. Thusθ(R(i, V.q0, q0)) is optimal convergence time achiev-

able, and G-BGP convergence in an asymptotically optimal manner.

• In the case of gracefulTdown, a point of AS-failure〈d〉 is piggybacked in every UPDATE message.

An AS i other thand and the export neighbors ofd withdraws its route once it receives an UPDATE

message, since the current route ofi and all its candidate routes go through AS〈d〉. Then, the time

taken for G-BGP to converge in this case depends on the time taken for the last AS to first receive

an UPDATE message. This is the same as in the case of grossTdown whered has a single export

neighbord′. Thus, G-BGP converges withinθ(R(i, V.q0, q0)) time in this case too.

• In the case of grossTdown whered has multiple export neighbors, ifhops(d, i) = l′i for an ASi and

l′i ≥ 1 (note: if li < 0, theni is d), then the time taken fori to withdraw its route isO(l′i). We prove

this claim by induction onl′i as follows:

– Base: this claim holds whenl′i = 1, since an ASi with l′i being 1 must be an export neighbor

of d andi.d.ML = 1, which means that actionsA2 andA4 are executed withi.suspect being

false within constant time, thusO(1) time.

– Hypothesis: the claim holds whenl′i ≤ l.

– Induction: for an ASi with l′i = l+1, each of its import neighborsj must be such thatl′j ≤ l and

j withdraws its route as well as sends out an withdrawal-UPDATE message withinO(l) time.

After all of its import neighbors send out their withdrawal-UPDATE messages,i will execute

actionsA3 andA4 within Ud and thusO(1) constant time, which means thati withdraws its

route withinO(l) + O(1) = O(l + 1) time.

Therefore, the claim holds whenl′i = l + 1.

Thus, G-BGP converges withinO(D(q0)) time in both the case of the SPF policy and the case of

non-SPF policy.

More tightly, we prove that G-BGP converges withinO(max{hops(d, i)+Dist(i) : actionA5 is executed ati})

time afterTdown as follows:

– For any ASi that executes actionA5 and thus enters the process of resolving uncertainty between

link failure and node failure, it withdraws its route withinO(hops(d, i)) time. This claim can

be proved by induction oni.d.ML in the same way we prove that the time taken for an ASj to

withdraw its route isO(l′j) in G-BGP if the maximum number of hops in any simple path from

d to j in Gp.d.q0 is l′j. For clarity, we skip the proof here.

– For an ASj where actionA5 is not executed during G-BGP convergence, leti be the closest

AS to j that has executed actionA5, and letdist(i, j) be the number of hops in the shortest

path fromi to j in Gp.d.q0. Then,j will withdraw its route no later thanθ(dist(i, j)) time

after i withdraws its route, since an withdrawal-UPDATE message will propagate toj no later

thanθ(dist(i, j)) time afteri withdraws its route. Therefore,j will withdraw its route within

O(hops(d, i) + dist(i, j)) time afterTdown occurs.
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Therefore, all the ASes in the network will withdraw their routes withinO(max{hops(d, i)+Dist(i) :

actionA5 is executed ati}) time afterTdown occurs.

On the other hand, instead of converging withinθ(R(i, V.q0, q0)) or O(D(q0)) time, BGP is proved to

take up toθ(LP(V.q0, q0)) (thusO(LP(V.q0, q0))) time to converge afterTdown [18].

By the definitions ofR(i, V.q0, q0),D(q0), andLP(V.q0, q0), it is straightforward thatθ(R(i, V.q0, q0)) ≤

O(D(q0) ≤ LP(V.q0, q0).

2

In the event ofTup, we have

Theorem 6 (Convergence speed afterTup) When the SPF route ranking policy is used, G-BGP as well as

BGP converges to a stable stateq′0 within θ(R(i, V.q′0, q
′
0)) time in the event ofTup, which is asymptotically

optimal.

Proof: [18] and [22] have proved that BGP converges from the initial stateq0 to a stateq′0 in L within

θ(R(i, V.q′0, q
′
0)) time in the case of the SPF policy. This convergence result ofBGP also applies to G-BGP

since G-BGP behaves the same as BGP except that G-BGP is more conservative when changing routes such

that fault-agnostic instability can be reduced in G-BGP. More formally, the real-time dispute digraph [22]

for a networkG(V,E, P ) in BGP is the same as that in G-BGP, therefore, the convergence result of BGP

also applies to G-BGP.

Moreover, it is straightforward that the lower bound on convergence time in the event ofTup is θ(D(q′0)),

since it takes at leastθ(D(q′0)) time to form the longest route used by a node after convergence. When the

SPF route ranking policy is used,D(q′0) equals toR(i, V.q′0, q
′
0). Therefore, the lower bound on convergence

time is alsoθ(R(i, V.q′0, q
′
0)) when the SPF policy is used. Thus, G-BGP and BGP are asymptotically

optimal in convergence time in the event ofTup.

2

In the event ofTchange, not every node needs to change route. A node isaffectedby a faultf if the node

changes route at least once during convergence afterf occurs; the set of all the nodes that are affected by a

fault f is called theaffectation region off . Then, we have

Lemma 5 (Minimized affectation region for the SPF policy) When the SPF route ranking policy is used,

the affectation region in G-BGP as well as BGP is minimal in the event ofTchange.

Proof: We analyze the affectation region in both G-BGP and BGP under different fault scenarios when the

SPF route ranking policy is used:

• In the case of an AS fail-stop, a link fail-stop, or the routing policy change at an AS, those ASes whose

routes go through the fail-stopped AS, fail-stopped link, or withdrawn links beforeTchange have to

change their routes since the AS or link(s) is(are) not up anymore. Therefore, these ASes compose

the minimum affectation setMAS.

The route of every ASi that is not in setMAS does not go through the fail-stopped AS, fail-stopped

link, or withdrawn link(s) beforeTchange. i will not change its route afterTchange since no AS in
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MAS can offeri an shorter route than whati has beforeTchange. Therefore,i will not be affected

during convergence of G-BGP and BGP.

Therefore, the affectation region in both G-BGP and BGP is minimized to be the minimum affectation

set in the case of the SPF policy.

• In the case of an AS or a link join, those ASes whose routes can be shortened by the joining of the new

AS or link have to change their routes, and these ASes composethe minimum affectation setMAS.

For every ASi whose route cannot be shortened by the joining of the new AS orlink will be change

its route, since no import neighbor ofi can offeri a shorter route. Therefore, the affectation region in

both G-BGP and BGP is minimized in this case too.

2

For the case where a network converges from a stateq0 to another stateq1, we define the following
notations:

AR(q0, q1) : the set of nodes inV.q0 that change route fromq0 to q1,
i.e.,{k : k ∈ V.q0 ∧ k.AS-path.q0 6= k.AS-path.q1};

pt(k, q0, q1) : the node inAR(q0, q1) whose AS is in the routek.AS-path.q1 and whose next-hop
does not change route fromq0 to q1;

Tri(k, I, q0, q1) : hops(pt(k, q0, q1), I, q0) + hops(k, pt(k, q0, q1).AS, q1) for a nodek in AR(q0, q1).

Then, we have

Theorem 7 (Convergence speed afterTchange) When a network is at a stateq0 and when the SPF route

ranking policy is used,

(i) If a node in an ASI or a link associated with the node fail-stops, or if the routing policies ofI change,

G-BGP converges to a stable stateq1 within θ(maxk∈V.q1∧k∈AR(q0,q1) Tri(k,I, q0, q1)) time, which

is asymptotically optimal; it takes BGP up toθ(LP(AR(q0, q1), q0)) time to converge in this case,

andLP(AR(q0, q1), q0) ≥ maxk∈V.q1∧k∈AR(q0,q1) Tri(k,I, q0, q1);

(ii) If a node i or a link associated withi joins, G-BGP as well as BGP converges to a stable stateq1

within θ(R(i, AR(q0, q1), q1)) time, which is asymptotically optimal.

Proof: To analyze the convergence time of G-BGP and BGP, we only need to compute the longest possible

time taken for an AS to converge to its new state inL. For convenience, we letk′ = pt(k, q0, q1).

• When the cause for theTchange is a graceful node fail-stop, a gross node fail-stop or a linkfail-stop

where the fail-stopped or suspected nodei has a single export neighbor, we prove the claim by proving

the fact that, for every affected ASk, it takesk θ(Tri(k,I, q0, q1)) time to converge to its new state

in L. We achieve this by induction onhops(k, k′.AS, q1).

– Base: if hops(k, k′.AS, q1) = 0 for an AS k, then the new route ofk after Tchange does

not go through any affected AS or there is no new route fork. Therefore, the time taken

for k to converge to its new state inL is equal to the time taken for the point of AS-failure

(in the case of graceful node fail-stop), the point of channel-failure or the point of segment-

withdrawal (in the case of gross node fail-stop with a singleexport-neighbor) to reachk, which
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is θ(Tri(k,I, q0, q1)) since the number of hops betweeni andk is θ(Tri(k,I, q0, q1)) when

hops(k, k′.AS, q1) = 0, and there is no uncertainty to resolve and thus no waiting atASes

betweeni andk in the route ofk beforeTchange. Thus, the claim holds for every ASk with

hops(k, k′.AS, q1) = 0.

– Hypothesis: the claim holds for every ASk with hops(k, k′.AS, q1) = h (h ≥ 0).

– Induction: for everyk with hops(k, k′.AS, q1) = h+1 (h ≥ 0), it must have an import neighbor

k′′ with hops(k, k′.AS, q1) = h + 1. By hypothesis,k′′ must have converged to its new state in

L within θ(Tri(k′′,I)) time. Within constant time afterk′′ converges to its new state inL, an

UPDATE message with the attached point of AS-failure or point of channel-failure will reach

k from k′′, at which pointk learns its new route since there no need to resolve any uncertainty

in the case of graceful AS fail-stop or gross fail-stop with asingle export neighbor. Thus,k

converges to its new state inL within θ(Tri(k′′,I) + 1) time, that is,θ(Tri(k,I, q0, q1) time

sinceTri(k,I, q0, q1) = Tri(k′′,I) + 1.

When the SPF route ranking policy is used, the minimum time required for a nodej to converge is pro-

portional toTri(j). Thus, the lower bound on the convergence time after the fault is θ(maxj{Tri(j) :

j ∈ V.q1 ∧ j.AS-path.q1 6= j.AS-path.q0}). Therefore, G-BGP converges with an asymptotically

optimal speed.

In BGP, when an ASi fail-stops, the set of ASes whose routes go throughi have to change their

routes. During convergence, fault-agnostic instability can be incurred and invalid route be explored.

Therefore, in the worst case the time taken for BGP to converge is proportional to the length of the

longest invalid route that may be explored [17, 18, 22]. In the case ofTchange, the length of the longest

invalid that may be explored is the number of hopsLP({k : k ∈ V.q0 ∧ k.AS-path.q1 6= k.AS-

path.q0}, q0) in the longest simple path in the subgraph of the policy graph(after faults) on the set

of ASes that are affected (i.e., the affectation region). Therefore, it takes BGPθ(LP({k : k ∈

V.q0 ∧ k.AS-path.q1 6= k.AS-path.q0}, q0)) time to converge afterTchange in worst cases such as

when every affected AS has no route to reachd anymore or when the alternate route of the affected

ASes are very long. Thus, it takes BGPO(LP({k : k ∈ V.q0∧k.AS-path.q1 6= k.AS-path.q0}, q0))

time to converge afterTchange.

• When the cause for theTchange is the routing policy change at an ASi, there are two cases:i removes

some of its import neighbors ori removes some of its export neighbors.10

If i removes some of its import neighbors and the policy change does lead to an eventTchange, then

the current linke associated withi that i uses in forwarding traffic tod is withdrawn byi too. Then a

point of channel-withdrawal with sequence number ofi is propagated out fromi to every other ASes

whose route go throughi or e beforeTchange. The convergence behavior of G-BGP in this case is the

same as that in the case of gross AS fail-stop or a link fail-stop where the fail-stopped or suspected

AS has a single export-neighbor.

If i removes some of its export neighbors and results in an eventTchange, then a set of points of

channel-withdrawal for every link withdrawn will be propagated out fromi reaches every AS whose

10Since the policy is fixed in the case of the SPF policy, we do notconsider the case where an AS changes from one route to
another route of equal length.
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route goes through one of the withdrawn link beforeTchange. The convergence behavior of G-BGP in

this case is the same as that in the case of graceful AS fail-stop.

Similar to G-BGP, the convergence behavior of BGP in the caseof routing policy change at an AS

is the same as that in the case of graceful AS fail-stop or gross AS fail-stop where the fail-stopped

AS i has a single export neighbor. Therefore, it takes BGP up toθ(LP({k : k ∈ V.q0 ∧ k.AS-

path.q1 6= k.AS-path.q0}, q0)) time to converge after the routing policy change ati.

• When the cause for theTchange is a gross node fail-stop or a link fail-stop where the fail-stopped or

suspected nodei has multiple export neighbors, the convergence behavior ofG-BGP differs from that

in the case of gross AS fail-stop or link fail-stop where the fail-stopped or suspected AS only a single

export neighbor in the sense that some AS(s) relatively close to the fail-stopped or suspected may

need to resolve the uncertainty between link-failure and node-failure by executing actionA5. The

uncertainty resolution procedure can introduce delay in G-BGP convergence if compared to the opti-

mal achievable performance, even though the extra delay is small because the uncertainty is resolved

locally around the fail-stopped AS or link. If an ASj executes actionA5 to resolve uncertainty,

the maximum delayj can introduce to G-BGP convergence isO(hops(j, i.AS, q0) − dist(i, j, q0)),

wheredist(i, j, q0) is the number of hops in the shortest path fromi to j in the policy graphGp.q0.

Since no two ASes where one AS is in the route of the other AS before or afterTchange will both

execute actionA5 to resolve uncertainty with respect to the liveness of an suspected AS, and two

ASes where neither is in the route of the other before or afterTchange execute uncertainty resolu-

tion procedure in parallel, the overall maximum delay that can be introduced to G-BGP convergence

is O(maxj{hops(j, i.AS, q0) − dist(i, j, q0) : A5 is executed at j}). Thus, G-BGP converges

within O(maxk{Tri(k,I, q0, q1) : k is affected} + maxj{hops(j, i.AS, q0) − dist(i, j, q0) :

action A5 is executed at i}) time. Sincehops(j, i.AS, q0)− dist(i, j, q0) ≤ Tri(j) for every node

j who executed actionA5, G-BGP converges withinO(maxk{Tri(k,I, q0, q1) : k is affected})

time, which has been shown to be asymptotically optimal.

In BGP, the probability that fault-agnostic instability occur in the case of a gross AS fail-stop or a

link fail-stop where the fail-stopped or suspected ASi has multiple export neighbors is much higher

than that in the case of a gross AS fail-stop or a link fail-stop where the fail-stopped or suspected

AS i has a single export neighbor. Therefore, it can take BGP up toθ(LP({k : k ∈ V.q0 ∧ k.AS-

path.q1 6= k.AS-path.q0}, q0)) time to converge after a gross AS fail-stop or a link fail-stop where

the fail-stopped or suspected ASi has multiple export neighbors.

• When the cause for theTchange is an AS or a link join, the set of ASes whose distance can be reduced

by the joining of the new AS or link are affected, and only these ASes are affected in the case of the

SPF policy. Therefore, the time taken for G-BGP and BGP to converge equals to the maximum time

taken for an affected AS (i.e., some of whose nodes change route when the network converges from

q0 to q1) to change its route to a shorter one which goes through the newly joined AS or link. The

convergence behavior of G-BGP and BGP in this case is the sameas that in the case ofTup where the

destination is the newly joined ASi or the endpoint of the joining link that is in the route of the other

endpoint, and the ASes in the network is the set of affected ASes. By Theorem 6, it takes G-BGP and

BGPθ(R(i, V.q0, q0)i) time to converge, which is asymptotically optimal.

2
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By Theorems 5, 6, and 7, we see that G-BGP either achieves asymptotically optimal convergence speed

or asymptotically improves the convergence speed of BGP in several scenarios where BGP exhibits delayed

convergence (such as when a node or a link fail-stops). By Theorem 3, Lemma 5, and Theorem 7, we

observe that, when a node or a link fail-stops or when an AS changes routing policies, fault-agnostic insta-

bility prevents BGP from converging at an asymptotically optimal speed (as does G-BGP), even though the

affectation region is also minimal in BGP when the SPF route ranking policy is used.

On the other hand, when the SPF policy is used (as is the case inmost ASes in the Internet), BGP

converges at an asymptotically optimal speed when a node or alink joins. This conforms with our simulation

results (as shown in Section 6) and the experimental observations [17, 18, 20] that BGP does not experience

much delay in convergence when a node or a link joins.

We summarize the convergence speed of G-BGP and BGP in Table 2.

Speed the SPF Policy Non-SPF Policy
grossTdown with one ex- G-BGP θ(R(i, V.q0, q0)), optimal same as left

Tdown neighbor, gracefulTdown BGP O(LP(V.q0, q0)) same as left
grossTdown with G-BGP O(D(q0)) same as left
multiple ex-neighbors BGP O(LP(V.q0, q0)) same as left

Tup G-BGP θ(R(i, V.q′0, q
′
0)), optimal ——

BGP θ(R(i, V.q′0, q
′
0)), optimal ——

node or link fail-stop, G-BGP θ(maxk{Tri(k,I, q0, q1) : k is affected}) ——
policy change optimal

Tchange BGP O(LP(AR(q0, q1), q0)) ——
node or link join G-BGP θ(R(i, AR(q0, q1), q1)), optimal ——

BGP θ(R(i, AR(q0, q1), q1)), optimal ——

Table 2: Convergence speed of G-BGP and BGP. In the table,R(i, V.q′0, q
′
0) ≤ D(q0) ≤ LP(V.q0, q0),

andmaxk{Tri(k,I, q0, q1) : k is affected} ≤ LP(AR(q0, q1), q0); optimal in a box means that optimal
convergence speed is achieved in G-BGP or BGP in the corresponding scenario.

6 Simulation results

We implement G-BGP in SSFNet [1], a network simulator which has implemented a variety of standard

Internet protocols such as BGP, OSPF, and TCP. For fidelity ofsimulation, we use realistic Internet-type

topologies [1] to evaluate the convergence properties of G-BGP. To study the impact of network size as well

as route ranking policy, we use networks of size ranging from7 ASes to 115 ASes, and we use both the SPF

route ranking policy and a randomized non-SPF policy where every router is assigned a randomrank(r).

Then, we inject various types of faults (i.e., node fail-stop, node join, and policy change11) into networks to

simulate the events ofTdown, Tup, andTchange. The simulation results are as follows.

Event Tdown. When the destinationd fail-stops, the number of unnecessary route changes duringcon-

vergence and the convergence time of G-BGP as well as BGP are shown in Figures 8 and 9 respectively.

11The impact of link fail-stop and link join is reflected via node fail-stop and node join respectively. Thus we do not simulate
link fail-stop or link join.
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Figure 8: The number of unnecessary route changes after the destinationd fail-stops
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Figure 9: The convergence time after the destinationd fail-stops

We see that G-BGP converges with no unnecessary route changes, as proved in Corollary??. But

there are many unnecessary route changes during BGP convergence, and the number increases quickly as

the network size increases. If we measure convergence stability by the number of route changes during

convergence, G-BGP improves BGP convergence stability by afactor of 29.4 for the network with 115

ASes. We also observe that, as network size increases, the convergence time of G-BGP barely increases,

but the convergence time of BGP increases quickly. For the network with 115 ASes, G-BGP reduces the

convergence time of BGP by a factor of 10.2.

An interesting observation is that, in cases where the network size and the convergence time of BGP

increase (e.g., when the network size increases from 85 ASesto 115 ASes), the convergence time of G-BGP

may even decrease. The reason for this is that, as network size increases, the connectivity may increase,

which reduces the average distance between nodes and thus the G-BGP convergence time. This is in con-

trast to BGP where, as network connectivity increases, the probability of using invalid routes and thus the

convergence time increase.
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Event Tup. When the destinationd joins, the number of unnecessary route changes during convergence

and the convergence time of G-BGP as well as BGP are shown in Figures 10 and 11 respectively.
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Figure 10: The number of unnecessary route changes after thedestinationd joins
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Figure 11: The convergence time after the destinationd joins

We see that, when the SPF policy is used, the number of unnecessary route changes during convergence

and the convergence time of BGP are the same as those of G-BGP,which is not unexpected since, as proved

in Theorems 3 and 6, there is no fault-agnostic instability during BGP convergence and the convergence

speed of BGP is asymptotically optimal in this case. On the other hand, when the randomized non-SPF

policy is used, the number of unnecessary route changes during convergence and the convergence time of

BGP are greater than those of G-BGP.

We also observe unnecessary route changes during G-BGP convergence, which is due to distribution-

inherent instability. However, the time taken for G-BGP to converge is still quite short in spite of the

distribution-inherent instability, which is similar to the observation in [20] that distribution-inherent insta-

bility does not cause long delay in BGP convergence.

Event Tchange when a node fail-stops. When a non-destination node fail-stops, the number of unneces-

sary route changes during convergence and the convergence time of G-BGP as well as BGP are shown in
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Figures 12 and 13 respectively.

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Network size (# of ASs)

N
um

be
r 

of
 u

nn
ec

es
sa

ry
 r

ou
te

 c
ha

ng
es

BGP
G−BGP

(a) SPF policy

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Network size (# of ASs)

N
um

be
r 

of
 u

nn
ec

es
sa

ry
 r

ou
te

 c
ha

ng
es

BGP
G−BGP

(b) Randomized non-SPF pol-
icy

Figure 12: The number of unnecessary route changes after a non-destination node fail-stops
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Figure 13: The convergence time after a non-destination node fail-stops

In this case, the patterns of difference in convergence stability as well as speed between G-BGP and

BGP are similar to those in the event ofTdown.

Event Tchange when a node joins. When a non-destination node joins, the number of unnecessary route

changes during convergence and the convergence time of G-BGP as well as BGP are shown in Figures 14

and 15 respectively.

In this case, the patterns of difference in convergence stability as well as speed between G-BGP and

BGP are similar to those in the event ofTup, and the results conform with Theorem 7.

Event Tchange when an AS changes routing policy.An AS may change its route ranking policy, import

policy, and export policy. However, the effect of changing any of these policies is similar to each other,

i.e., some node changes route. Therefore, we only simulate the case where an AS changes its export policy.

When an AS changes its export policy, the number of unnecessary route changes during convergence and

the convergence time of G-BGP as well as BGP are shown in Figures 16 and 17 respectively.
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Figure 14: The number of unnecessary route changes after a non-destination node joins
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Figure 15: The convergence time after a non-destination node joins
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Figure 16: The number of unnecessary route changes after an AS changes export policy
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Figure 17: The convergence time after an AS changes export policy

We see that the patterns of difference in convergence stability as well as speed between G-BGP and BGP

are similar to those in the case when a non-destination node fail-stops.

7 Discussion

In this section, we discuss implementation and deployment issues for G-BGP. We also discuss approaches

to reducing distribution-inherent instability.

Enhancing intra-AS coordination. G-BGP enhances the intra-AS coordination in BGP, so that each node

i informs the other nodes in its AS of the route ofi itself, the neighboring ASes to whichi has exported its

route, and the neighboring ASes to whichi is connected via an up-link. It is straightforward to implement

this technique if the basic BGP [24] is used, because all the nodes in an AS maintain IBGP sessions with each

other. On the other hand, if route reflection [5] or AS confederation [21] is used, nodes in an AS may not

maintain IBGP sessions with each other. To enable enhanced intra-AS coordination in the latter case, G-BGP

requires that, (i) when route reflection is used, a route reflector provide the required information regarding

nodes within its cluster to nodes outside its cluster, and that, (ii) when AS confederation is used, a nodei

having a BGP session with some node in a neighboring member-AS provide the information regarding nodes

in the member-AS ofi itself. (Interestingly, it has also been proven that letting route reflectors expose more

detailed information about nodes within their clusters solves the problem of persistent route oscillations

caused by certain “route reflection” configurations [4].)

G-BGP in the presence of AS partition. The nodes in an AS are usually connected. However, it is

possible (though rare) that an AS is partitioned due to some severe faults, in which case nodes within the AS

cannot maintain a consistent view of routing. However, a consistent view of routing among nodes within the

same AS is required in G-BGP for the task of generating certain fault information (i.e., a point of channel-

withdrawal, a point of segment-withdrawal, or a point of channel-failure), as well as the task of assigning

sequence numbers to fault information.

To guarantee the correctness of G-BGP in the presence of AS partition, G-BGP can be adapted as

follows: First, whenever a nodei in a partitioned AS would generate a point of channel-withdrawal, a point

of segment-withdrawal, or a point of channel-failure regarding a channel(i.AS,J ) under normal G-BGP
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operation,i generates a point of segment-withdrawal〈∅, S′, i.AS,J , i, t〉 instead, whereS′ is the set of ASes

to whichi has exported its last route; Second, wheneveri would generate a sequence number under normal

G-BGP operation,i also attaches its node-id (e.g., BGP identifier) to signal the fact that the freshness of the

corresponding fault information should be verified on the basis of nodei instead of its ASi.AS.

Encoding fault information. Besides the information used by BGP, G-BGP uses the following fault

information: point of channel-withdrawalPOCW , point of segment-withdrawalPOSW , point of AS-

failurePOAS, point of channel-failurePOCF , and point of node-joinPONJ . Therefore, to implement G-

BGP in a way that allows graceful migration of and interoperability with BGP, one key issue is to incorporate

fault information into the existing BGP message format suchthat G-BGP and BGP can inter-operate.

In BGP [24], an UPDATE message has a variable-length fieldPath Attributeswith a maximum length

of 65,535 bytes. ThePath Attributesfield consists of a sequence of path attributes, such as ASPATH. Each

path attribute is a 3-tuple<attribute type, attribute length, attribute value> of variable length.Attribute

Typeis a two-octet field that consists of theAttribute Flagsoctet followed by theAttribute Type Codeoctet,

where Attribute Flags determine whether an attribute isoptionalor well-knownand whether it istransitiveor

non-transitive. An attribute is optional if it is not required to be recognized by every router, and an attribute

is transitive if it needs to be propagated by every router no matter whether the router recognizes the attribute.

We incorporate thePOCW , POSW , POAS, POCF , andPONJ values into the UPDATE messages

of BGP by defining a new optional transitive path attribute FAULT POINTS with type code8. The Attribute

Value for FAULT POINTS consists of a sequence of fault informationm whose format depends on the type

of fault it conveys:

• If m is a point of channel-withdrawal, then it is a 7-octet field with the first octet being 2, the second

and third octets being the ID of the AS that is one endpoint of the withdrawn link, the fourth and fifth

octets being the ID of the AS that is the other endpoint of the withdrawn link, and the remaining two

octets being the sequence number, i.e.,m =< 0, AS-id,AS-id, sn >;

• If m is a point of segment-withdrawal, then it is a variable-length field with the first octet being1 and

the rest being〈Withdrawn-ASes, Suspected-ASes,AS-id,AS-id,BGP -id, t, sn〉. The fields of

Suspected-ASes andSuspected-ASes are two variable-length fields each of which has two sub-

fields 〈length, data〉 wherelength is a 1-octet field specifying the length ofdata in octets anddata

is a sequence of 2-octets for the IDs of the corresponding ASes; AS-id is a 2-octet field;BGP -id is

a 4-octet field denoting the BGP-identifier of the node that generates the information;t is a 4-octet

field denoting the time in microseconds that has passed sincethe information is generated; andsn

denotes the sequence number of the AS that first sends out thispoint of segment-withdrawal, i.e.,

m =< 1, 〈length, 〈AS-id〉+〉, 〈length, 〈AS-id〉+〉, AS-id,AS-id,BGP -id, t, sn >.

• If m is a point of AS-failure, then it is a 5-octet field with the first octet being 0, the second and third

octets being the ID of the AS that has fail-stopped, and the remaining two octets being the sequence

number, i.e.,m =< 2, AS-id, sn >;

• If m is a point of channel-failure, then it is a 11-octet field withthe first octet being 1, the second and

third octets being the ID of the AS that is suspected, the fourth and fifth octets being the ID of the

AS that detects the link fail-stop, the following four octets being the time in microseconds that has

passed since the detection of the link fail-stop, and the last two octets being the sequence number, i.e.,

m =< 3, AS-id,AS-id, t, sn >;
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• If m is a point of node-join, then it is a variable-length field with the first octet being4 and the

rest being〈Suspected-ASes,BGP -id, t, sn〉. Suspected-ASes is a variable-length field with two

subfields〈length, data〉 where length is a 1-octet field specifying the length ofdata in octets and

data is a sequence of 2-octets for the IDs of the suspected ASes;BGP -id is a 4-octet field;t is a

4-octet field denoting the time in microseconds that has passed since the detection of the AS-join; and

sn denotes the sequence number of the AS that first sends out thispoint of node-join, i.e.,m =<

4, 〈length, 〈AS-id〉+〉, BGP -id, t, sn >.

(Remark: purging-messages and state-clarifiers used in uncertainty-resolution are incorporated, in a

similar way, into BGP UPDATE messages as two optional transitive attributes.)

Incremental deployment of G-BGP. Given that G-BGP uses an optional transitive path attributeto carry

fault information, G-BGP can be incrementally deployed andinter-operate well with BGP. Moreover, even

in the case of partial deployment, the improvement in convergence stability and speed is guaranteed for

those ASes that deploy G-BGP: when a fault occurs, information about the fault will be generated at some

node that deploys G-BGP and is affected by the fault; then thefault information is propagated, along with

BGP UPDATE messages, to other affected nodes; when the faultinformation reaches a node that deploys

G-BGP, the node can use the fault information to avoid fault-agnostic instability and to expedite the network

convergence.

Approaches to reducing distribution-inherent instability. Even though distribution-inherent instability

does not cause much delay in BGP convergence, it may enlarge the affectation regions of faults when non-

SPF route ranking policies are used. As a result, some nodes are affected, even if they do not have to change

routes in the presence of faults. Therefore, the time taken for G-BGP and BGP to converge is increased by

an amount depending on the number of such nodes. One way to ameliorate this issue of enlarged affectation

region is to use the technique of local stabilization [3], which contains the impact of distribution-inherent

instability locally around where it occurs, so that the affectation region is bounded in diameter (only as a

function of the degree of fault perturbation in a network).

Moreover, to reduce type-(i) distribution-inherent instability, one approach is to reduce the delay in infor-

mation sharing by propagating fault information faster; another approach is for nodes to wait conservatively

before changing routes, in hope that fresher information will arrive.

8 Concluding remarks

The stability and speed of BGP convergence are closely related. To expedite BGP convergence and to avoid

mis-interaction between convergence instability and instability-suppression mechanisms (such as route-flap-

damping), we studied the nature of instability during BGP convergence, and we classified the instability into

two categories: fault-agnostic instability and distribution-inherent instability. Distribution-inherent instabil-

ity does not cause severe delay in BGP convergence and provably exists in every distributed routing protocol.

Therefore, we focused on mechanisms to eliminate fault-agnostic instability; and we proved that the elim-

ination of fault-agnostic instability enables G-BGP to asymptotically improve BGP convergence speed and

to converge at an asymptotically optimal speed in several common scenarios where BGP convergence is

severely delayed (such as when a node or a link fail-stops).

In G-BGP, fault-agnostic instability is removed by rejecting invalid routes and obsolete fault information.

And this is enabled by (i) propagating necessary fault information to the affected nodes, (ii) enforcing a total
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order on fault information regarding the same AS, and (iii) resolving uncertainty as to the state of other

ASes. In general, we believe that propagating information about network dynamics (such as faults) and

using better state detection techniques can help the affected nodes adapt their behaviors during convergence,

which is also feasible given today’s high speed networks.

The philosophy of “information hiding” in hierarchical structures is observed in G-BGP in the sense that

it does not expose extra information at the intra-AS level tothe inter-AS level. G-BGP does not introduce

additional information that needs to be maintained (unboundedly in time) between far away nodes, thus

G-BGP does not introduce extra instability in the presence of network dynamics. In general, “information

hiding” helps contain the impact of system dynamics locallyaround where the dynamics occur, and to

guarantee system stability, “information hiding” should be observed as a principle when we design new

protocols or migrate existing protocols [3].

We mainly focused on the issues related to fault-agnostic instability in this paper. In our future work,

we will study in more detail the impact of distribution-inherent instability on BGP convergence speed; we

will also study the fundamental limits on approaches to reducing distribution-inherent instability.
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