Fast Lightweight Outlier Detection in Mixed-Attribute Data

Matthew Eric Otey, Srinivasan Parthasarathy and Amol Ghoting
Department of Computer Science and Engineering
The Ohio State University
Contact: srini@cse.ohio-state.edu

Abstract

In recent years, researchers have proposed many tech-
niques for detecting outliers in data sets. However, most
of these techniques assume that the data set is static and
consists of homogeneous attribute types. However, these
assumptions do not hold for many real-world data sets. To
address these weaknesses, we present a technique for out-
lier detection in dynamic mixed-attribute data. Our tech-
nique is capable of finding outliers in a single pass of the
data, and can do so with low memory requirements. Our
approach uses a combination of classifiers and statistical
tests to discover anomalous values of categorical and con-
tinuous attributes. Our empirical results demonstrate that
while our technique only shows marginal improvements
in detection rates, its execution speed and memory usage
are far better than those of current state-of-the-art outlier
detection techniques.

1 Introduction

A common problem in data mining is that of automat-
ically finding outliers in a database. This is an important
problem, since they can be indicative of bad data or ma-
licious behavior. Examples of bad data include skewed
data values resulting from measurement error, or erro-
neous values resulting from data entry mistakes. A com-
mon example of data indicating malicious behavior occurs
in the field of network traffic analysis, where anomalous
IP packets may indicate either a possible intrusion or at-
tack, or a failure in the network [20]. Efficient detection
of such outliers reduces the risk of making poor decisions
based on erroneous data, and aids in identifying, prevent-
ing, and repairing the effects of malicious or faulty behav-
ior.

Additionally, many data mining algorithms and statisti-
cal analysis techniques may not work well in the presence
of outliers. Outliers may introduce skew or complexity
into models of the data, which make it difficult to fit an
accurate model to the data. Statistical measures of the
data may be skewed because of erroneous values, or the
noise of the outliers may obscure the truly valuable infor-

mation residing in the data set. Accurate, efficient removal
of outliers may greatly enhance the performance of statis-
tical techniques and data mining algorithms [5]. As can be
seen, different domains have different reasons for discov-
ering outliers: They may be noise that we want to remove,
since they obscure the true patterns we wish to discover,
or they may be the very things in the data that we wish to
discover. As has been said before, “One person’s noise is
another person’s signal” [14].

Over the years, a large number of techniques have been
developed for outlier detection. However, real-world data
sets present a range of difficulties that limit the effective-
ness of these techniques. One of these difficulties is that
the data set may be dynamic. Another is that the data set
may contain a mixture of attribute types (i.e. categorical
and continuous attributes).

Many interesting data sets are dynamic or evolving,
meaning that data is constantly being added. In many
cases, the processes generating this new data may be non-
stationary, meaning that a model of the data built at one
point in time may become invalid in the future. An exam-
ple of such a data set is a network data stream. In network
intrusion detection, the models of network traffic and in-
trusion patterns are in a state of constant change, as new
network services, virii, and intrusion techniques are con-
stantly being developed and modified. Since it is too ex-
pensive to rebuild a model of the data for each new data
point, an efficient outlier detection technique must be able
to build an accurate model of the data incrementally.

Also, the features in a data set may be a mixture of
categorical (nominal) and continuous types. Many tech-
niques for outlier detection assume that the data set con-
tains attributes that are either all continuous or all categor-
ical. However, many real-life data sets contain a mixture
of types. For example, a data point representing a network
connection contains continuous attributes (e.g. the dura-
tion of the connection) and categorical attributes (e.g. the
protocol used). Having different attribute types make it
difficult to find relations between two or more attributes
and to define distance or similarity metrics. When pro-
cessing data sets with a mixture of attribute types, many
techniques either discretize the continuous attributes, or

convert the categorical attributes into continuous attributes
by applying some (arbitrary) ordering, which can lead to a
loss in information and an increase in noise. An efficient
outlier detection system needs to quantify the relations be-
tween features of different types.

We have previously proposed an algorithm called
LOADED to discover outliers in dynamic data sets contain-
ing a heterogeneous mixture of attribute types [6]. How-
ever, LOADED suffers from high memory requirements.
In this paper we propose an alternative to LOADED named
RELOADED that drastically reduces the memory require-
ments of LOADED, as well as improves on its scalability,
at a small cost to accuracy.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss previous work in the domain of outlier
detection. In Section 3 we present our hew RELOADED
outlier detection algorithm. In Section 4 we present the
results of our evaluation of RELOADED. Finally in Sec-
tion 5 we draw conclusions about our results and present
directions for future work.

2 Reated Work

There are several approaches to outlier detection. One
approach is that of statistical model-based outlier detec-
tion, where the data is assumed to follow a parametric
(typically univariate) distribution [1]. Such approaches do
not work well in even moderately high-dimensional (mul-
tivariate) spaces, and finding the right model is often a dif-
ficult task in its own right. Simplified probabilistic mod-
els suffer from a high false positive rate [16, 17]. Also,
methods based on computational geometry [10] do not
scale well as the number of dimensions increase. To over-
come these limitations, researchers have turned to various
non-parametric approaches including distance-based ap-
proaches [2, 11], clustering-based approaches [7, 20], and
density-based approaches [4, 19]. Here we consider these
methods in more detail.

An approach for discovering outliers using distance
metrics was first presented by Knorr et al. [12, 13, 11].
They define a point to be a distance outlier if at least a
user-defined fraction of the points in the data set are fur-
ther away than some user-defined minimum distance from
that point. In their experiments, they primarily focus on
data sets containing only continuous attributes.

Related to distance-based methods are methods that
cluster data and find outliers as part of the process of clus-
tering [9]. Points that do not cluster well are labeled as
outliers. This is the approach used by the ADMIT intrusion
detection system [20]. A clear limitation of clustering-
based approaches to outlier detection is that they require
multiple passes to process the data set.

Recently, density-based approaches to outlier detection
have been proposed [4]. In this approach, a local outlier
factor (LOF) is computed for each point. The LOF of a

point is based on the ratios of the local density of the area
around the point and the local densities of its neighbors.
The size of a neighborhood of a point is determined by
the area containing a user-supplied minimum number of
points (Min Pts). A similar technique called Locl (Local
Correlation Integral) is presented in [19]. LocI addresses
the difficulty of choosing values for MinPts inthe LOF-
based technique by using statistical values derived from
the data itself. However, both the LOF'- and LocCI-based
approaches do not scale well with a large number of at-
tributes and data points.

Most distance-based methods for detecting outliers
take time that is at least quadratic in the number of points
in the data set, which may be unacceptable if the data
set is very large or dynamic. Bay and Schwabacher [2]
present a method called orRcA for discovering outliers in
near linear time. The central idea is to perform pruning by
keeping a monotonically decreasing score for each point
in the data set. If the score falls below a certain thresh-
old, then further processing on the data point is not nec-
essary. In the worst case (when there are no outliers), the
algorithm still takes quadratic time, but in practice the al-
gorithm runs very close to linear time. Such an approach
assumes that the data set is randomized, and randomiza-
tion is performed on disk prior to running the algorithm.
ORcA can handle mixed-attribute data sets by using the
Euclidean distance for the continuous attributes and the
Hamming distance for the categorical attributes. However,
the Hamming distance is not always effective as it does not
consider dependencies between categorical attributes.

A comparison of various anomaly detection schemes
is presented in [15]. Its focus is on how well different
schemes perform with respect to detecting network intru-
sions. The authors used the 1998 DARPA network con-
nection data set to perform their evaluation, which is the
basis of the KDDCup 1999 data set used in our experi-
ments [8]. They found detection rates ranging from a low
of 52.63% for a Mahalanobis distance-based approach, to
a high of 84.2% for an approach using support vector ma-
chines.

21 LOADED

The LOADED (Link-based Outlier and Anomaly Detec-
tion in Evolving Data sets) algorithm was first presented
in [6]. It is designed explicitly for dynamic data with
heterogeneous attributes. The central data structure used
to model the data is an augmented lattice of all itemsets
formed from the categorical attributes of the data. Each
node in the lattice is augmented with the support count
of the corresponding itemset, and the correlation matrix
computed from the continuous attributes of all data points
in the data set containing that itemset. Such a data struc-
ture ensures that the dependencies between all attributes,
regardless of type, can be modeled. Each data point is
assigned an anomaly score based on the support of all

its itemsets and how well the continuous attributes agree
with the relevant correlation matrices. The basic algorithm
makes a single pass of the data set, incrementally updating
the lattice for each data point processed. The algorithm is
also able to make a second pass of static data sets, which
allows for better detection rates. Finally, it is also possible
to constrain the size of the lattice to conserve memory, at
a small cost to accuracy.

3 Outlier Detection Algorithm

As mentioned above, the original LOADED algorithm
maintains a complete itemset lattice in memory, where
each node of the lattice is augmented by a correlation or
covariance matrix. Since each matrix is quadratic in size
with respect to the number of continuous attributes, and
the itemset lattice is exponential in size with respect to the
number of categorical attributes, LOADED requires a rela-
tively large amount of memory.

To address this memory consumption issue, we pro-
pose the RELOADED (REduced memory LOADED) algo-
rithm. RELOADED, like LOADED, uses a set of covariance
matrices to discover anomalous values of continuous at-
tributes, but unlike LOADED, it uses a set of classifiers
to detect anomalous values of categorical attributes. To
characterize the relationships between the categorical and
continuous attributes, the covariance matrices are condi-
tioned on the values of the categorical attributes, while the
classifiers take into account the values of the continuous
attributes. We can then define an anomalous data point as
one that has a subset of attributes that take on unusual val-
ues given the values of the other attributes. The details of
our approach are given below.

3.1 Predicting Values of Categorical Attributes

Consider a data point P = (P, P,) where P, is a vec-
tor of m categorical attributes and P, is a vector of n con-
tinuous (quantitative) attributes. To discover anomalous
values of categorical attributes, we use a set of m classi-
fiers to predict the values of each of the m categorical at-
tributes and then compare against their actual values. The
classifier C; used to predict the categorical attribute P,; is
trained on data points of the form P* = (P!, P,), where
P! is the vector of categorical attributes with the ith el-
ement removed. In turn, the value of the ith attribute is
used as the class label. For example, assume that our data
set has four attributes:

P = (N11N27Q11Q2)

where the N’s and @Q’s are respectively the categorical and
continuous attributes. We use two classifiers C'; and C5 to
predict the values of N7 and Ns:

Ni = C1(N2,Q1,Q2)

Ny = Co(N1,Q1,Q2).

If for attribute 7, the predicted value N; disagrees with that
of the true value N;, we increase the value of our anomaly
score for that point. In this work, we utilize Naive Bayes
Classifiers, as they are relatively light-weight classifiers,
and can be trained incrementally, which is useful for our
single-pass approach to anomaly detection. To train each
classifier, we only need to calculate and store the proba-
bility mass function for each attribute, and since we as-
sume that the distributions of the continuous attributes to
be normal, we only need to store the mean and standard
deviation for each continuous attribute.

3.2 Finding Anomalous Values of Continuous
Attributes

Again, consider the data point P = (P., P;). We wish
to discover to what degree P, violates the covariances
conditioned on the values of the categorical attributes.
First, note that P, can be considered as a set of attribute-
value pairs:

P. = {(attributer,valuei) , ..., (attribute,, valuem)}.

Note that LOADED maintains correlation or covariance
matrices for all subsets of all the P, in the data set, which
is the root cause of its high memory consumption problem.
To reduce memory consumption, RELOADED only main-
tains a covariance matrix for each unique attribute-value
pair in the data set. To illustrate the magnitude of this re-
duction, consider a data set with m categorical attributes,
where the ith attribute can take on r; distinct values. In
this case, RELOADED must maintain X!” ,r; covariance
matrices in the worst case, while LOADED must maintain
on the order of 2™II7 ; ; matrices in the worst case.

As stated above, for each unique attribute-value pair in
the data set, there is a covariance matrix C. Let C'¢ be the
covariance matrix for the attribute-value pair d, where C’fj
is the covariance between continuous attributes : and j. To
determine the degree to which P violates C’fj, we calcu-
late the covariance score cg’d for each pair of continuous
attributes ¢ and j of P:

e = (Pyi — pf) x (Pyj —) @)

where 4f and ¢ are the means of continuous attributes
P, and P,; for all points in the data set containing the
attribute-value pair d. We can then compute the violation
score V' of P, as:

VT(Pq) = ZZUT(Pqij) (2

where
. c.P.’d
0 if| o <7

iJ
1 otherwise.

vr (Pyig) = { ®)

Procedure: Reloaded

Input: DataSet, T

Qutput: AnomalyScores

1 For each point P = (P., P;) € DataSet:
2 #WrongPred =0

3 VScore =0

4 For each attribute-value pair d € P.:

5 P! = P. with d removed

6 Train Classi fierq on P,

7 Predy = Classifierq(PL)

8 if (d # Predy)

9 #WrongPred+ +

10 Use P, to update Covarianceq

11 VScore+ =V, (Py)

12 EndFor

13 AnomalyScore[P] = f(#WrongPred,V Score)
14 End For

end

Figure 1. The RELOADED algorithm

The function v, captures how much the covariance score
of a pair of continuous attributes deviates from the covari-
ance learned from the data set. If a pair has a deviation
greater than 7, the violation score is incremented.

3.3 TheRELOADED Algorithm

The RELOADED algorithm for anomaly detection can
be seen in Figure 1. The version presented in the fig-
ure is the single-pass version, which trains the classi-
fiers and computes the covariance matrices incrementally.
Therefore, the decision as to whether a given point is an
anomaly or not is based only on the previously processed
data points. The algorithm operates as follows. For each
point in the data set, and for each categorical attribute d of
that data point, the appropriate classifier is trained. That
classifier, in turn, is used to predict the appropriate value
of d. If the prediction is wrong, the count of incorrect pre-
dictions is incremented. Next, the continuous attributes of
the data point are used to incrementally compute the co-
variance matrix corresponding to the attribute-value pair
d. The cumulative violation score of the data point is
incremented by the result of the V. function (see Equa-
tions 2 and 3).

When all categorical attributes of a data point have
been processed, the anomaly score of the data point is
computed as a function f of the count of incorrect pre-
dictions and the violation score. The function f allows
one to weight anomalies in the categorical and continuous
attributes differently. One can see that if there are m cate-
gorical attributes and n continuous attributes, V'Score can
achieve a maximum value of m x n2, while there can only
be m incorrect predictions of the categorical attribute val-
ues, meaning a simple summation or product of the two
values would be much more sensitive to anomalous con-
tinuous values. In our implementation, we use the follow-

ing function for point P;:

e e B
AnomalyScore[P;] = L + 5 (4)
m mn

where W; is the cumulative number of incorrect predic-
tions of categorical attribute j for previous ¢ data points.
Such a formula ensures that the categorical and contin-
uous attributes have equal weight, and that categorical
attributes with little or no correlation with the other at-
tributes will not adversely affect the anomaly score (such
attributes will have a large value for W;, since they are
often mispredicted). Finally, we must choose a thresh-
old for AnomalyScore in order to discriminate between
the outliers and normal points. We do this by incremen-
tally computing the mean and standard deviation of the
AnomalyScores seen so far, and flag any point as an out-
lier if it is more than s standard deviations greater than the
current mean.

We note that it is straight forward to convert the single-
pass algorithm presented in Figure 1 into a two-pass algo-
rithm for static data. We simply make two passes over the
data set. In the first pass, we omit steps 2-3, 7-9, 11 and
13, while in the second pass we omit steps 6 and 10. We
also note that the version of RELOADED presented above
places equal weight on all previously processed points.
Since older points are usually less relevant than more re-
cent ones, we can implement a sliding-window variant
that periodically instantiates new classifiers and covari-
ance matrices and disposes of older ones.

3.4 Computational and Space Complexity

Consider a data set with NV data points, having m cate-
gorical attributes and n continuous attributes, and let each
of the m categorical attributes take on a maximum of &
distinct values. The processing of a data point has two
stages. In the first stage, m Naive Bayes Classifiers are
run to predict the values of each of the m categorical at-
tributes based on the remaining attributes. If the the classi-
fier’s probability mass functions are stored in hash tables,
the time it takes to train a single classifier on a single point
is O(m+n). For classification of a point, for each of the m
categorical attributes there are at most k classes we must
consider. The time necessary for computing the probabil-
ity of a point belonging to a class is O(m -+ n), and so the
time required to predict the values of each of the m cate-
gorical attributes is O(mk(m + n)) = O(km? 4+ kmn).

In the second stage we must incrementally compute
the covariance matrix for the set of continuous attributes
for each attribute-value pair of a given point. The time
it takes to incrementally compute the covariance matrix
is O(n?) for a given attribute-value pair. Since there are
m such attribute-value pairs, the the total time taken to
compute all covariances is O(mn?). Therefore the up-
per bound on the amount of time taken for each data

point is O(mn? + km? + kmn), which gives an upper
bound of O(N (mn? 4+ km? + kmn)) for the algorithm
running on the entire data set. As can be seen, the al-
gorithm is linear in the number of data points and the
number of categorical attribute values, and quadratic in
the number of categorical and continuous attributes. For
comparison, LOADED has a worst-case execution time of
O(Nn?(km)™) [6]. Like RELOADED, it is linear in the
number of data points and quadratic in the number of con-
tinuous attributes, but it is exponential in the number of
categorical attributes. For comparison, the ORCA outlier
detection algorithm (see Section 2) has a worst-case com-
plexity of O(N?(n + m)), though empirically it appears
to have complexity O(N%(n + m)), where d is between 1
and 2 [2].

In terms of space complexity, RELOADED requires
O(m(km+n)) space to hold the classifiers, and O (kmn?)
space to hold the covariance matrices. The space require-
ments of our algorithm are thus independent of the size
of the data set, and quadratic in the number of continu-
ous and categorical attributes. This compares very favor-
ably to LOADED, which requires O(kmgq?2™) space in the
worst case [6].

4 Experimental Results
41 Setup

We evaluate RELOADED’s performance and compare it
to that of LOADED and ORCA using a machine with a 2.8
GHz Pentium IV processor, and 1.5 GB of memory, run-
ning Mandrake Linux 10.1. Our implementations are in
C++ and are compiled using gcc with O2 optimizations.
Since ORCA finds the top-£ outliers in a data set, we set k&
equal to the number of outliers in the data set. Also, we set
LOADED to use only 4 lattice levels in all experiments. We
compare these algorithms using the following data sets.

4.1.1 KDDCup 1999 Intrusion Detection Data

The 1999 KDDCup data set [8] contains a set of records
that represent connections to a military computer network
where there have been multiple intrusions and attacks.
This data set was obtained from the UCI KDD archive [3].
The training data set has 4,898,430 data instances with
32 continuous attributes and 9 categorical attributes. The
testing data set is smaller and contains several new intru-
sions that were not present in the training data set. Since
these data sets have an unrealistic number of attacks, we
preprocess them such that intrusions constitute 2% of the
data set, and the proportions of different attacks is main-
tained. In network traffic, packets tend to occur in bursts
for some intrusions. Therefore, intrusion instances are not
randomly inserted into the data, but occur in bursts that
are randomly distributed in the data set. The processed
training data set contains 983,561 instances with 10,710

attack instances, while the processed testing data set con-
tains 61,917 instances with 1,314 attack instances.

4.1.2 Adult Data

The Adult data set [3], contains 48,842 data instances with
6 continuous and 8 categorical attributes. Since the al-
gorithms we test differ in their abilities to handle miss-
ing data, we removed all records containing missing data,
leaving 32,561 records. The data was extracted from the
US Census Bureau’s Income data set. Each record con-
tains an individual’s demographic attributes together with
a class label indicating whether the person made more or
less than 50,000 dollars per year.

4.1.3 Synthetic Data

Since there are very few publicly available large mixed-
attribute data sets, we wrote a synthetic data set genera-
tor to produce data to compare performance with exist-
ing algorithms, and with varying data set characteristics.
The generator can produce data sets with a user-supplied
number of continuous attributes and categorical attributes.
The data points are generated according to a user-supplied
multi-modal distribution. The exact details can be found
in [18]. To create actual data sets for our experiments, we
first generate a set of normal points from one distribution,
and then separately generate a much smaller set of outliers
from another distribution. The two sets are then randomly
mixed to produce the final data set. However, we can-
not guarantee that the distribution of the outliers is signifi-
cantly different from that of the normal points. Therefore,
the synthetic data sets are chiefly used for memory and ex-
ecution time scaling experiments. In our experiments, we
consider a synthetic data set containing a 1% mixture of
outliers.

4.2 Detection Rate

Our first set of experiments compares the detection
rates of RELOADED to both LOADED and ORCA. In partic-
ular we compare the detection rate of the two-pass version
of RELOADED to that of the two-pass version of LOADED,
and orRcA. We do not include results for ORCA on the
KDDCup training data set, as it cannot complete in a rea-
sonable amount of time.

Detection rates for all the different algorithms are re-
ported in Table 1 (Note that “n/a” indicates that the at-
tack was not present in that particular data set). Since
the intrusion packets tend to occur in bursts in our data
set, we mark an intrusion as detected if at least one in-
stance in a burst is flagged as an outlier. This is realis-
tic, since a network administrator needs to be alerted only
once that an intrusion is underway. Consequently, the de-
tection (true positive) rates in the table are in terms of the
number of intrusion bursts detected. The highest detection

Attack KDDCup Testing KDDCup Training
RELOADED | LOADED | ORCA || RELOADED | LOADED

Apache2 100% 100% 0% n/a n/a
Back n/a n/a n/a 0% 98%
Buffer Overflow 72% 90% 100% 0% 91%
FTP Write n/a n/a n/a 0% 33%
Guess Password 50% 100% 0% 34% 100%
Imap n/a n/a n/a 50% 100%
IP Sweep 100% 28% 0% 90% 37%
Land 100% 0% 0% 100% 100%
Load Module n/a n/a n/a 0% 100%
Multihop 63% 70% 75% 0% 94%
Named 67% 100% 40% n/a n/a
Neptune n/a n/a n/a 100% 98%
Nmap n/a n/a n/a 64% 91%
Perl n/a n/a n/a 0% 100%
Phf 80% 20% 100% 0% 0%
Pod 96% 100% 18% 81% 54%
Port Sweep 100% 100% 3% 93% 100%
Root Kit n/a n/a n/a 0% 33%
Saint 100% 100% 1% n/a n/a
Satan n/a n/a n/a 80% 72%
Sendmail 17% 50% 50% n/a n/a
Smurf 98% 21% 0% 78% 22%
Snmpgetattack 0% 52% 0% 0% 0%
Spy n/a n/a n/a 0% 100%
Teardrop n/a n/a n/a 40% 30%
Udpstorm 0% 0% 0% n/a n/a
Warez Client n/a n/a n/a 4% 43%
Warez Master n/a n/a n/a 0% 25%
Xlock 50% 50% 66% n/a n/a
Xsnoop 100% 100% 100% n/a n/a

Table 1. Detection rates for the KDDCup data sets. The best detection rates are in bold.

Peak Memory Usage Peak Memory Usage

6 T T T T T T T 100000 T T
RELOADED —+— /,/»‘x RELOADED —+— ~
LOADED ---- LOADED —-¢- I

1e+0f

100000 +

10000 |

10000

1000 J
1000 | 4 //

100

Kilobytes
Kilobytes

L L L L L L L 100 L L L L L L
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Categorical Attributes # Continuous Attributes

Figure 2. Peak memory usage with increasing numbers of (a) categorical and (b) continuous
attributes.

Algorithm KDDCup (Test) | KDDCup (Train) | Adult
RELOADED 623 852 291
LOADED 49,328 595,280 58,316
ORCA 599 na 390

Table 2. Peak heap usage in kilobytes.

rates for each intrusion type are in bold. We report false
positive rates in terms of the number of normal packets
marked as outliers. LOADED has a false positive rate of
0.35%, which is good considering its high detection rates
for many of the intrusions. ORCA has a false positive rate
of 0.43%, but this is not as significant considering its low
detection rates. RELOADED has detection rates compara-
ble to LOADED on many intrusions, and does very well
on a handful of intrusions (e.g. IP sweep and smurf) on
which both LOADED and ORCA do poorly. RELOADED
has higher false positive rates of 1.5% for the testing data
set and 3.6% for the training data set, which is to be ex-
pected since it builds a less intricate model in order to save
on memory.

4.3 Memory Usage

We first compare the memory usage of RELOADED to
that of both LOADED and ORCA when they are run on
the KDDCup and Adult data sets. For RELOADED and
LOADED we use single-pass approaches, as the amount
of memory used does not vary with the number of passes.
We set ORCA to find the top 1,314 outliers in the KDDCup
testing data set and the top 30 outliers in the Adult data set.
As mentioned before, ORCA does not finish in a reason-
able amount of time on the KDDCup training data set. We
measure memory usage by looking at the peak heap us-
age measured in kilobytes. The results can be seen in Ta-
ble 2. Both RELOADED and ORCA consume less than one
megabyte of memory, while LOADED uses two to three or-
ders of magnitude more memory, even when we constrain
the lattice to 4 levels. If we examine the cache perfor-
mance on RELOADED when run on the KDDCup testing
data set, we find that it has 0.0003 L2 cache misses per
instruction, which is indicative of good temporal locality.
This is due to the fact that RELOADED’s model of the data
is compact enough to fit in L2 cache.

Unlike ORCA, LOADED and RELOADED have greater
than linear space complexity with respect to the number
of categorical and continuous attributes, and so we em-
pirically test how their peak memory usage scales as the
number and types of attributes vary. In Figure 2(a) we plot
peak memory usage versus the number of categorical at-
tributes, while setting the number of continuous attributes
equal to 5. It is evident that the memory requirements
of LOADED are very large and grow exponentially as the
number of categorical attributes increase, while those of
RELOADED grow much more slowly. Note that we cannot
run LOADED on data sets with more than 15 categorical

attributes, as our machines do not have sufficient mem-
ory. In Figure 2(b) we set the number of categorical at-
tributes equal to 5 and then vary the number of contin-
uous attributes. The peak memory requirements of both
RELOADED and LOADED increase at about the same rate,
which is expected as they both use space that is quadratic
in the number of continuous attributes. Note that even
for 5 categorical attributes, L OADED requires significantly
more memory to maintain the itemset lattice.

4.4 Execution Time

In our next set of experiments we compare the execu-
tion times of RELOADED, LOADED and ORCA. We use the
single-pass versions of both RELOADED and LOADED. In
our first experiment, we measured the execution times on
the KDDCup testing data set. RELOADED takes 47 sec-
onds to complete, compared to 109 seconds for LOADED
and 303 seconds for ORCA. Next, we examine how execu-
tion time scales with the number of data points processed.
We use synthetic data with 10 categorical and 5 contin-
uous attributes. The results can be seen in Figure 3(a).
For small data sets, ORCA out-performs both LOADED and
RELOADED, but since it does not scale linearly, this advan-
tage is lost for larger data sets. As we expect, the execution
times of both RELOADED and LOADED scale linearly with
the number of points. Note that LOADED does not scale
as well as RELOADED, as it must compare each point with
and update S, (') = 385 covariance matrices and item-
sets, whereas RELOADED need only compare each point
with and update 10 classifiers and covariance matrices.

While ORCA’s time complexity is linear in both
the number of categorical and continuous attributes,
RELOADED’s and LOADED’s complexity is not, and so
in our next two experiments we compare how the execu-
tion of times of both RELOADED and LOADED scale for
data sets with varying numbers of categorical and contin-
uous attributes. In our first experiment, we set the num-
ber of continuous attributes equal to 5 and vary the num-
ber of categorical attributes from 1 to 15. The results
can be seen in Figure 3(b). Though we limit the size of
LOADED’s lattice, its execution time still increases expo-
nentially with the number of categorical attributes, while
that of RELOADED increases quadratically. In our second
experiment we examine the scalability of both algorithms
with respect to the number of continuous attributes. In
this experiment we set the number of categorical attributes
equal to 5 and vary the number of continuous attributes
from 1 to 25. The results can be seen in Figure 3(c).
For smaller numbers of continuous attributes, LOADED
is more efficient than RELOADED, but RELOADED scales
better for larger numbers of continuous attributes.

Seconds

10000

1000

Execution Time

wop

RELOADED —+—

100000

Execution Time

Execution Time

ReLonoeD ——
LOADED --3¢--

10000 |

1000 |

Seconds

100

140

ReLoapED ——
LOADED ----

100 -

Seconds

L L L L
100000 le+06 0 2 4 6

Data Points

1 1
8 10
Categorical Attributes

L L L L L
12 14 16 0 5 10 15 20
Continuous Attributes

Figure 3. Plots of execution time versus (a) data set size; (b) increasing categorical attributes; (c)
increasing continuous attributes.

5 Conclusionsand Future Work

In this paper we have presented a general-purpose out-
lier detection algorithm named REL OADED that is capable
of discovering outliers in dynamic mixed-attribute data.
It is designed to minimize both memory consumption
and execution time. Our experimental results show that
for about the same memory usage, RELOADED outper-
forms ORCA in terms of speed and detection rates. While
RELOADED does not outperform LOADED in terms of de-
tection rates, it does in terms of memory usage and speed.
RELOADED’s low execution times and memory consump-
tion make it a good candidate for embedded outlier detec-
tion systems, such as might be found in network interface
card-based intrusion detection [17], or sensor networks. In
future, we plan to examine alternatives to the Naive Bayes
Classifiers we currently use. Finally, we also plan to look
at a hybrid RELOADED/LOADED approach to increase de-
tection rates.

References

[1]
(2]

(3]
[4]

[5]
(6]

V. Barnett and T. Lewis. Outliersin Satistical Data. John
Wiley, 1994.

S. D. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a sim-
ple pruning rule. In Proc. of 9th annual ACM SSGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 2003.

C. Blake and C. Merz. UCI machine learning repository,
1998.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander.
LOF: ldentifying density-based local outliers. In ACM
S GMOD Intl. Conf. Management of Data, 2000.

D. Gamberger, N. Lavrat, and C. Gro3elj. Experiments
with noise filtering in a medical domain. In ICML, 1999.

A. Ghoting, M. E. Otey, and S. Parthasarathy. Loaded:
Link-based outlier and anomaly detection in evolving data
sets. In Proceedings of the |EEE International Conference
on Data Mining, 2004.

[7]

(8]
9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clus-
tering algorithm for categorical attributes. Information
Systems, 25(5):345-366, 2000.

S. Hettich and S. Bay. KDDCUP 1999 dataset, UCI KDD
archive, 1999.

A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988.

T. Johnson, I. Kwok, and R. T. Ng. Fast computation of 2d
depth contours. In ACM S GKDD, pages 224-228, 1998.

E. Knorr and et al. Distance-based outliers: Algorithms
and applications. VLDB Journal, 2000.

E. Knorr and R. Ng. A unified notion of outliers: Proper-
ties and computation. In ACM SSGKDD, 1997.

E. Knorr and R. Ng. Finding intentional knowledge of
distance-based outliers. In VLDB, 1999.

E. Knorr and R. T. Ng. Algorithms for mining distance-
based outliers in large datasets. In Proc. Int'l Conf. on
VLDB, 1998.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivas-
tava. A comparative study of outlier detection schemes for
network intrusion detection. In SAM Data Mining, 2003.

M. V. Mahoney and P. K. Chan. Learning nonstationary
models of normal network traffic for detecting novel at-
tacks. In ACM SGKDD, 2002.

M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula,
and D. Panda. Towards nic-based intrusion detection. In
Proceedings of 9th annual ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,
2003.

M. E. Otey, A. Ghoting, and S. Parthasarathy. Fast
distributed outlier detection in mixed-attribute data sets.
Technical Report OSU-CISRC-6/05-TR42, Department of
Computer Science and Engineering, The Ohio State Uni-
versity, 2005.

S. Papadimitriou, H. Kitawaga, P. B. Gibbons, and
C. Faloutsos. LOCI: Fast outlier detection using the lo-
cal correlation integral. In ICDE, 2003.

K. Sequeira and M. Zaki. Admit: Anomaly-based data
mining for intrusions. In ACM S GKDD 02, pages 386—
395, 2002.

