
A Multi-Level Approach to SCOP Fold Recognition
Keith Marsolo

Srinivasan Parthasarathy
The Ohio State University

Department of Computer Science and Engineering
Contact: srini@cse.ohio-state.edu

Chris Ding
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

Abstract— The classification of proteins based on their struc-
ture can play an important role in the deduction or discovery
of protein function. However, the relatively low number of
solved protein structures and the unknown relationship between
structure and sequence requires an alternative method of repre-
sentation for classification to be effective. Furthermore, the large
number of potential folds causes problems for many classification
strategies, increasing the likelihood that the classifier will reach a
local optima while trying to distinguish between all of the possible
structural categories. Here we present a hierarchical strategy
for structural classification that first partitions proteins based
on their SCOP class before attempting to assign a protein fold.
Using a well-known dataset derived from the 27 most-populated
SCOP folds and several sequence-based descriptor properties
as input features, we test a number of classification methods,
including Naı̈ve Bayes and Boosted C4.5. Our strategy achieves
an average fold recognition of 74%, which is significantly higher
than the 56-60% previously reported in the literature, indicating
the effectiveness of a multi-level approach.
Keywords: Protein Fold Recognition, Protein Structure, Multi-
Class Classification, Ensemble Learning.

I. INTRODUCTION

Proteins are an important functional unit in countless cellu-
lar and biological processes. Rather than play a singular role,
many proteins participate as a member of a group, or complex.
High-yield genomic and proteomic experiments have led to the
identification of large numbers of protein complexes. While
the role of an individual protein within a given complex has
been determined for a few molecules, for the vast majority, that
role remains a mystery. It is believed, however, that a protein’s
function is strongly influenced by its structure. Therefore, it
is reasonable to believe that proteins with a similar structure
might have a similar function. As such, grouping molecules
based on their structure will likely help predict a protein’s
function.

One way of determining similarity is through alignment.
A number of different alignment methods exist, but they
generally fall into two different categories: sequence-based or
structure-based. While each are effective in certain cases, there
are drawbacks to both approaches. Sequence-based alignment
will fail when two proteins are structurally-similar but share
little in the way of sequence homology. On the other hand,
structure-based methods rely on data derived from a solved
structure. Unfortunately, the number of proteins whose struc-
ture has been solved is much smaller than the number of pro-
teins that have been sequenced. As of April 2005, the number

of solved proteins in the Protein Data Bank1 (PDB) stands
at just over 30,000, while there are more than 2.1 million
sequenced proteins in the PIR-NREF database2. Thus, to be
truly effective, any method of comparing proteins should not
be limited only to molecules with a solved structure. The exact
nature of the relationship between a protein’s sequence and its
structure remains one of the open challenges in computational
biology and until a viable solution is obtained, it is not possible
to derive a structure directly from sequence. Therefore, a
different approach is needed to determine similarity.

A potential solution is to use sequence-based properties
to classify proteins whose structure is known. Using these
proteins to construct and validate a classifier, one can use the
resulting model on unclassified proteins to assign a structure-
based label. Such a strategy has been employed by a number
of researchers [4,5,13,14]. Given a set of proteins from the
Structural Classification of Proteins (SCOP) database, each
classifier attempts to correctly predict a protein’s fold. Using
the terminology of the SCOP database, two proteins that
belong to the same fold share a common three-dimensional
pattern with the same major secondary structure elements
(SSEs) in the same arrangement with the same topological
connections [10]. In the SCOP hierarchy, folds are grouped
into different classes, where a class is defined by the to-
pographical arrangement of the secondary structures of its
member proteins.

Most of the recent work on this problem uses machine-
learning techniques such as Support Vector Machines (SVMs)
or Neural Networks (NNs). These methods are highly-tunable
and have been shown to provide excellent performance in
certain applications. A drawback to both of these techniques
is that they are most effective when dealing with a binary, or
two-class decision problem. In order to handle a multi-class
(or in this case, multi-fold) dataset, a variation of one-vs-others
(OvO) or all-vs-all (AvA) classification is often chosen.

With an one-vs-others approach, a classifier is constructed
to decide between two classes: the class in question (the “true”
class) and the rest (the “others”). Given

�
classes,

�
different

classifiers are constructed and an input protein is assigned the
label of whatever classifier returns a yes vote. In the case of a
multiple yes votes, a number of different tie-breaking solutions

1http://www.rcsb.org/
2http://pir.georgetown.edu/pirwww/search/pirnref.shtml

have been proposed. For example, Ding and Dubchak describe
a “unique” one-vs-others (uOvO) strategy that uses a series of
2-way classifiers to decide amongst those classes with a yes
vote [5]. With OvO classification, the number of objects in
the true class is often very small compared to the number
of others. In a dataset with

�
different classes and an equal

number of objects per class, this results in a classifier that
tries to distinguish just 1/

�
of the objects from the rest. Given

an unequal number of objects per class, this number can be
even lower. As a result, an individual classifier can have high
accuracy even if it misclassifies everything in the true class.

Using an all-vs-all strategy and a dataset with
�

classes,
a classifier is constructed for every possible pair of classes,
resulting in

��� �������	��

different classifiers. Given an input

object, it is tested with every classifier, and the class returning
the largest number of “yes” classifications is assigned to the
object. The drawback here is that AvA requires the construc-
tion of a large number of classifiers, while at the same time
using a smaller number of datapoints in the construction of
those classifiers, which can lead to over-fitting. As a result,
care must be taken in order for either of these approaches to
be effective.

Ding and Dubchak were one of the earliest groups to
report on the problem of fold recognition, comparing the
classification accuracy of a neural network and a support
vector machine (testing the effectiveness of both OvO and
AvA classification) on a set of proteins taken from the 27
most-populated SCOP folds, with less than 25% sequence
identity between every protein in the set [5]. They were able to
recognize the correct fold with an accuracy of approximately
56% using a number of sequence-based properties as feature
vectors for their classifier. Using a slightly smaller dataset and
many of the same input features, Tan et al. developed a rule-
based classifier that combines the best classifiers from the OvO
and AvA methods to generate a single classifier for each of
the possible folds. Their best results improve fold recognition
to roughly 60% [14].

Classifying the same dataset and input features, but this time
employing a Bayesian Network-based approach, Chinnasamy
et al. improve on the average fold recognition results reported
by Ding and Dubchak, but fail to increase accuracy above
60% [4]. Finally, again starting with the same dataset and
input features, Shi et al. employ an evolutionary algorithm
to select the most relevant features and classify using a SVM,
but their average accuracy remains around 56% for the 27-fold
problem [13].

As an alternative to the above methods, in this paper we
propose a tiered, or multi-level, approach to classification. Just
as proteins in SCOP are grouped in a hierarchical fashion, it is
possible to first partition a dataset based on certain high-level
similarities. For each partition, one can then create a more
specific, fine-grained classifier. To our knowledge, it is the
first time such an approach has been applied to this particular
problem. Here we report our method and results using a two-
level classification strategy.

In the first stage, we classify proteins based on their SCOP

class. For each class of proteins, we then classify by fold. Our
approach is flexible, allowing for any classification strategy
to be used at any stage. We test our method with a Naı̈ve
Bayes classifier and several decision tree-based meta-learning
strategies. Using a dataset and feature vectors similar to those
reported elsewhere [4,5,13,14], we achieve an improvement
in accuracy of 15-20% compared with previously published
results, predicting the correct fold with an accuracy up to 74%.
We only need to create a single classifier for the Class level
and then one for each Fold, for a total of five classifiers. As
opposed to previous methods, our model is fast, scalable, and
can easily be recreated if there is a large change in the dataset
or input features.

II. MULTI-LEVEL CLASSIFICATION

Databases like SCOP group proteins in a hierarchical, tree-
like fashion based on shared structural characteristics. The
top of the hierarchy is referred to as the Class level. The
classes are divided into Folds, which are further divided into
Superfamilies. Each Superfamily is itself composed of several
individual Families. Since proteins at each level are grouped
based on shared characteristics, we would expect a protein to
have a higher structural similarity to those proteins that are
within the same class (intra-class) than those that are without
(inter-class). The same would hold true at the fold level and
on down through the hierarchy. For this reason, we believe a
classification scheme should take advantage of such a natural
hierarchy. Most of the existing work on this problem have
taken a “flat” view toward classification, focusing only on the
fold level, totally ignoring any class-level information.

The only reason it is currently possible to classify proteins
at the fold level with a binary classifier is that there are
few folds with the requisite number of members needed to
effectively train a classifier. The current version of the SCOP
database (May 2005) lists 887 possible folds. As the number
of solved protein structures increases, so will the number of
folds that can be classified. When this occurs, the use of binary
classification strategies will become less and less practical.
When presented with 887 potential folds, an OvO strategy will
require the training of 887 2-way classifiers. An AvA method,
on the other hand, will require the construction of a total of
392,941 different classifiers. The use of cross-validation will
increase that number even more. With n-fold cross validation,
1/ � of the dataset is set aside as a testing set (a fold) and a
classifier is trained on the remaining members. This process is
repeated � times with a different 1/ � of the dataset set aside in
each iteration (an object can only be a member of one testing
fold). Therefore, when using n-fold cross-validation and an
OvO classification strategy on

�
possible classes, a total of

� �
classifiers must be trained, while AvA increases that number to
� ��� ���������

. Finally, if one wishes to classify proteins further
down the hierarchy, where the number of potential choices is
even larger, the problem quickly becomes intractable.

As stated previously, classification techniques that can ef-
fectively handle multi-class data, such as Bayesian or decision

tree-based methods, have a difficult time distinguishing be-
tween a large number of possible classes. One way to try and
reduce the potential confusion is to pre-process or pre-partition
the data before classification occurs. By using a multi-tiered
or multi-level classification strategy, one can cut down on the
number of potential outcomes, which is useful when faced
with noisy, real-world data that is not clearly separable. The
multi-tier strategy we present here is meant to be general.
It can be applied to any domain where the data falls into a
natural hierarchy (or one where such a hierarchy can be readily
deduced). In addition, any classification strategy can be used
at the different levels of the hierarchy. If a certain method is
found to be more effective at one stage, it can be used there
and replaced with something else at the others.

A. Algorithm

We provide the implementation details of our multi-level
strategy in Section III-B. The general idea, however, is to first
classify proteins at the class level, grouping them based on
global, high-level features. We refer to this stage as Classifi-
cation by SCOP Class. Once this partitioning is complete, we
subdivide further, classifying each protein by fold (denoted
Class-specific Fold Classification). The intent of this step
is to improve accuracy by using a increasingly fine-grained
classification model, separating the data based on more local,
fold-specific attributes than a typical decision tree that is
forced to distinguish between all possible classes (which we
call All-Folds Classification). With this approach, the classifier
tends to employ two different sets of features in classification.
As we show below, at the Class level, the focus is on those
elements that can partition the dataset on global, high-level
features. At the Fold level, more emphasis is placed on the
features that allow a distinction based on more local, specific
attributes.

B. Validation

The intuition behind our classification strategy is based
on several well-known and empirically-validated assump-
tions [3,9], which are listed below:

� Multi-stage classifiers may be more accurate than single-
stage classifiers.

� Smaller decision trees have higher accuracy than larger
trees.

� Locally optimizing information tends to produce small,
shallow, accurate trees.

Of particular importance are the last two assumptions. By
dividing the overall task of global fold recognition into the
smaller sub-tasks of recognizing class and class-specific folds,
we hope to produce smaller, more accurate decision trees
that avoid the problem of getting stuck in a local minima.
Large decision trees often suffer from noise, fragmentation
and subtree replication [3,11]. Noise can cause irrelevant
features to be used as selection criteria, which in turn can
lead to overfitting. A similar effect can arise due to tree
fragmentation, where there are a large number of leaf nodes
that only represent a few objects. Finally, a large decision tree

Fig. 1. Average decision tree size and average number of leaves for each
of the classification variations tested (Class, All-Folds, Class-specific Folds).
Results reflect a boosted C4.5 decision tree.

can suffer from subtree replication, where a certain piece of the
tree is repeated throughout the overall structure, which can also
cause fragmentation. We now provide results that motivate the
development of our multi-tier strategy and empirically validate
our approach.

In Figure 1 we provide the average decision tree size and
average number of leaf nodes for the different single-stage
classification strategies mentioned above: Class, Class-specific
Fold and All-Folds. These values were obtained when running
the boosted C4.5 experiments discussed in Section III-B on
one of the single property datasets (described in Section III-
A). While the actual numbers may differ depending on the
property chosen, the overall trends and differences between
classification strategies remain.

Figure 1 clearly shows the drawback to using a single-stage
classifier on a large multi-class decision problem. The size
of the average tree for All-Folds classification is greater than
250 nodes, and it contains over 125 leaves. With a dataset of
approximately 650 proteins (the size of our set), fragmentation
becomes a real concern. In contrast, in Figure 1 one can see
that using Class or Class-specific Fold classification results in
a significantly smaller decision tree and far fewer leaf nodes.
The Class tree is less than half the size of the All-Folds tree,
and the Class-specific Fold tree is roughly an eighth the size
of the original.

The problem of subtree replication is illustrated in Figure 2.
Using one of the single-property datasets as an example, we
list the top five decision tree attributes in terms of average
number of occurrences per tree (results again from the boosted
C4.5 experiments). Shown are the top five attributes for
the All-Folds method and the corresponding counts of those
attributes using the other methods. The top attribute appears an
average of 17 times in each tree when classifying using All-
Folds. That same attribute occurs less than six times when
classifying by SCOP Class and fewer than three times in a
Class-specific-Fold tree. In general, the All-Folds attributes
appear 2-3 times more often than in the Class trees and 4-6
times more often than the Class-specific Fold trees. It should

Fig. 2. Average number of appearances per tree for each of the top five
attributes used as splitting criteria in the All-Folds method on one of the
single-property datasets.

TABLE I

RANK OF THE TOP 5 ATTRIBUTES OF A Class DECISION TREE IN THE

Class-specific Fold AND All-Folds METHODS (USING THE SAME DATASET AS

FIGURE 2). A “–” INDICATES A RANK BELOW 5.

Class-Specific
Class Fold All-Folds

1 1 1
2 – 2
3 – 4
4 – 5
5 – –

be noted that the top attributes in the All-Folds trees are not
necessarily the top attributes in the trees of the other methods
(and vice versa).

In Table I, using the same single-property dataset as in
Figure 2, we list the top 5 attributes (in terms of average
number of occurrences per tree) in the Class method. We
also list the corresonding rank of those attributes in the Class-
specific-Fold and All-Folds methods. A “–” indicates that the
attribute is not among the top 5 attributes. As one can see in
Table I, there is a high degree of overlap between the Class and
All-Folds methods and almost no overlap between the Class
and Class-specific Fold trees. Similar results are seen with the
other datasets. This gives credence to our belief that using a
multi-level classification strategy allows a classifier to focus
on different features at different levels: global features at the
top level, local features at the lower level.

In light of these results, we feel that a multi-stage strategy
like the one proposed here will eliminate many of the issues
that arise from a large multi-class decision problem. Further-
more, by breaking the task of classification into a number of
stages, we can more finely-tune our overall classifier, taking
advantage of specific strengths that an individual classifier may
have at a particular level, using a different method for each
one.

TABLE II

SEQUENCE-BASED PROPERTIES USED AS FEATURE VECTORS FOR

CLASSIFICATION.

Symbol Property Dim.
c Amino Acid Composition 20
h Hydrophobicity 21
p Polarity 21
s Predicted Secondary Structure 21
v van der Waals Volume 21
z Polarizability 21

III. METHODS

Here we provide details on our dataset and give a description
of our classification experiments.

A. Dataset

The dataset used in these experiments is based on the dataset
first described in the work by Ding and Dubchak [5]. There, a
training set was taken from the 27 most populated SCOP folds
of the PDB Select set, in which no two proteins share more
than 35% sequence identity for aligned subsequences longer
than 80 residues. This training set contained 311 proteins. Ding
and Dubchak used an independent test set derived from the
PDB 40D set, which consists of all SCOP sequences having
less than 40% sequence identity with each other. Using the
same 27 SCOP folds, 385 proteins were selected, and any
PDB 40D protein having more than 35% sequence identity
with the proteins in the training set was excluded. When
combined together, the training and test sets yield a total of
696 proteins.

Since the publication of the work by Ding and Dubchak [5],
the protein identifiers used in the SCOP database have
changed. We were looking to use this dataset for a different
set of experiments and needed to match the original identifiers
to those currently used by SCOP. Using the latest labels from
SCOP (version 1.67), a Perl script was written to automate the
matching process, but we were unable to find a match for every
protein. Rather than attempt to manually match the proteins
that remained, we simply removed them from consideration,
leaving a total of 653 proteins in our dataset.

We represent each protein in our dataset using the same
sequence properties as those listed in previous experi-
ments [4,5,13,14]. The feature vectors characterize the fol-
lowing properties for each protein (the symbol for each
descriptor given in parentheses): amino acid composition (c),
hydrophobicity (h), polarity (p), predicted secondary structure
(s), van der Waals volume (v), and polarizability (z). For a
more detailed discussion on the derivation of these properties,
the reader is referred to the work by Dubchak et al. [6] or
Ding and Dubchak [5]. The feature vector for the amino acid
composition consists of 20 dimensions. All of the rest have
21. These properties are presented in Table II.

We test each descriptor individually and also combine them
to create longer feature vectors, concatenating the feature

vector of one descriptor onto the end of another. The com-
bined datasets are referenced by their combined symbols (cs,
csh, etc.). These combined vectors ranged in size from 41
dimensions (cs) to 125 (cshpvz).

B. Experiments

In order to show the effectiveness of our classification
strategy, we need to run a number of different tests in order
to establish a series of baseline results. As such, we conduct
the following classification experiments:

1) Classification by SCOP class. In this test, each SCOP
fold is replaced by its corresponding SCOP class label
(� ,

�
, ���

�
, �

� �
). Table III lists the identification

number of the SCOP folds contained in our dataset and
their corresponding class. The purpose of this test is
to establish that it is possible to improve accuracy by
classifying proteins at an “upper,” or more global level.
This mode of classification is analogous to the “Class”
method of the previous section.

2) Classification by SCOP fold. This experiment is an
attempt to replicate the work reported elsewhere in the
literature [4,5,13,14]. Here, we create a classifier to
distinguish among the 27 different folds in our dataset.
Rather than employ a multi-classifier variation of OvO
or AvA, we use a single classifier for this task, deciding
between all possible classes at once. The results from
this experiment are the same as the All-Folds results
discussed in the previous section.

3) Classification by SCOP fold after partitioning by
class. We repeat the previous experiment, but rather
than classify the entire dataset at once, we manually
partition by class and then distinguish between folds.
We hope that classification accuracy will improve after
removing those proteins that fall into different areas of
the structural hierarchy. This experiment is equivalent to
Class-specific Fold classification.

4) Multi-Level Classification. The final experiment is a
test of our multi-tiered classification strategy. First, we
classify each protein based on its SCOP class, using 10-
fold cross-validation. Then, for each SCOP class, we
take all of the proteins that were correctly classified and
construct a classifier that distinguishes between the folds
present in that class (see Table III for the relationship
between class and fold).
For each SCOP class, we take a number of random
samples (twenty in our tests) of the data, dividing it
into 70%/30% training/testing splits. While a protein
can appear in more than one sample, we do not allow
them to appear more than once within a given sample
(i.e. they are randomly selected without replacement).
Finally, in an attempt to ensure that every protein is
adequately represented, we limit the number of samples
in which a protein can be present to half the total number
of samples.
To compute the accuracy of our multi-stage method, we
take the number of proteins that were misclassified at the

TABLE III

SCOP CLASSES AND THEIR CORRESPONDING FOLDS

Class Folds Total
� 1, 2, 4, 7, 9, 11 6�

20, 23, 26, 30, 31, 32, 33, 35, 39 9
��� � 46, 47, 48, 51, 54, 57, 59, 62, 69 9
�	� � 72, 87, 110 3

SCOP class level and add to that the average number
of misclassifications at the fold level. To compute the
average, we sum the number of misclassifications for
each random sample and divide by the total number
of samples. By using the ideas behind Experiments 1
and 3, we hope to show a substantial improvement in
classification accuracy over the results of Experiment 2.

C. Experimental Setup

All of our experiments were conducted on a PC with a 2.8
GHz Pentium 4 CPU and 1.5 GB RAM, running Debian Linux
with a custom 2.6.9 kernel. The classification process was done
using the WEKA data mining toolkit, version 3.43 and Sun
Java 1.4.2. Classification accuracy is given as the True Positive
Rate (TPR), or the number of correct classifications divided by
the total. We test each experiment using a number of different
classifiers, including Naı̈ve Bayes, Random Forests, C4.5 with
Bootstrap Aggregation (bagging) and C4.5 with Adaptive
Boosting (boosting) [1,2,7,8,12]. We left all of the classifiers
on their default setting, except for the C4.5 algorithm, which
we changed to use binary splits. All of the proteins were
combined into one large dataset and classified using 10-fold
cross-validation.

IV. RESULTS

We now present the results of our classification experiments.
We found that the classification accuracy of Random Forests
and Bagged C4.5 were very close to that of Boosted C4.5,
though when there was a difference, Boosted C4.5 tended to
provide the highest accuracy. Thus, in order to improve clarity,
we omit the results from Random Forests and Bagged C4.5.

Classification by SCOP class: In Figure 3, we provide the
results of our experiments in trying to recognize the correct
SCOP class. As we show next, the accuracy when classifying
by SCOP class is higher than the accuracy when classifying by
fold. This is due to the fact that we are dealing with 4 classes,
as opposed to 27 folds. For most of the single parameter
datasets, the accuracy hovers around 55% when using the
Naı̈ve Bayes classifier and approximately 60% when using
a Boosted C4.5 decision tree. The
 and � datasets perform
much better than the others, with accuracy above 70% for both
classifiers. Performance can be improved further by combining
the datasets into larger feature vectors. Figure 3, shows that
combining the feature vectors increases accuracy to 80% with
the Naı̈ve Bayes classifier and to 84% with Boosted C4.5. This

3http://www.cs.waikato.ac.nz/˜ ml/weka/

Fig. 3. Accuracy when classifying by SCOP class.

is 3 to 5% better than the best single parameter dataset for the
Boosted and Bayes classifiers, respectively.

Classification by SCOP fold: In Ding and Dubchak [5],
the highest accuracy for the 27-fold problem is obtained
using an all-vs-all support vector machine. This requires the
construction of 351 different classifiers. The best classification
accuracy with the AvA SVM was around 56% using the csh
and cshp datasets. The results in Figure 4 show that we are
able to achieve the same classification accuracy with a single
classifier.

Our accuracy on the single parameter datasets are much
higher than the results of Ding and Dubchak [5]. There is only
one case where the Naı̈ve Bayes classifier does not outperform
the SVM and the Boosted C4.5 classifier always outperforms
the SVM by at least 10%. These results are also higher than
those reported elsewhere [13].

Classification by SCOP fold after partitioning by class: We
provide the accuracy of trying to recognize the correct SCOP
fold when the dataset has already been partitioned by class.
In theory, this should be an easier problem, as there are fewer
folds to choose from and the dataset for each class is smaller
than the original. As one can see in Figure 5, the accuracy
for most of the class-specific datasets is higher than that of
the multi-class (listed under the All Classes column). There
are a few instances where this does not hold, most notably for
the Naı̈ve Bayes classifier and the

�
class. Overall, however,

������

����	
�

�	
������

� � � �� � ��

�

�

��

��

��

��

��

��

��

��
�

�

�

�

�

�

����	����

�
�
�
�
��
�

	!
"
#

�	
������

� � � �� � ��

�

�

��

��

��

��

��

��

��

�� ��

���

����

�����

������

����	����

�
�
�
�
��
�

	!
"
#

�	
������

� � � �� � ��

�

�

��

��

��

��

��

��

��

��
�

�

�

�

�

�

����	����

�
�
�
�
��
�

	!
"
#

�	
������

� � � �� � ��

�

�

��

��

��

��

��

��

��

��
��

���

����

�����

������

����	����

�
�
�
�
��
�

	!
"
#

Fig. 5. Accuracy for SCOP Fold recognition by Class. The top figure
represents results obtained using a Naı̈ve Bayes classifier. The bottom figure
contains those returned by a Boosted C4.5 decision tree. Also provided are
the results for single-stage fold recognition using the entire dataset.

classification accuracy is substantially improved. Since it is
unlikely that the user would ever be presented with a dataset
that is already partially classified, these results may not seem
to be very useful. However, they are presented here to give
some intuition as to why a multi-level classification strategy
might be more effective than a single-stage strategy when
dealing with a large number of possible folds.

Multi-Level Classification: We present the results of our
multi-level classification strategy in Figure 6. As one can
see, these results are much higher than those of the single-
stage solution (given in Figure 4). For the combined datasets,
the multi-stage results are a full 12%-18% higher than the
corresponding single-stage value. In addition, our best Multi-
Stage results are around 14% higher than any result we have
seen in the literature on this problem.

In Table IV, we provide an analysis of the True Positive
Rate by fold for our single-tier and multi-tier methods on the

 � dataset, as well as the results of the unique One-vs-Others
Support Vector Machine as reported in Ding and Dubchak [5].
As one can see, the average results for all of our methods
are much higher than those reported previously, with a 12%
difference between our Multi-Level Boosted C4.5 classifier
and the uOvO SVM. There are certain folds where the SVM
outperforms both Bayes and C4.5, but in general it has a lower
TPR, especially when compared to the multi-level solutions.

V. DISCUSSION

In this work, we describe our multi-stage classification
strategy and present the results achieved when classifying
a well-known protein dataset. Using our method, we can

Fig. 4. Accuracy for SCOP Fold recognition when using a single-stage Naı̈ve Bayes or Boosted C4.5 classifier. The SVM results are taken from Ding and
Dubchak [5]. The single parameter SVM datasets reflect the cross-validation results provided there. The SVM results given for the combined datasets were
taken from the AvA experiments.

Fig. 6. Accuracy for SCOP Fold recognition when using Naı̈ve Bayes or Boosted C4.5 classifier with the Multi-Level classification strategy. The SVM
results are taken from Ding and Dubchak [5]. The single parameter SVM datasets reflect the cross-validation results provided there. The SVM results given
for the combined datasets were taken from the AvA experiments.

improve classification accuracy by approximately 15% over
values seen in the literature.

Trying to predict the fold of a protein is extremely challeng-
ing. There are a large number of possible folds, and many folds
contain a small number of members. Most existing solutions
to this problem rely on some type of all-vs-all or one-vs-
others classification strategy. As stated previously, both of
these strategies have their drawbacks. Our proposed method
leverages the fact that folds that fall within the same SCOP

class share similar structural properties. Therefore, we can
use high-level, global similarities to partition the data at
the class level. This partitioning simplifies the classification
problem, both in the number of proteins that must be classified
and in the number of potential folds. It is true that the
proteins within each partition will be more structurally similar,
which would seem to present a more difficult classification
challenge. However, in a given partition, we can use local,
more discriminating features to distinguish between proteins

TABLE IV

TRUE POSITIVE RATE (TPR) BY SCOP FOLD FOR UNIQUE

ONE-VS-OTHERS SUPPORT VECTOR MACHINE (UOVO SVM) (TAKEN

FROM [5]), SINGLE-STAGE NAÏVE BAYES AND BOOSTED C4.5

CLASSIFIERS AND MULTI-LEVEL NAÏVE BAYES AND BOOSTED C4.5

CLASSIFIERS. ALSO GIVEN IS AVERAGE TPR (ACCURACY).

uOvO Naı̈ve Boosted Multi-Level Multi-Level
Fold SVM Bayes C4.5 Bayes Boost

1 0.83 0.74 0.74 0.76 0.66
3 0.67 0.94 0.69 0.89 0.78
4 0.47 0.77 0.63 0.97 0.82
7 0.63 0.47 0.60 0.41 0.51
9 1 0.87 0.57 0.74 0.71
11 0.56 0.53 0.47 0.42 0.43
20 0.60 0.43 0.64 0.71 0.74
23 0.17 0.58 0.32 0.40 0.28
26 0.54 0.59 0.59 0.55 0.70
30 0.33 0.54 0.39 0.32 0.30
31 0.50 0.50 0.53 0 0.66
32 0.32 0.23 0.27 0.33 0.30
33 0.50 0.25 0.25 0.28 0.32
35 0.25 0.31 0.15 0.34 0.27
39 0.50 0.63 0.69 0.58 0.72
46 0.65 0.67 0.75 0.67 0.75
47 0.54 0.35 0.48 0.59 0.51
48 0.35 0.48 0.39 0.34 0.27
51 0.47 0.51 0.39 0.63 0.49
54 0.36 0.46 0.41 0.40 0.45
57 0.25 0.57 0.36 0.36 0.49
59 0.29 0.52 0.48 0.55 0.47
62 0.71 0.50 0.25 0.44 0.38
69 0.25 0.50 0.50 0.45 0.39
72 0.25 0.23 0.23 0 0.54
87 0.30 0.24 0.24 0.14 0.49
110 0.83 1 1 1 0.97

avg 0.51 0.55 0.56 0.69 0.73

and assign the correct fold. As additional protein structures
are crystallized and labeled, this strategy can also be used to
help classify unknown proteins at the Superfamily or Family
level.

Our strategy can be used with any type of classifier, it need
not be Naı̈ve Bayes or Boosted C4.5. It is also possible to use
different classifiers for each tier. If new data is acquired, it is
relatively simple to regenerate the classification model. One
can also use this strategy in a semi-supervised environment,
using unlabeled data to either tune the classifier or to make
predictions about the possible fold/function of an unknown
protein. Also, if desired, one can create a classifier that is
biased toward a particular class or fold. In this manner, one
can more reliably identify proteins of that fold, with a possible
detriment to the identification accuracy of the other folds.

REFERENCES

[1] L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140,
1996.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[3] L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey.

Technical Report AOC-96-014, NCARAI, 1996.
[4] A. Chinnasamy, W. K. Sung, and A. Mittal. Protein structure and fold

prediction using tree-augmented naive bayesian classifier. In Proc. PSB
2004, Stanford, CA, 2004. World Scientific Press.

[5] C. H. Q. Ding and I. Dubchak. Multi-class protein fold recognition
using support vector machines and neural networks. Bioinformatics,
17(4):349–358, April 2001.

[6] I. Dubchak, I. Muchnik, S. Holbrook, and S-H Kim. Prediction of
protein folding class using global description of amino acid sequence.
Proc. Natl. Acad. Sci. USA, 92:8700–8704, September 1995.

[7] Y. Freund and R.E. Schapire. Experiments with a new boosting
algorithm. In 13th Intl Conf on Machine Learning, pages 148–146,
1996.

[8] George H. John and Pat Langley. Estimating continuous distributions in
(bayesian) classifiers. In 11th Conf on Uncertainty in AI, pages 338–345,
1995.

[9] Sreerama K. Murthy. Automatic construction of decision trees from data:
A multi-disciplinary survey. Data Mining and Knowledge Discovery,
2(4):345–389, 1998.

[10] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop:
a structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol, 247:536–540, 1995.

[11] G. Pagallo and D. Haussler. Boolean feature discovery in empirical
learning. Machine Learning, pages 71–99, 1990.

[12] J.R. Quinlan. C4.5 : programs for machine learning. Morgan Kaufmann
Publishers, San Mateo, Calif., 1993.

[13] S. Y. M. Shi, P. N. Suganthan, and K. Deb. Multi-class protein fold
recognition using multi-objective evolutionary algorithms. In Proc. IEEE
CIBCB. IEEE, 2004.

[14] A. C. Tan, D. Gilbert, and Y. Deville. Multi-class protein fold
classification using a new ensemble machine learning approach. Genome
Informatics, 14:206–217, 2003.

