
Supporting RDMA capable network compatibility and features for regular network
adapters

P. BALAJI , H. -W. JIN , K. VAIDYANATHAN AND D. K. PANDA

Technical Report
Ohio State University (OSU-CISRC-6/05-TR37)

Supporting RDMA capable network compatibility and features for regular network
adapters∗

P. Balaji H. -W. Jin K. Vaidyanathan D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, Ohio 43210
{balaji, jinhy, vaidyana, panda}@cse.ohio-state.edu

Abstract
With aggressive initiatives in the offloaded technology present on

network adapters, the user market is now distributed amongst various
technology levels including regular Ethernet network adapters, TCP
Offload Engines (TOEs) and the recently introduced Remote Direct
Data Placement (RDDP) capable networks. While RDDP networks
provide all the features provided by its predecessors (TOEsand reg-
ular Ethernet network adapters) and a new richer programming in-
terface, in order to achieve a wide-spread acceptance they have to
provide backward compatibility. In this aspect, two important is-
sues need to be considered. First, not all network adapters support
RDDP; thus, software compatibility for regular network adapters
(which have no offloaded protocol stack) with RDDP aware network
adapters needs to be achieved. Second, rewriting existing applica-
tions using the new RDDP interface is cumbersome and impractical;
thus it is desirable to have an extended sockets interface which al-
lows existing applications to run directly without any modifications
and at the same time exposes the richer feature set of RDDP to the
applications. In this paper, we design and implement a software stack
to handle both these issues. Specifically, (i) the software stack pro-
vides applications with a sockets interface that has been extended
with the rich RDDP features and (ii) it is capable of emulating the
functionality of the RDDP stack in software to provide compatibility
for regular Ethernet adapters with RDDP offloaded networks.

Keywords: Remote Direct Data Placement, RNIC, iWARP, and
RDMA

1 Introduction

While TCP/IP [14] is considered the most ubiquitous stan-
dard for transport and network protocols, the host-based im-
plementation of TCP/IP has not been able to scale very well
with the sky-rocketing network speeds. In high-speed net-
works, the CPU has to dedicate more processing to handle the
network traffic than to the applications it is running. Partial
and complete Protocol Offload Engines (POEs) such as the
TCP/IP Offload Engines (TOEs) [23] have provided a mech-
anism by which the host computational requirements of the
TCP/IP stack can be curbed. Most TOEs retain the standard
sockets interface while replacing the host-based TCP/IP stack
with the hardware offloaded TCP/IP stack [10]; this allows
transparent compatibility for existing applications to bedi-
rectly deployed on to TOEs.

∗This project is supported in part by the DOE grant #DE-FG02-
04ER86204 through Seafire Micros Inc.

Though TOEs have been able to handle most of the ineffi-
ciencies of the host-based TCP/IP stack, they are still plagued
with some of the limitations in order to maintain backward
compatibility with the existing infrastructure and applica-
tions. For example, the traditional sockets interface is sev-
eral times not the best interface to allow high performance
communication [4]. Several techniques used with the sockets
interface (e.g., pick-and-post, where the receiver first posts a
small buffer to read the header information and then decides
the length of the actual data buffer to be posted) make it diffi-
cult to efficiently perform zero-copy data transfers with such
an interface.
A new initiative by IETF called Remote Direct Data Place-

ment (RDDP) [22] was started to tackle such limitations with
basic TOEs and other POEs. The RDDP standard, when of-
floaded on to the network adapter, provides two primary ex-
tensions to the TOE stack: (i) it exposes a rich interface in-
cluding zero-copy and asynchronous communication provid-
ing capabilities for one-sided communication as well and (ii)
it extends the TCP/IP implementation on the TOE to allow
such communication while maintaining compatibility with
the existing TCP/IP implementations.
With such aggressive initiatives in the offloaded technol-

ogy present on network adapters, the user market is now dis-
tributed amongst these various technology levels. Several
users still use regular Ethernet network adapters (35.2% ofthe
Top500 supercomputers use Ethernet with most, if not all, of
them relying on regular Gigabit Ethernet adapters [1]) which
do not perform any kind of protocol offload; then we have
users who utilize the offloaded protocol stack provided with
TOEs; finally with the advent of RDDP offloaded network
adapters, a part of the user group is also moving towards such
RDDP aware networks.
TOEs and regular Ethernet network adapters have been com-

patible with respect to both the data format sent out on the
hardware (Ethernet + TCP + IP + data payload) as well as with
the interface they exposed to the applications (both using the
sockets interface). With RDDP offloaded network adapters,
such compatibility is disturbed to some extent. For exam-
ple, currently an RDDP capable network adapter can only
communicate with another RDDP capable network adapter1.

1The intermediate switches, routers, etc., need not, however, support
RDDP.

1

WAN

Servers

Servers

Servers

Clients

Switch

Switch

Switch

Clients

Figure 1. Multiple clients with regular network
adapters communicating with servers using
RDDP aware network adapters.

Also, the interface exposed by the RDDP network is no longer
sockets; it is a much richer and newer interface. As several
network vendors have learnt it the hard way, a network archi-
tecture can not survive unless it maintains compatibility with
the existing and widely used network infrastructure.
Thus, for a wide-spread acceptance of the RDDP stack, two

important extensions seem to be quite necessary.

1. Let us consider a scenario where a server handles re-
quests from various client nodes (Figure 1). In this sce-
nario, for performance reasons, it is desirable for the
server to use the RDDP interface for all communication
and might use an RDDP offloaded network adapter. The
client on the other hand mightNOT be equipped with
an RDDP aware network card (e.g., it might use a reg-
ular Fast Ethernet or Gigabit Ethernet adapter or even a
TOE). For such and various other scenarios, it becomes
quite necessary to have a software implementation of the
RDDP stack on such networks in order to maintain com-
patibility with the hardware offloaded RDDP implemen-
tations.

2. Though the RDDP interface provides a richer feature-set
as compared to the sockets interface, it requires appli-
cations to be rewritten with this interface. While this
is not a concern for new applications, it is quite cum-
bersome and impractical to port existing applications to
use this new interface. Thus, it is desirable to have an
extended sockets interface which allows existing appli-
cations to run directly without any modifications and at
the same time allows a richer feature set including zero-
copy, asynchronous and one-sided communication.

In general, we would like to have a software stack which
would provide both the above mentioned extensions for regu-
lar Ethernet network adapters as well as TOEs. In this paper,
however, we focus only on regular Ethernet adapters and de-
sign and implement a software stack to provide both these
extensions. Specifically, (i) the software stack provides appli-
cations with a sockets interface that has been extended with
the rich RDDP features and (ii) it is capable of emulating the

functionality of the RDDP stack in software to provide com-
patibility for regular Ethernet adapters with RDDP offloaded
networks.
The rest part of the paper is organized as follows: In Sec-

tion 2, we provide a brief background about TOEs and the
RDDP protocol stack standard. In Section 3 we go into details
about the design and implementation of our software RDDP-
aware extended sockets interface. In addition, we suggest de-
sign alternatives for software implementation of a DDP. We
present the experimental evaluation of our stacks in Section 4,
some related work in Section 5 and conclude the paper in Sec-
tion 6.

2 Background
In this section, we provide a brief background about TOEs

and the RDDP protocol stack standard.

2.1 TCP Offload Engines

The processing of traditional protocols such as TCP/IP and
UDP/IP is accomplished by software running on the central
processor, CPU or microprocessor, of the server. As net-
work connections scale beyond Gbps speeds, the CPU be-
comes burdened with the large amount of protocol processing
required. Resource-intensive memory copies, checksum com-
putation, interrupts, and reassembling of out-of-order packets
put a tremendous amount of load on the host CPU. In high-
speed networks, the CPU has to dedicate more processing to
handle the network traffic than to the applications it is run-
ning. TCP Offload Engines (TOEs) [23] are emerging as a so-
lution to limit the processing required by CPUs for network-
ing.
The basic idea of a TOE is to offload the processing of pro-

tocols from the host processor to the hardware on the adapter
or in the system. A TOE can be implemented with a network
processor and firmware, specialized ASICs, or a combination
of both. Most TOE implementations available in the market
concentrate on offloading the TCP and IP processing, while a
few of them focus on other protocols such as UDP/IP.
As a precursor to complete protocol offloading, some op-

erating systems started incorporating support for features to
offload some compute-intensive features from the host to
the underlying adapter, e.g., checksum computation. But as
Ethernet speeds increased beyond Gbps, the need for fur-
ther protocol processing offload became a clear requirement.
Some GigE adapters complemented this requirement by of-
floading TCP/IP and UDP/IP segmentation onto the network
adapter [13, 8]. With the advent of multi-gigabit networks,
the host-processing requirements became so burdensome that
they ultimately led to adapter solutions withcomplete proto-
col offload.

2.2 RDDP Specification Overview

The RDDP protocol stack usually comprises of three proto-
col layers other than the TCP/IP protocol stack: (i) RDMA
interface, (ii) Direct Data Placement (DDP) layer and (iii)
Marker PDU Aligned (MPA) layer.
The RDMA layer is a thin interface which allows applica-

tions to interact with the DDP layer. The DDP layer uses an

2

IP based reliable protocol stack such as TCP/IP to perform
the actual data transmission. The MPA stack is an extension
to the TCP/IP stack in order to maintain backward compati-
bility with the existing infrastructure. Details about theDDP
and MPA layers are provided in Sections 2.2.1 and 2.2.2 re-
spectively.

2.2.1 Direct Data Placement (DDP)

DDP standard was developed to serve two purposes. First,
the protocol should be able to provide high performance in
SAN and other controlled environments by utilizing an of-
floaded protocol stack and zero-copy data transfer between
host memories. Second, the protocol should maintain compat-
ibility with the existing IP infrastructure using an implemen-
tation over an IP based reliable transport layer stack. Main-
taining these two, sometimes contradicting, features involves
novel designs for several aspects. We describe some of these
in this section.
In-Order Delivery and Out-of-Order Placement: DDP

relies on de-coupling of placement and delivery of messages,
i.e., placing the data in the user buffer is performed in a de-
coupled manner with informing the application that the data
has been placed in its buffer. In this approach, the sender
breaks the message into multiple segments of MTU size; the
receiver places each segment directly into the user buffer,per-
forms book-keeping to keep track of the data that has already
been placed and once all the data has been placed, informs
the user about the arrival of the data. This approach has two
benefits: (i) there are no copies involved in this approach
and (ii) suppose a segment is dropped, the future segments
do not need to be buffered till this segment arrives; they can
directly be placed into the user buffer as and when they ar-
rive. The approach used, however, involves two important
features to be satisfied by each segment: Self-Describing and
Self-Contained segments.
The Self-Describing property of segments involves adding

enough information in the segment header so that each seg-
ment can individually be placed at the appropriate location
without any information from the other segments. The in-
formation contained in the segment includes the Message Se-
quence Number (MSN), the Offset in the message buffer to
which the segment has to be placed (MO) and others. Self-
Containment of segments involves making sure that each seg-
ment contains either a part of a single message, or the whole
of a number of messages, but not parts of more than one mes-
sage.
Middle Box Fragmentation: DDP is an end-to-end proto-

col. The intermediate nodes do not have to support DDP. This
means that the nodes which forward the segments between
two DDP nodes, do not have to follow the DDP specifica-
tions. In other words, DDP is transparent to switches with IP
forwarding and routing. However, this might lead to a prob-
lem known as “Middle Box Fragmentation” for Layer IV or
above switches.

Layer III Switches: Layer III switches can be typically
thought of as the routers. These switches use more intelligent

forwarding algorithms depending on the IP address of the des-
tination node(s). This requires the forwarding to take place at
the IP layer. Thus, there might be a possibility of fragmen-
tation of the segment at the IP layer (since this switch might
not be aware of DDP). In this case we rely on the re-assembly
mechanism of IP to deliver the complete segment. Though
this requires buffering of data, there is no loss of functionality
with these kind of switches.
Layer IV (or above) Switches: Layer IV switches are proto-

col specific and capable of making more intelligent decisions
regarding the forwarding of the arriving message segments.
The forwarding in these switches takes place at the TCP layer.
The modern load-balancers (which fall under this category of
switches) allow a hardware based forwarding of the incom-
ing segments. They support optimization techniques such as
TCP Splicing [7] in their implementation. The problem with
such an implementation is that, there need not be a one-to-
one correspondence between the segments coming in and the
segments going out. This means that the segments coming in
might be re-fragmented and/or re-assembled at the switch.
It is to be noted that the segments coming in-order would

not be effected by this. However, for segments arriving out
of order, this might require buffering at the receiver node,
since the receiver cannot recognize the DDP headers for each
segments. This mandates that the protocol not assume the
self-containment property at the receiver end, and add addi-
tional information in each segment to help recognize the DDP
header.

2.2.2 Marker PDU Aligned (MPA)

In case of “Middle Box Fragmentation”, the self-containment
property of the segments might not hold true. The solution for
this problem needs to have the following properties:

• It must be independent of the segmentation algorithm
used by TCP or any layer below it.

• A deterministic way of determining the segment bound-
aries are preferred.

• It should enable out-of-order placement of segments. In
the sense, the placement of a segment must not require
information from any other segment.

• It should contain a stronger data integrity check like the
Cyclic Redundancy Check (CRC).

The solution to this problem involves the development of
the Marker PDU2 Aligned (MPA) protocol [9]. Figure 2 illus-
trates the new segment format with MPA. This new segment is
known as the FPDU or the Framing Protocol Data Unit. The
FPDU format has three essential changes:

• Markers: Strips of data to point to the DDP header in
case of middle box fragmentation

2PDU stands for a Protocol Data Unit; essentially a unit of data or a seg-
ment of data given by the layer above it, the DDP layer in this case.

3

• Cyclic Redundancy Check (CRC): A Stronger Data In-
tegrity Check

• Segment Pad Bytes

Pad CRC

Segment Length

DDP
Header

DDP
Header

ULP Payload (IF ANY)

ULP Payload (IF ANY)

Marker

Figure 2. Marker PDU Aligned (MPA) protocol
Segment format

The markers placed as a part of the MPA protocol are strips
of data pointing to the MPA header and spaced uniformly
based on the TCP sequence number. This provides the re-
ceiver with a deterministic way to find the markers in the re-
ceived segments and eventually find the right header for the
segment.

3 Designing Issues and Implementation Details

To provide compatibility for regular Ethernet network
adapters with hardware offloaded RDDP implementations, we
propose a software stack to be used on the various nodes. We
break down the stack into two layers, namely, theExtended
sockets interface and thesoftware RDDP layer. Amongst
these two layers, theExtended sockets interface is generic for
all kinds of RDDP implementations; for example it can be
used over thesoftware RDDP layer for regular Ethernet net-
works presented in this paper, over asoftware RDDP layer for
TOEs, or over hardware offloaded RDDP implementations.
Further, for thesoftware RDDP layer for regular Ethernet net-
works, we propose two kinds of implementations: user-level
DDP and kernel-level DDP. Applications, however, only in-
teract with the extended sockets interface which uses the ap-
propriate RDDP stack available on the system. The different
implementations of the stack are illustrated in Figure 3. Inthis
paper, we only concentrate on the design and implementation
of the stack on regular Ethernet network adapters (Figures 3a
and 3b).

3.1 Extended Sockets Interface

The extended sockets interface is designed two serve two
purposes. First, it provides a transparent compatibility for
existing sockets applications to run. Second, it exposes the
richer interface provided by RDDP to the applications to uti-
lize as and when required. For existing sockets applications
(which do not use the richer DDP interface), the extended
sockets interface just passes on the control to the underly-
ing sockets layer. This underlying sockets layer could be

the traditional host-based TCP/IP sockets for regular Ether-
net networks or a High Performance Sockets layer on top of
TOEs [10] or other POEs. For applications whichDO use the
richer DDP interface, the extended sockets interface maps the
calls to appropriate calls in the interface provided by the un-
derlying DDP layer. Again, the underlying DDP layer could
be a software implementation of DDP (for regular Ethernet
network adapters or TOEs) or a hardware DDP implementa-
tion.
In order to extend the sockets interface to support the richer

interface provided by DDP, certain sockets based calls need
to be aware of the existence of DDP. The setsockopt() system
call, for example, is a standard sockets call. But, it can be used
to set a given socket toDDPMODE. All future communica-
tion using this socket will be transferred using the DDP trans-
port layer. Further,read(), write() and several other
socket calls need to check if the socket mode is set toDDP-
MODE before carrying out any communication. This requires
modifications to these calls, while making sure that existing
sockets applications (which do not use the extended sockets
interface) are not hampered.
In our implementation of the extended sockets interface, we

carried this out by overloading the standardlibc library using
our own extended sockets interface. This library first checks
whether a given socket is currently inDDPMODE. If it is, it
carries out the standard DDP procedures to transmit the data.
If it is not, the extended sockets interface dynamically loads
thelibc library to pass on the control to the traditional sockets
interface for the particular call.

3.2 User-Level DDP

In this approach, we designed and implemented the entire
RDDP stack in user space above the sockets layer (Figure 3a).
Being implemented in user-space and above the sockets layer,
this implementation is very portable across various hardware
and software platforms3. However, the performance it can
deliver might not be optimal. Extracting the maximum possi-
ble performance for this implementation requires efficientso-
lutions for several issues including (i) supporting gatherop-
erations, (ii) supporting non-blocking operations, (iii)asyn-
chronous communication, (iv) handling shared queues during
asynchronous communication and several others. In this sec-
tion, we discuss some of these issues and propose various so-
lutions to handle these issues.
Gather operations supported by the DDP specifications:

The DDP specification defines gather operations for a list of
data segments to be transmitted. Since, the user-level DDP
implementation uses TCP as the underlying mode of commu-
nication, there are interesting challenges to support thiswith-
out any additional copy operations. Some of the approaches
we considered are as follows:

1. The simplest approach would be to copy data into a stan-

3Though the user-level DDP implementation is mostly in the user-space,
it requires a small patch in the kernel to extend the MPA CRC toinclude the
TCP header too and to provide information about the TCP sequence numbers
used in the connection in order to place the markers at appropriate places (this
cannot be done from user-space).

4

IP

TCP

Sockets

Network Adapter

Device Driver

Application

Extended Sockets Interface

User−level DDP

TCP (Modified with MPA)

Application

Device Driver

Network Adapter

IP

Sockets Kernel−level DDP

Extended Sockets Interface

Application

TCP

IP

Device Driver

Sockets
Traditional

Extended Sockets Interface

High Performance Sockets

Offloaded TCP

Offloaded IP

Network Adapter

Software RDDP

Application

TCP

IP

Device Driver

Network Adapter

Offloaded IP

Offloaded TCP

Offloaded RDDP

Sockets
Traditional

Extended Sockets Interface

High Performance Sockets

Figure 3. Extended sockets interface with different Implem entations of the RDDP protocol stack: (a)
User-Level DDP (for regular Ethernet networks), (b) Kernel -Level DDP (for regular Ethernet networks),
(c) Software DDP (for TOEs) and (d) Hardware offloaded DDP (fo r RDDP capable network adapters).

dard buffer and send the data out from this buffer. This
approach is very simple but would require an extra copy
of the data.

2. The second approach is to use the scatter-gather readv()
and writev() calls provided by the traditional sockets in-
terface. Though in theory traditional sockets supports
scatter/gather of data using readv() and writev() calls,
the actual implementation of these calls is specific to the
kernel. It is possible (as is currently implemented in the
2.4.x linux kernels) that the data in these list of buffers be
sent out as different messages and not aggregated into a
single message. While this is perfectly fine with TCP, it
creates a lot of fragmentation for DDP, forcing it to have
additional buffering to take care of this.

3. The third approach is to use the TCPCORK mechanism
provided by TCP/IP. The TCPCORK socket option al-
lows data to be pushed into the socket buffer. However,
until the entire socket buffer is full, data is not sent onto
the network. This allows us to copy all the data from the
list of the application buffers directly into the TCP socket
buffers before sending them out on to the network, thus
saving an additional copy and at the same time guaran-
teeing that all the segments are sent out as a single mes-
sage.

Non-blocking communication operations support: As
with RDDP, the extended sockets also supports non-blocking
communication operations. This means that the application
layer can just post a send descriptor; once this is done, it can
carry out with its computation and check for completion at a
later time. In our approach, we use a multi-threaded design for
user-level DDP to allow non-blocking communication opera-
tions (Figure 4). As shown in the figure, the application thread
posts a send and a receive to the asynchronous threads and re-
turns control to the application; these asynchronous threads
take care of the actual data transmission for send and re-
ceive, respectively. To allow the data movement between the
threads, we use pthreads() rather than fork(). This approach

post_send()

setsockopt()
setsockopt()

post_recv()

recv_done()

write()

Sender Receiver

Main thread

Async threads

Figure 4. Asynchronous Threads Based Non-
Blocking Operations

gives the flexibility of a shared physical address space for
the application and the asynchronous threads. The pthreads()
specification states that all pthreads should share the same
process ID (pid). Operating Systems such as Solaris follow
this specification. However, due to the flat architecture of
Linux, this specification was not followed in the Linux im-
plementation. This means that all pthreads() have a different
PID in Linux. We use this to carry out inter-thread communi-
cation using inter-process communication (IPC) primitives.
Asynchronous communication supporting non-blocking

operations: In the previous issue (non-blocking communica-
tion operations support), we chose to use pthreads to allow
cloning of virtual address space between the processes. Com-
munication between the threads was intended to be carried
out using IPC calls. The DDP specification does not allow a
shared queue for the multiple sockets in an application. Each
socket has separate send and receive work queues where de-
scriptors posted for that socket are placed. We use UNIX
socket connections between the main thread and the asyn-
chronous threads. The first socket set toDDPMODE opens a
connection with the asynchronous threads and all subsequent
sockets use this connection in a persistent manner. This option

5

allows the main thread to post descriptors in a non-blocking
manner (since the descriptor is copied to the socket buffer)
and at the same time allows the asynchronous thread to use
a select() call to make progress on all theDDPMODE
sockets as well as the inter-process communication. It is tobe
noted that though the descriptor involves an additional copy
by using this approach, the size of a descriptor is typically
very small (around 60 bytes in the current implementation),
so this copy does not affect the performance too much.

3.3 Kernel-Level DDP

The kernel-level DDP is built directly over the TCP/IP stack
bypassing the traditional sockets layer as shown in Figure 3b.
This implementation requires modifications to the kernel and
hence is not as portable as the user-level implementation.
However, it can deliver a better performance as compared to
the user-level DDP. The kernel-level design of DDP has sev-
eral issues and design challenges. Some of these issues and
the solutions chosen for them are presented in this section.
Though most part of the DDP implementation can be done

completely above the TCP stack by just inserting modules
(with appropriate symbols exported from the TCP stack),
there are a number of changes that are required for the TCP
stack itself. For example, ignoring the remote socket buffer
size, efficiently handling out-of-order segments, etc. require
direct changes in the core kernel. This forced us to recompile
the linux kernel as a patched kernel. We have modified the
base kernel.org kernel version 2.4.18 to the patched kernelto
facilitate these changes.
Immediate copy to user buffers:Since DDP provides non-

blocking communication, copying the received data to the
user buffers is a tricky issue. One simple solution is to copy
the message to the user buffer when the application calls a
completion function, i.e., when the data is received the kernel
just keeps it with itself and when the application checks with
the kernel if the data has arrived, the actual copy to the user
buffer is performed. This approach, however, loses out on
the advantages of non-blocking operations as the application
has to block waiting for the data to be copied while checking
for the completion of the data transfer. Further, this approach
requires another kernel trap to perform the copy operation.
The approach we used in our implementation is to immedi-

ately copy the received message to the user buffer as soon as
the kernel gets the message. An important issue to be noted in
this approach is that since multiple processes can be running
on the system at the same time, the current process scheduled
can be different with the owner of the user buffer for the mes-
sage; thus we need a mechanism to access the user buffer even
when the process is not currently scheduled. To do this, we
pin the user buffer (prevent it from being swapped out) and
map it to a kernel memory area. This ensures that the ker-
nel memory area and the user buffer point to the same physi-
cal address space. Thus, when the data arrives, it is immedi-
ately copied to the kernel memory area and is automatically
reflected into the user buffer.
User buffer registration: The DDP specification defines

an API for the buffer registration, which performs pre-

communication processes such as buffer pinning, address
translation between virtual and physical addresses, etc. These
operations are required mainly to achieve a zero-copy data
transmission on RDDP offloaded network adapters. Though
this is not critical for the kernel-level DDP implementation as
it anyway performs a copy, this can protect the buffer from
being swapped out and avoid the additional overhead for page
fetching. Hence, in our approach, we do pin the user-buffer.
Efficiently handling out-of-order segments: DDP allows

out-of-order placement of data. This means that out-of-order
segments can be directly placed into the user-buffer without
waiting for the intermediate data to be received. In our design,
this is handled by placing the data directly and maintaininga
queue of received segment sequence numbers. At this point,
technically, the received data segments present in the kernel
can be freed once they are copied into the user buffer. How-
ever, the actual sequence numbers of the received segments
are used by TCP for acknowledgments, re-transmissions, etc.
Hence, to allow TCP to proceed with these without any hin-
drance, we defer the actual freeing of these segments till their
sequence numbers cross TCP’s unacknowledged window.

4 Experimental Evaluation

In this section, we perform experimental evaluations for the
extended sockets interface using the user- and kernel-level
DDP implementations. Due to time constraints, we have per-
formed evaluations over a 1Gbps network currently; we hope
to present results for a 10-Gigabit Ethernet network too during
the camera-ready version of the paper.
The experimental test-bed used is as follows: Two Pentium

III 700MHz Quad machines, each with an L2-cache size of
1 MB and 1 GB of main memory. The interconnect was a
Gigabit Ethernet network with Alteon NICs on each machine
connected using a Packet Engine switch. We used the Red-
Hat 9.0 linux distribution installed with the kernel.org kernel
version 2.4.18.

4.1 Micro-benchmark Evaluation

In this section, we present the ping-pong latency and uni-
directional bandwidth achieved by two kinds of tests. In the
first set of tests, we measure the performance achieved for
standard sockets based applications; for such applications, the
extended sockets interface does basic processing to ensure
that the applications do not want to utilize the extended in-
terface (by checking if theDDPMODE is set) and passes on
the control to the traditional sockets layer. In the second kind
of tests, we use applications which utilize the extensions pro-
vided by the sockets interface based on the RDDP interface;
for such applications, the extended sockets interface utilizes
the software RDDP implementations to carry out the commu-
nication.
The latency test is carried out in a standard ping-pong fash-

ion. The sender sends a message and waits for a reply from
receiver. The time for this is recorded by the sender and it is
divided by two to get the one-way latency. For measuring the
bandwidth, a simple window based approach was followed.
The sender sendsWindowSize number of messages and wait

6

������������	�
��
�
�	�����	���
	�

�

��

���

���

���

���

�������������������������
���� !�"#$�%&'(��)

*
+,
-.
/0
12
34

567897

:;<=>?<@<?AA7

B<=C<?>?<@<?AA7

DEFGHFIJKLFMENOPNEHQFHLRSTMKUJLVWELJIXNKJY

Z

[ZZ

\ZZ

]ZZ

ẐZ

_ZZ

Z̀Z

aZZ

bZZ

[̂[̀̂̀_̀[ĉc[̀ĉ̀c

deffgheijkelmnoefp

q
rs
t
uv
tw
x
y
z
{
|}
~

����������������������������������

Figure 5. Micro-Benchmark Evaluation for applications usi ng the standard sockets interface: (a) Ping-
pong latency and (b) Uni-directional bandwidth

for a message from the receiver for everyWindowSize mes-
sages.
The results for the applications with the standard unmodified

sockets interface are presented in Figure 5. As shown in the
figure, the extended sockets interface adds very minimal over-
head to existing sockets applications for both the latency and
the bandwidth tests.
For the applications using the extended interface, the results

are shown in Figure 6. We can see that the user-level DDP and
kernel-level DDP incur an overhead of about 100µs and 5µs
comparing with TCP/IP, respectively. There are several rea-
sons for this overhead. First, the user- and kernel-level DDP
implementations are built over the sockets and TCP/IP respec-
tively; so they are not expected to give a better performance
than TCP/IP itself. Second, the user-level DDP has additional
threads for non-blocking operations and requires IPC between
threads. Also, the user-level DDP performs locking for shared
queues between threads. However, it is to be noted that the
basic purpose of these implementations is to allow compati-
bility for regular network adapters with RDDP aware network
adapters and the performance is not the primary goal of these
implementation. We can observe that both user- and kernel-
level DDP can achieve about 550Mbps in the peak bandwidth.
An interesting result in the figure is that the bandwidth of user-
and kernel-level DDP for small and medium message sizes is
lesser compared to TCP/IP. This is mainly because they dis-
able Nagle’s algorithm in order to try to maintain message
boundaries. For large messages, we see a degradation com-
pared to TCP/IP due to the additional overhead of CRC data
integrity performed by the DDP implementations. We see a
slightly better performance for user-level DDP as compared
to kernel-level DDP for large messages. We are not entirely
sure about the reason for this; we are currently to analyzing
the stacks in more detail to understand this behavior.

4.2 Impact of Packet Loss

In this section we compare the behavior of user-level DDP
with that of kernel-level DDP when there are packet losses
in the system. In TCP/IP sockets, if thenth packet is lost
and themth (m > n) packet arrived, the receiver has to wait

for the nth packet before the subsequent packets are copied
into the user buffer losing out on any opportunity to pipeline
the copy. Since the user-level DDP implementation is on top
of the sockets interface, it too suffers from this issue. How-
ever, the kernel-level DDP can directly place themth pack-
ets without waiting thenth packet as we have described in
Section 3.3. This allows a better pipelining of the copies for
the kernel-level DDP implementation as compared to TCP/IP
as well as the user-level DDP implementation. It is to be
noted that for small amounts of packet drops, TCP/IP goes
to fast retransmit mode and such pipelining would be critical
for its performance. However, as the packet loss rate becomes
very high, TCP/IP goes to congestion mode and drastically
reduces the congestion window; in this stage, we do not ex-
pect the kernel-level DDP implementation to give a significant
improvement in the performance.
Due to time restrictions, we have not been able to get the

relevant data for this experiment and hope to present this in
the final version of the paper.

5 Related Work

Several researchers, including Feng et. al. and ourselves,
have performed a significant amount of researchers on the
performance of RDDP-unaware network adapters including
regular Ethernet-based network adapters [12, 11, 4] as well
as TCP Offload Engines [10, 2]. Also, there has been a lot
of research for implementing high performance sockets over
various protocol offload engines including TOEs [19, 18, 5, 6,
3, 16, 17]. However, all this literature focuses on the improv-
ing the performance of the sockets interface for host-basedor
offloaded protocol stacks and does not deal with any kind of
extensions to it.
Shivam et. al. had implemented a new protocol stack,

EMP [21, 20], on top of Gigabit Ethernet which provides
RDDP like features to the applications. However, this pro-
tocol has a completely different interface and cannot support
sockets based applications directly. Further, this protocol is
not IP compatible and thus cannot be used in a WAN environ-
ment unlike TOEs or RDDP aware network adapters. We had
previously implemented a high performance sockets imple-

7

������������	�
��
��	��	����	���
	�

�

��

���

���

���

���

�������������������������
���� !�"#$�%&'(��)

*
+,
-
.
/0
1
23
4

567897

:;<=>?<@<?AA7

B<=C<?>?<@<?AA7

DEFGHFIJKLFMENOPNEHQFHLRSTULJEHJHVELJIWNKJX

Y

ZYY

[YY

\YY

]YY

ŶY

_YY

ỲY

aYY

Z]Z__][̂_Zb]bZ_b_]b

cdeefgdhijdklmndeo

p
q
rs
tu
sv
w
x
y
z
{|
}

~���������������������������������

Figure 6. Micro-Benchmark Evaluation for applications usi ng the extended RDDP interface: (a) Ping-pong
latency and (b) Uni-directional bandwidth

mentation overEMP [5]; while this allows compatibility for
existing sockets applications, it still does not allow IP com-
patibility. Further, this layer only provides the basic sockets
interface with no RDDP based extensions as such.
Jagana et. al. have developed a software system to pro-

vide kernel support for RDDP and other RDMA aware net-
works [15]. This work can be considered a complementary
development towards RDDP aware networks while our work
deals with RDDP capabilities for regular Ethernet networks.
We hope to unify our solution with this software system in or-
der to avoid further fragmentation in the software stacks pro-
vided to end users.

6 Concluding Remarks

A new initiative by IETF called Remote Direct Data Place-
ment (RDDP) was started to tackle several limitations with
TOEs while providing a completely new and feature rich in-
terface for applications to utilize. For a wide-spread accep-
tance of the RDDP stack, however, two important issues need
to be considered. First, software compatibility needs to be
provided for regular network adapters (which have no of-
floaded protocol stack) with RDDP aware network adapters.
Second, the predecessors of RDDP aware network adapters
such as TOEs and host-based TCP/IP stacks used the sockets
interface for applications to utilize them while the RDDP net-
works provide a completely new and richer interface. Rewrit-
ing existing applications using the new RDDP interface is
cumbersome and impractical; thus its desirable to have an ex-
tended sockets interface which allows existing applications to
run directly without any modifications and at the same time
exposes the richer interface of RDDP including zero-copy,
asynchronous and one-sided communication. In this paper,
we design and implement a software stack to provide both
these extensions.
As continuing work, we are currently working in two broad

directions. First, we are providing the extended sockets inter-
face for hardware offloaded RDDP stacks such as the network
adapters provided by Ammasso as well as the TCP Offload
Engines (TOEs). This will allow a common interface for all
applications whether they are utilizing regular NICs (software

RDDP), TCP Offload Engines (software RDDP) and RDDP
offloaded network adapters (hardware RDDP). Second, we
are developing a simulator which can provide details about
the actual architectural requirements for different designs of
the offloaded RDDP stack.

References

[1] Top500 supercomputer list. http://www.top500.org, November 2004.

[2] P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu, and D. K. Panda. Head-
to-TOE Evaluation of High-Performance Sockets over Protocol Offload
Engines. Technical Report LA-UR-05-2635, Los Alamos National Lab-
oratory, June 2005.

[3] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and
D. K. Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it
Beneficial? Inthe Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, Austin, Texas, March
10-12 2004.

[4] P. Balaji, H. V. Shah, and D. K. Panda. Sockets vs RDMA Interface
over 10-Gigabit Networks: An In-depth analysis of the Memory Traffic
Bottleneck. InWorkshop on Remote Direct Memory Access (RDMA):
Applications, Implementations, and Technologies (RAIT), San Diego,
CA, Sep 20 2004.

[5] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. High Performance
User Level Sockets over Gigabit Ethernet. Inthe Proceedings of Cluster
Computing, Chicago, IL, Sept 23-26 2002.

[6] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz. Im-
pact of High Performance Sockets on Data Intensive Applications. In
the Proceedings of the IEEE International Conference on High Perfor-
mance Distributed Computing (HPDC 2003), June 2003.

[7] Ariel Cohen, Sampath Rangarajan, and Hamilton Slye. On the Perfor-
mance of TCP Splicing for URL-aware Redirection. Inthe Proceedings
of the USENIX Symposium on Internet Technologies and Systems, Oc-
tober 1999.

[8] Chelsio Communications. http://www.chelsio.com/.

[9] P. Culley, U. Elzur, R. Recio, and S. Bailey. Marker PDU Aligned
Framing for TCP Specification, November 2002.

[10] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Per-
formance Characterization of 10-Gigabit Ethernet: From Head to TOE.
Technical Report LA-UR-05-2635, Los Alamos National Laboratory,
April 2005.

[11] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O.Martin,
F. Coccetti, C. Jin, D. Wei, and S. Low. Optimizing 10-Gigabit Ethernet
for Networks of Workstations, Clusters and Grids: A Case Study. InSC
’03.

8

[12] J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Ether-
net on Commodity Systems.IEEE Micro ’04.

[13] Ammasso Incorporation. http://www.ammasso.com/.

[14] University of Southern California Information Sciences Institute.
TRANSMISSION CONTROL PROTOCOL (TCP), RFC 793, 1981.

[15] V. Jagana, B. Metzler, and F. Neeser. Open RDMA Project:Building an
RDMA Ecosystem for Linux. Inthe workshop on Remote Direct Mem-
ory Access (RDMA): Applications, Implementations, and Technologies
(RAIT), 2004.

[16] H. W. Jin, P. Palaji, C. Yoo, J. Y. Choi, and D. K. Panda. Exploiting
NIC Architectural Support for Enhancing IP Based Protocolson High
Performance Networks.Journal of Parallel and Distributed Comput-
ing(JPDC). in press.

[17] H. W. Jin, C. Yoo, and S. K. Park. Stepwise Optimizationsof UDP/IP
on a Gigabit Network. InEuro-Par 2002, April 2002.

[18] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer
over Virtual Interface Architecture. InProceedings of Cluster Comput-
ing, 2001.

[19] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance
Sockets and RPC over Virtual Interface (VI) Architecture. In Proceed-
ings of CANPC workshop, 1999.

[20] P. Shivam, P. Wyckoff, and D. K. Panda. Can user Level Protocols Take
Advantage of Multi-CPU NIC? InIPDPS ’02. accepted to be presented.

[21] P. Shivam, P. Wyckoff, and D. K. Panda. EMP: Zero-copy OS-bypass
NIC-driven Gigabit Ethernet Message Passing. InInt’l Conference on
Supercomputing (SC ’01), November 2001.

[22] Thomas Talpey Stephen Bailey. Remote Direct Data Placement
(RDDP), April 2005.

[23] Eric Yeh, Herman Chao, Venu Mannem, Joe Gervais, and Bradley
Booth. Introduction to tcp/ip offload engines (toe). White Paper, May
2002.

9

