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Abstract Though TOEs have been able to handle most of the ineffi-

With aggressive initiatives in the offloaded technologyspre on  Ciencies of the host-based TCP/IP stack, they are stillyglelg
network adapters, the user market is now distributed anmeagsus with some of the limitations in order to maintain backward
technology levels including regular Ethernet network aeleg TCP compatibility with the existing infrastructure and apphc
Offload Engines (TOEs) and the recently introduced Remoteddi  tions. For example, the traditional sockets interface s se
Data Placement (RDDP) capable networks. While RDDP network eral times not the best interface to allow high performance
provide all the features provided by its predecessors (Tabiseg-  communication [4]. Several techniques used with the sscket
ular Ethgrnet network a_dapters)_ and a new richer progragninin interface (e.g., pick-and-post, where the receiver firstpa
terfa_ce, in order to aCh'eV? a W'de'Sp.read acceptance m_h small buffer to read the header information and then decides
provide backward compatibility. In this aspect, two import is- the length of the actual data buffer to be posted) make it diffi

sues need to be considered. First, not all network adaptersost . .
RDDP; thus, software compatibility for regular network pttas cult to efficiently perform zero-copy data transfers witltisu
an interface.

(which have no offloaded protocol stack) with RDDP aware oetw abe. )
adapters needs to be achieved. Second, rewriting exigjpw:a_ A new initiative by IETF called Remote Direct Data Place-

tions using the new RDDP interface is cumbersome and inipedict ~ ment (RDDP) [22] was started to tackle such limitations with
thus it is desirable to have an extended sockets interfacehvett- basic TOEs and other POEs. The RDDP standard, when of-
lows existing applications to run directly without any midchtions floaded on to the network adapter, provides two primary ex-
and at the same time exposes the richer feature set of RDD® o t tensions to the TOE stack: (i) it exposes a rich interface in-
applications. In this paper, we design and implement a soéstack  cluding zero-copy and asynchronous communication provid-
to handle both these issues. Specifically, (i) the softw@ekspro-  jnq capabilities for one-sided communication as well aid (i
vides applications with a sockets interface that has be&ndgd it extends the TCP/IP implementation on the TOE to allow
with the rich RDDP features and (ii) it is capable of emulgtthe - h L o .
oo . . 2 such communication while maintaining compatibility with
functionality of the RDDP stack in software to provide cortilpiity h isting TCP/IP impl .
for regular Ethernet adapters with RDDP offloaded networks. t e.EXIStIng Imp (_—:‘rrl_en_tatlor?s.

With such aggressive initiatives in the offloaded technol-
ogy present on network adapters, the user market is now dis-
tributed amongst these various technology levels. Several
1 Introduction users still use regular Ethernet network adapters (35.2%gof

u Top500 supercomputers use Ethernet with most, if not all, of

While TCP/IP [14] is considered the most ubiquitous stan- them relying on regular Gigabit Ethernet adapters [1]) Whic
dard for transport and network protocols, the host-based im do not perform any kind of protocol offload; then we have
plementation of TCP/IP has not been able to scale very wellusers who utilize the offloaded protocol stack provided with
with the Sky_rocketing network Speeds_ In high_speed net- TOES, f|na”y with the advent of RDDP offloaded network
works, the CPU has to dedicate more processing to handle th@dapters, a part of the user group is also moving towards such
network traffic than to the applications it is running. Rairti RDDP aware networks.
and complete Protocol Offload Engines (POEs) such as the TOEs and regular Ethernet network adapters have been com-
TCP/IP Offload Engines (TOEs) [23] have provided a mech- Patible with respect to both the data format sent out on the
anism by which the host computational requirements of the hardware (Ethernet+ TCP +IP + data payload) as well as with
TCP/IP stack can be curbed. Most TOEs retain the standardhe interface they exposed to the applications (both usiag t
sockets interface while replacing the host-based TCPa4ékst ~ Sockets interface). With RDDP offloaded network adapters,
with the hardware offloaded TCP/IP stack [10]; this allows Such compatibility is disturbed to some extent. For exam-

transparent compatibility for existing applications to die  Ple, currently an RDDP capable network adapter can only
rectly deployed on to TOEs. communicate with another RDDP capable network adapter
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functionality of the RDDP stack in software to provide com-
patibility for regular Ethernet adapters with RDDP offlodde
erver networks.

The rest part of the paper is organized as follows: In Sec-
tion 2, we provide a brief background about TOEs and the
RDDP protocol stack standard. In Section 3 we go into details
about the design and implementation of our software RDDP-
aware extended sockets interface. In addition, we suggest d

/Q i sign alternatives for software implementation of a DDP. We
P Server.

Clients

present the experimental evaluation of our stacks in Sedtio
some related work in Section 5 and conclude the paper in Sec-
tion 6.

Clients

Figure 1. Multiple clients with regular network 2 Background
adapters Communicating with servers using In this Section, we pI‘OVide a brief background about TOEs

RDDP aware network adapters. and the RDDP protocol stack standard.
2.1 TCP Offload Engines

The processing of traditional protocols such as TCP/IP and
UDP/IP is accomplished by software running on the central
tecture can not survive unless it maintains compatibilitthw processor, CI.DU or microprocessor, of the server.  As net-
the existing and widely used network infrastructure. work connections _scale beyond Gbps speeds, the CPU _be-

Thus, for a wide-spread acceptance of the RDDP stack twotomes burdened with the large amount of protocol processing
im ort’ant extensions seem to be quite necessar " " “required. Resource-intensive memory copies, checksum com

P g Y- putation, interrupts, and reassembling of out-of-ordekpts

1. Let us consider a scenario where a server handles rePut @ tremendous amount of load on the host CPU. In high-
quests from various client nodes (Figure 1). In this sce- speed networks, the CPU has to dedicate more processing to
nario, for performance reasons, it is desirable for the handle the network traffic than to the applications it is run-
server to use the RDDP interface for all communication Ning- TCP Offload Engines (TOEs) [23] are emerging as a so-
and might use an RDDP offloaded network adapter. Thelution to limit the processing required by CPUs for network-
client on the other hand mighNOT be equipped with ~ 'Ng- o _ .
an RDDP aware network card (e.g., it might use a reg- 1he basic idea of a TOE is to offload the processing of pro-
ular Fast Ethernet or Gigabit Ethernet adapter or even atocols from the host processor to the hardware on the adapter
TOE). For such and various other scenarios, it becomes0" in the system. A TOE can be implemented with a network
quite necessary to have a software implementation of thePrOCessor and firmware, specialized ASICs, or a combination
RDDP stack on such networks in order to maintain com- ©f both. Most TOE implementations available in the market

patibility with the hardware offloaded RDDP implemen- concentrate on offloading the TCP and IP processing, while a
tations. few of them focus on other protocols such as UDP/IP.

As a precursor to complete protocol offloading, some op-
2. Thoughthe RDDP interface provides a richer feature-seterating systems started incorporating support for feattoe

as compared to the sockets interface, it requires appli-offioad some compute-intensive features from the host to
cations to be rewritten with this interface. While this the underlying adapter, e.g., checksum computation. But as
is not a concern for new applications, it is quite cum- Ethernet speeds increased beyond Ghbps, the need for fur-
bersome and impractical to port existing applications to ther protocol processing offload became a clear requirement
use this new interface. Thus, it is desirable to have anSome GigE adapters complemented this requirement by of-
extended sockets interface which allows existing appli- floading TCP/IP and UDP/IP segmentation onto the network
cations to run directly without any modifications and at adapter [13, 8]. With the advent of multi-gigabit networks,
the same time allows a richer feature set including zero- the host-processing requirements became so burdensome tha
copy, asynchronous and one-sided communication. they ultimately led to adapter solutions witbmplete proto-

| | Id like to h ft tack which SO0

n general, we would like to have a software stack whic . .

Wouglld provide both the above mentioned extensions for regu-2'2 RDDP Specification Overview

lar Ethernet network adapters as well as TOEs. In this paper, The RDDP protocol stack usually comprises of three proto-
however, we focus only on regular Ethernet adapters and de<ol layers other than the TCP/IP protocol stack: (i) RDMA
sign and implement a software stack to provide both theseinterface, (ii) Direct Data Placement (DDP) layer and (iii)
extensions. Specifically, (i) the software stack providgdia Marker PDU Aligned (MPA) layer.

cations with a sockets interface that has been extended with The RDMA layer is a thin interface which allows applica-
the rich RDDP features and (ii) it is capable of emulating the tions to interact with the DDP layer. The DDP layer uses an

Also, the interface exposed by the RDDP network is no longer
sockets; it is a much richer and newer interface. As several
network vendors have learnt it the hard way, a network archi-



IP based reliable protocol stack such as TCP/IP to performforwarding algorithms depending on the IP address of the des
the actual data transmission. The MPA stack is an extensiortination node(s). This requires the forwarding to take platc

to the TCP/IP stack in order to maintain backward compati- the IP layer. Thus, there might be a possibility of fragmen-

bility with the existing infrastructure. Details about tB®P tation of the segment at the IP layer (since this switch might
and MPA layers are provided in Sections 2.2.1 and 2.2.2 re-not be aware of DDP). In this case we rely on the re-assembly
spectively. mechanism of IP to deliver the complete segment. Though

this requires buffering of data, there is no loss of funcidg
_ with these kind of switches.
2.2.1 Direct Data Placement (DDP) Layer 1V (or above) Switches: Layer IV switches are proto-

DDP standard was developed to serve two purposes. FirstFOI specific and capable of making more intelligent decision

the protocol should be able to provide high performance in regarding th.e fc_)rwarding Qf the arriving message segments.
SAN and other controlled environments by utilizing an of- The forwarding in these swnche; takes place at _the TCP.layer
floaded protocol stack and zero-copy data transfer betweenl "€ modern load-balancers (which fall under this categéry o

host memories. Second, the protocol should maintain compatSWitCheS) allow a hardware based forwarding of the incom-

ibility with the existing IP infrastructure using an implem- ing segments. They support optimization techniques such as
tation over an IP based reliable transport layer stack. Main

TCP Splicing [7] in their implementation. The problem with
taining these two, sometimes contradicting, featureslues such an implementation is that, there need not be a one-to-

novel designs for several aspects. We describe some of thesB"® correspo_ndence bereen the segments coming in aT‘d t_he
in this section. segments going out. This means that the segments coming in

In-Order Delivery and Out-of-Order Placement: DDP might be re-fragmented and/or re-assembled at the switch.

relies on de-coupling of placement and delivery of messages 't IS t0 be noted that the segments coming in-order would
i.e., placing the data in the user buffer is performed in a de- N0t Pe effected by this. However, for segments arriving out
coupled manner with informing the application that the data O_f order, this _m|ght require buffgrlng at the receiver node,
has been placed in its buffer. In this approach, the sendersince the recelyercannot recognize the DDP headers for each
breaks the message into multiple segments of MTU size; thesegmentsj This mandates that the protocol not assume the
receiver places each segment directly into the user bp#er, §elf-cqnta|nme_nt Pmpe”y at the receiver end, arjd add-addi
forms book-keeping to keep track of the data that has alread)}'onal information in each segment to help recognize the DDP
been placed and once all the data has been placed, informgeader'

the user about the arrival of the data. This approach has two

benefits: (i) there are no copies involved in this approach2.2.2 Marker PDU Aligned (MPA)

and (ii) suppose a segment is dropped, the future segment?n case of
do not need to be buffered till this segment arrives; they can
directly be placed into the user buffer as and when they ar-
rive. The approach used, however, involves two important
features to be satisfied by each segment: Self-Describitg an
Self-Contained segments.

The Self-Describing property of segments involves adding
enough information in the segment header so that each seg- o A deterministic way of determining the segment bound-
ment can individually be placed at the appropriate location aries are preferred.
without any information from the other segments. The in-
formation contained in the segment includes the Message Se- e It should enable out-of-order placement of segments. In
guence Number (MSN), the Offset in the message buffer to the sense, the placement of a segment must not require
which the segment has to be placed (MO) and others. Self- information from any other segment.

Containment of segments involves making sure that each seg-

ment contains either a part of a single message, or the whole ® It should contain a stronger data integrity check like the
of a number of messages, but not parts of more than one mes-  Cyclic Redundancy Check (CRC).

Siﬂgigae Box Fragmentation: DDP is an end-to-end proto- The solution to this problem involves the d_evelopr_nent of
col. The intermediate nodes do not have to support DDP. Thisthe Marker PDU Aligned (MPA) protocol [9]. Figure 2 illus-
means that the nodes which forward the segments betweelfates the new segmentformatwith MPA. This new segmentis
two DDP nodes, do not have to follow the DDP specifica- known as the FPDU or the Fra_mlng Protocol Data Unit. The
tions. In other words, DDP is transparent to switches with Ip FPDU format has three essential changes:

forwarding and routing. However, this might lead to a prob-
lem known as “Middle Box Fragmentation” for Layer IV or
above switches.

Layer IIl Switches: Layer I swit(_:hes can be typically 2pDU stands for a Protocol Data Unit; essentially a unit ofdata seg-
thought of as the routers. These switches use more intellige ment of data given by the layer above it, the DDP layer in thisec

‘Middle Box Fragmentation”, the self-containmhen
property of the segments might not hold true. The solution fo
this problem needs to have the following properties:

e It must be independent of the segmentation algorithm
used by TCP or any layer below it.

e Markers: Strips of data to point to the DDP header in
case of middle box fragmentation




e Cyclic Redundancy Check (CRC): A Stronger Data In- the traditional host-based TCP/IP sockets for regular iEthe
tegrity Check net networks or a High Performance Sockets layer on top of
TOESs [10] or other POEs. For applications whig® use the
richer DDP interface, the extended sockets interface niaps t
calls to appropriate calls in the interface provided by the u
derlying DDP layer. Again, the underlying DDP layer could

e Segment Pad Bytes

DDP ULP Payload (IF ANY) be a software implementation of DDP (for regul_ar Ethernet
Header network adapters or TOES) or a hardware DDP implementa-
tion.
pad CRC . In order to e>§tend the sockets in_terface to support theriche
interface provided by DDP, certain sockets based calls need
¢ ¢ to be aware of the existence of DDP. The setsockopt() system
- call, for example, is a standard sockets call. But, it candeelu
Hedder ULP Payload (IF ANY) to set a given socket tbDDPMODE. All future communica-
tion using this socket will be transferred using the DDP gran
{ Segment Length f Marker port layer. Furthery ead()_, wite() and seyeral other
socket calls need to check if the socket mode is s&D&-
Figure 2. Marker PDU Aligned (MPA) protocol MODE before carrying out any communication. This requires
Segment format modifications to these calls, while making sure that exgstin

sockets applications (which do not use the extended sockets
The markers placed as a part of the MPA protocol are stripsinterface) are not hampered.
of data pointing to the MPA header and spaced uniformly In our implementation of the extended sockets interface, we
based on the TCP sequence number. This provides the recarried this out by overloading the standéitat library using
ceiver with a deterministic way to find the markers in the re- our own extended sockets interface. This library first ceeck
ceived segments and eventually find the right header for thewhether a given socket is currently @DDPMODE. If it is, it
segment. carries out the standard DDP procedures to transmit the data
o ) ) If it is not, the extended sockets interface dynamicallydba

3 Designing Issues and Implementation Details  thelibc library to pass on the control to the traditional sockets

To provide compatibility for regular Ethernet network interface forthe particular call.
adapters with hardware offloaded RDDP implementations,we3 2 User-Level DDP
propose a software stack to be used on the various nodes. We ) ) ) ]
break down the stack into two layers, namely, Ex¢ended In this apprpach, we designed and implemented the entire
sockets interface and thesoftware RDDP layer. Amongst RD.DP.stack in user space above the sockets layer (Figure 3a).
these two layers, thExtended sockets interface is generic for B(_eln_g |mplement_ed in user-space and above thg sockets layer
all kinds of RDDP implementations; for example it can be this implementation is very portable across various hgrdwa
used over theoftware RDDP layer for regular Ethernet net-  &nd software platfornis However, the performance it can
works presented in this paper, ovesoftware RDDP layer for deliver might not be opUmaI. Extractlng the maximum possi-
TOEs, or over hardware offloaded RDDP implementations, P& Performance for this implementation requires efficamt
Further, for thesoftware RDDP layer for regular Ethernetnet-  1utions for several issues including (i) supporting gatbps
works, we propose two kinds of implementations: user-level €rations, (ii) supporting non-blocking operations, (agyn-
DDP and kernel-level DDP. Applications, however, only in- Chronous communication, (iv) handling shared queues durin
teract with the extended sockets interface which uses the ap@Synchronous communication and several others. In this sec
propriate RDDP stack available on the system. The differenttion, we discuss some of these issues and propose various so-
implementations of the stack are illustrated in Figure 3his  Utions to handle these issues. o
paper, we only concentrate on the design and implementation G&ther operations supported by the DDP specifications:
of the stack on regular Ethernet network adapters (Figuaes 3 The DDP specification defines gather operations for a list of

and 3b). data segments to be transmitted. Since, the user-level DDP
implementation uses TCP as the underlying mode of commu-
3.1 Extended Sockets Interface nication, there are interesting challenges to supporttitis

The extended sockets interface is designed two serve fwdPut any additional copy operations. Some of the approaches

purposes. First, it provides a transparent compatibility f we considered are as follows:

existing sockets applications to run. Second, it exposes th 1 1 simplest approach would be to copy data into a stan-

richer interface provided by RDDP to the applications te uti

lize as and when required. For existing sockets application ~ *Though the user-level DDP implementation is mostly in ther«space,

(WhiCh do not use the richer DDP interface) the extended it requires a small patch in the kernel to extend the MPA CRDdtude the
. . ! TCP header too and to provide information about the TCP segueumbers

sockets interface just passes on the control to the underlyyseq in the connection in order to place the markers at apipteplaces (this

ing sockets layer. This underlying sockets layer could be cannot be done from user-space).
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Sender Receiver

dard buffer and send the data out from this buffer. This

approach is very simple but would require an extra copy sesockon(| | ; setsockopt(
of the data. D
H ost_sen : i i 3 post_recv()
2. The second approach is to use the scatter-gather readv() * s |

and writev() calls provided by the traditional sockets in-
terface. Though in theory traditional sockets supports
scatter/gather of data using readv() and writev() calls,
the actual implementation of these calls is specific to the
kernel. Itis possible (as is currently implemented in the
2.4 xlinux kernels) that the data in these list of buffers be
sent out as different messages and not aggregated into a
single message. While this is perfectly fine with TCP, it
creates a lot of fragmentation for DDP, forcing it to have
additional buffering to take care of this.

I
Async threads

< recv_done()

Main thread

Figure 4. Asynchronous Threads Based Non-

3. The third approachis to use the TCRK mechanism Blocking Operations

provided by TCP/IP. The TCRORK socket option al- ) . )

lows data to be pushed into the socket buffer. However, 9V€S th_e fI_eX|b|I|ty of a shared physical address space for
until the entire socket buffer is full, data is not sent onto th€ application and the asynchronous threads. The ptt(jeads
the network. This allows us to copy all the data from the specification states that gll pthreads should share Fhe same
list of the application buffers directly into the TCP socket Process ID (pid). Operating Systems such as Solaris follow
buffers before sending them out on to the network, thus th|s spec_lflcanor_l._ However, due to the fl_at archﬁectu_re of
saving an additional copy and at the same time guaran-'—'nux' this specification was not followed in the Linux im-

teeing that all the segments are sent out as a single mesPlementation. This means that all pthreads() have a diftere
sage. PID in Linux. We use this to carry out inter-thread communi-

cation using inter-process communication (IPC) primgive

Non-blocking communication operations support: As Asynchronous communication supporting non-blocking
with RDDP, the extended sockets also supports non-blockingoperations: In the previous issue (non-blocking communica-
communication operations. This means that the applicationtion operations support), we chose to use pthreads to allow
layer can just post a send descriptor; once this is donenit ca cloning of virtual address space between the processes: Com
carry out with its computation and check for completion at a munication between the threads was intended to be carried
later time. In our approach, we use a multi-threaded designf out using IPC calls. The DDP specification does not allow a
user-level DDP to allow non-blocking communication opera- shared queue for the multiple sockets in an applicationhEac
tions (Figure 4). As shown in the figure, the application#iidre  socket has separate send and receive work queues where de-
posts a send and a receive to the asynchronous threads and rgeriptors posted for that socket are placed. We use UNIX
turns control to the application; these asynchronous ttwea socket connections between the main thread and the asyn-
take care of the actual data transmission for send and rechronous threads. The first socket seDIOPMODE opens a
ceive, respectively. To allow the data movement between theconnection with the asynchronous threads and all subsequen
threads, we use pthreads() rather than fork(). This approac sockets use this connection in a persistent manner. ThH@Dpt



allows the main thread to post descriptors in a non-blockingcommunication processes such as buffer pinning, address
manner (since the descriptor is copied to the socket buffer)translation between virtual and physical addresses, diesd
and at the same time allows the asynchronous thread to useperations are required mainly to achieve a zero-copy data
asel ect () call to make progress on all tHeDPMODE transmission on RDDP offloaded network adapters. Though
sockets as well as the inter-process communication. Ithgeto this is not critical for the kernel-level DDP implementatias
noted that though the descriptor involves an additionalcop it anyway performs a copy, this can protect the buffer from
by using this approach, the size of a descriptor is typically being swapped out and avoid the additional overhead for page
very small (around 60 bytes in the current implementation), fetching. Hence, in our approach, we do pin the user-buffer.
so this copy does not affect the performance too much. Efficiently handling out-of-order segments: DDP allows
out-of-order placement of data. This means that out-o&ord
segments can be directly placed into the user-buffer withou

The kernel-level DDP is built directly over the TCP/IP stack wgiting forthe intermediate data to bg received. In qurgtgsi
bypassing the traditional sockets layer as shown in Fighre 3 this is handled by placing the data directly and maintairing

This implementation requires modifications to the kernel an queue of received sggment sequence numbers. At this point,
technically, the received data segments present in theekern

hence is not as portable as the user-level implementation. be freed h iod i h buffer. H
However, it can deliver a better performance as compared tg¢@n e freed once they are copied into the user buffer. How-

the user-level DDP. The kernel-level design of DDP has sev-€Ver: the actual sequence numbers of the received segments

eral issues and design challenges. Some of these issues artj® used by TCP for acknowledgmgnts, re-tra_nsm|SS|ons,_etc
the solutions chosen for them are presented in this section. Hence, to allow TCP to proceeql with these without any hin-

Though most part of the DDP implementation can be Olonedrance, we defer the actual fre’elng of these segmen_tsetlﬂ th
completely above the TCP stack by just inserting modules S€auence numbers cross TCP’s unacknowledged window.
(with appropriate symbols exported from the TCP stack), 4
there are a number of changes that are required for the TCP
stack itself. For example, ignoring the remote socket buffe In this section, we perform experimental evaluations fer th
size, efficiently handling out-of-order segments, etc.uies extended sockets interface using the user- and kerndl-leve
direct changes in the core kernel. This forced us to recampil DDP implementations. Due to time constraints, we have per-
the linux kernel as a patched kernel. We have modified theformed evaluations over a 1Gbps network currently; we hope
base kernel.org kernel version 2.4.18 to the patched kesnel to presentresults for a 10-Gigabit Ethernet network toagur
facilitate these changes. the camera-ready version of the paper.

Immediate copy to user buffers: Since DDP provides non- The experimental test-bed used is as follows: Two Pentium
blocking communication, copying the received data to the Ill 700MHz Quad machines, each with an L2-cache size of
user buffers is a tricky issue. One simple solution is to copy 1 MB and 1 GB of main memory. The interconnect was a
the message to the user buffer when the application calls &Gigabit Ethernet network with Alteon NICs on each machine
completion function, i.e., when the data is received theder ~ connected using a Packet Engine switch. We used the Red-
just keeps it with itself and when the application checksiwit Hat 9.0 linux distribution installed with the kernel.orgrkel
the kernel if the data has arrived, the actual copy to the usenversion 2.4.18.
buffer is performed. This approach, hpwever, loses qut oN4 1 Micro-benchmark Evaluation
the advantages of non-blocking operations as the appitati
has to block waiting for the data to be copied while checking In this section, we present the ping-pong latency and uni-
for the completion of the data transfer. Further, this appho  directional bandwidth achieved by two kinds of tests. In the
requires another kernel trap to perform the copy operation. first set of tests, we measure the performance achieved for

The approach we used in our implementation is to immedi- standard sockets based applications; for such applicatibe
ately copy the received message to the user buffer as soon asxtended sockets interface does basic processing to ensure
the kernel gets the message. Animportantissue to be noted ithat the applications do not want to utilize the extended in-
this approach is that since multiple processes can be rgnnin terface (by checking if th® DPMODE is set) and passes on
on the system at the same time, the current process scheduletie control to the traditional sockets layer. In the secdnd k
can be different with the owner of the user buffer for the mes- of tests, we use applications which utilize the extensians p
sage; thus we need a mechanism to access the user buffer everded by the sockets interface based on the RDDP interface;
when the process is not currently scheduled. To do this, wefor such applications, the extended sockets interfaceesil
pin the user buffer (prevent it from being swapped out) and the software RDDP implementations to carry out the commu-
map it to a kernel memory area. This ensures that the ker-nication.
nel memory area and the user buffer point to the same physi- The latency test is carried out in a standard ping-pong fash-
cal address space. Thus, when the data arrives, it is immediion. The sender sends a message and waits for a reply from
ately copied to the kernel memory area and is automaticallyreceiver. The time for this is recorded by the sender and it is
reflected into the user buffer. divided by two to get the one-way latency. For measuring the

User buffer registration: The DDP specification defines bandwidth, a simple window based approach was followed.
an API for the buffer registration, which performs pre- The sender send¥indowSize number of messages and wait

3.3 Kernel-Level DDP

Experimental Evaluation
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Figure 5. Micro-Benchmark Evaluation for applications usi ng the standard sockets interface: (a) Ping-

pong latency and (b) Uni-directional bandwidth

for a message from the receiver for evéryindowSize mes- for the n'" packet before the subsequent packets are copied
sages. into the user buffer losing out on any opportunity to pipelin
The results for the applications with the standard unmatlifie the copy. Since the user-level DDP implementation is on top
sockets interface are presented in Figure 5. As shown in theof the sockets interface, it too suffers from this issue. How
figure, the extended sockets interface adds very minimatove ever, the kernel-level DDP can directly place thé" pack-
head to existing sockets applications for both the latemcy a ets without waiting the:!” packet as we have described in
the bandwidth tests. Section 3.3. This allows a better pipelining of the copies fo
For the applications using the extended interface, thdteesu the kernel-level DDP implementation as compared to TCP/IP
are shown in Figure 6. We can see that the user-level DDP andas well as the user-level DDP implementation. It is to be
kernel-level DDP incur an overhead of about 8@nd s noted that for small amounts of packet drops, TCP/IP goes
comparing with TCP/IP, respectively. There are several rea to fast retransmit mode and such pipelining would be cilitica
sons for this overhead. First, the user- and kernel-levePDD for its performance. However, as the packet loss rate besome
implementations are built over the sockets and TCP/IP respe very high, TCP/IP goes to congestion mode and drastically
tively; so they are not expected to give a better performancereduces the congestion window; in this stage, we do not ex-
than TCP/IP itself. Second, the user-level DDP has addition pectthe kernel-level DDP implementation to give a signiftca
threads for non-blocking operations and requires IPC bettwe improvement in the performance.
threads. Also, the user-level DDP performslocking foredar ~ Due to time restrictions, we have not been able to get the
gueues between threads. However, it is to be noted that theelevant data for this experiment and hope to present this in
basic purpose of these implementations is to allow compati-the final version of the paper.
bility for regular network adapters with RDDP aware network
adapters and the performance is not the primary goal of thesé6 Related Work
implementation. We can observe that both user- and kernel- ) )
level DDP can achieve about 550Mbps in the peak bandwidth, S€veral researchers, including Feng et. al. and ourselves,
Aninteresting resultin the figure is that the bandwidth @frus ~ N@ve performed a significant amount of researchers on the
and kernel-level DDP for small and medium message sizes i°€formance of RDDP-unaware network adapters including
lesser compared to TCP/IP. This is mainly because they disT@9ular Ethernet-based network adapters [12, 11, 4] as well
able Nagle’s algorithm in order to try to maintain message &5 1CP Offload Engines [10, 2]. Also, there has been a lot
boundaries. For large messages, we see a degradation corH—f r_esearch for |mplement|n_g hlgh performance sockets over
pared to TCP/IP due to the additional overhead of CRC data¥arious protocol offload engines including TOEs [19, 18,,5, 6
integrity performed by the DDP implementations. We see a_3' 16, 17]. However, all this I|teratur_e focuses on the impro
slightly better performance for user-level DDP as compared N9 the performance of the sockets interface for host-ba_sed
to kernel-level DDP for large messages. We are not entirelyomoaded protocol stacks and does not deal with any kind of

sure about the reason for this; we are currently to analyzingEXtensionsto it.

the stacks in more detail to understand this behavior. Shivam et. al. had implemented a new protocol stack,
EMP [21, 20], on top of Gigabit Ethernet which provides
4.2 Impact of Packet Loss RDDP like features to the applications. However, this pro-

tocol has a completely different interface and cannot sttppo
In this section we compare the behavior of user-level DDP sockets based applications directly. Further, this puatsc
with that of kernel-level DDP when there are packet lossesnot IP compatible and thus cannot be used in a WAN environ-
in the system. In TCP/IP sockets, if thé" packet is lost  ment unlike TOEs or RDDP aware network adapters. We had
and them!” (m > n) packet arrived, the receiver has to wait previously implemented a high performance sockets imple-
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Figure 6. Micro-Benchmark Evaluation for applications usi ng the extended RDDP interface: (a) Ping-pong

latency and (b) Uni-directional bandwidth

mentation oveEMP [5]; while this allows compatibility for RDDP), TCP Offload Engines (software RDDP) and RDDP

existing sockets applications, it still does not allow IRco  offloaded network adapters (hardware RDDP). Second, we

patibility. Further, this layer only provides the basic keis are developing a simulator which can provide details about

interface with no RDDP based extensions as such. the actual architectural requirements for different desigf
Jagana et. al. have developed a software system to prothe offloaded RDDP stack.

vide kernel support for RDDP and other RDMA aware net-

works [15]. This work can be considered a complementary References
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