
Exploiting Remote Memory in InfiniBand Clusters using a High Performance
Network Block Device (HPBD)

SHUANG LIANG, RANJIT NORONHA, AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-5/05-TR36



Exploiting Remote Memory in InfiniBand Clusters using a High Performance
Network Block Device (HPBD)∗

Shuang Liang Ranjit Noronha Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210
{liangs,noronha,panda}@cse.ohio-state.edu

Abstract
Traditionally, remote memory accesses in cluster sys-

tems are very expensive operations, which perform 20-100
times slower than local memory accesses. Modern RDMA
capable networks such as InfiniBand and Quadrics provide
low latency of a few microseconds and high bandwidth of
up to 10 Gbps. This has made remote memory much closer
to the local memory system. Using remote idle memory to
enhance local memory hierarchy thus becomes an attractive
choice, especially for data intensive applications in cluster
environment. In this paper, we take the challenge to de-
sign a remote paging system for remote memory utilization
in InfiniBand clusters. We present the design and imple-
mentation of a high performance networking block device
(HPBD), which serves as a swap device of kernel Virtual
Memory (VM) system for efficient page transfer to/from re-
mote memory servers. Our experiments show that using
HPBD, quick sort performs only 1.45 times slower than lo-
cal memory system, and up to 21 times faster than local
disk. And our design is completely transparent to user ap-
plications. To the best of our knowledge, it is the first work
of a remote pager design using InfiniBand for remote mem-
ory utilization.

1 Introduction

Moore’s law dictates that the computing power of a mod-
ern CPU doubles approximately every 18 months. Similar
trends apply to the capacity of modern memory and disk
systems. This allows modern systems to quickly process
large amounts of data “in-memory”, allowing for increased
throughput. It also allows application developers to design
and implement algorithms previously considered impracti-
cal to exploit the resource rich nature of these systems.

∗This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429, and #CCR-0311542.

However, even with the dramatic increase in memory
capacities, modern applications have been quickly keeping
pace with and even exceeding the resources of these sys-
tems. For example, modern databases typically maintain
millions or even billions of records and are ever increasing.
To keep the working set in memory for database operations
demands a high volume of memory space, and may exceed
what the computer systems can provide. Swapping to disk
in these cases may severely impinge on the performance of
these systems.

Modern networking technologies like InfiniBand, 10
GigE, Myrinet, and Quadrics [6, 14, 16] provide improved
performance to the end-application users. This is both
in terms of low-latency of a few micro-seconds and high
throughput of up to 10 Gbps. In addition, they allow the
user to use modern communication techniques like Remote
Direct Memory Access (RDMA), atomic operations, and
hardware multicast. RDMA allows access to a remote com-
puter’s memory space without involvement from the remote
computer’s CPU. This makes it possible for the application
developers to design efficient communication protocols.

With the low latencies of networking technologies, it is
natural to ask whether we can take advantage of RDMA
primitives to access remote memory efficiently and enhance
the memory hierarchy. If yes, how can such a memory sys-
tem be designed, so that its performance is close to that of
main memory locally available to a processor? Addition-
ally, how can such a system be designed so that the impact
of remote memory accesses can have a minimal impact on
the remote node?

In this paper, we take on the challenge of designing such
a system. We aim at achieving the following goals:

• Design a modern remote memory system exploiting
efficient low-latency high-bandwidth communication,
which can deliver comparable performance to local
memory system.

1



• Evaluate the different design trade-offs such as a ker-
nel level design vs. a user level design, and study the
network performance impact on our remote memory
system.

• Enable applications to benefit from our systems trans-
parently.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 provides the relevant
background. Section 4 and 5 present the design and imple-
mentation of the remote memory system. An experimental
evaluation of the remote memory system is discussed in sec-
tion 6. We conclude this paper in section 7.

2 Related Work

There have been several investigations into using remote
memory for different purposes. These studies, as shown in
Figure 1, may broadly be classified into simulation based
or implementations based; global resource management or
loosely cooperative system; user-level design or kernel-level
design, and finally User-Level Protocol(ULP) or TCP/IP
based.

The simulation based studies include the study of Job
Migration and Network RAM (JMNRM) [22], Parallel Net-
work RAM (PNR) [15], Cooperative Caching (COCA) [2]
and Remote Paging System (RPS) [4]. In JMNRM and
PNR, impact of combining network memory and job mi-
gration for improved system scalability and throughput are
studied, and PNR is proposed to utilize global memory for
parallel scientific programs. COCA focuses on global file
caching to improve the file cache hit ratio and reduce re-
sponse time. RPS proposed the idea of dynamically using
remote workstation’s memory for paging store, and a queue
model is used to predict performance.

Studies on MOSIX [1] and the Global Memory Manage-
ment (GMM) [5] address the problem of utilizing remote
memory resources by global management from a kernel per-
spective. MOSIX is a software tool design for Unix-like
operating system to migrate jobs transparently from heavily
loaded servers to lightly loaded servers. It is implemented
as a set of adaptive resource sharing algorithms in the ker-
nel. GMM is a global memory system for OSF/1 worksta-
tion clusters. It is designed as a module to function together
with the node’s VM system, page-out daemon and unified
buffer cache. S. Koussih et. al. studied utilizing cluster
idle memory from a user level perspective and designed a
run time system DoDo [8] for remote memory exploitation.
It is implemented on top of a U-NET [19] communication
architecture and provide a socket interface for portability.

Network RAM Disk (NRD) [10] and Reliable Remote
Memory Pager (RRMP) [12] focus on reliability studies of
remote memory utilization, either from the perspective of

ramdisk or remote pager. E. Anderson and J. Neefe studied
design issues of Network RAM and proposed a user-level
signal handling based implementation [3] .

Another related work is GNBD/VIA [7], in which K.
Kim et. al. proposed a kernel level socket interface over
VIA KVIPL library for GNBD (A Network Block Device
used by GFS [17]) to utilize the performance provided by
VIA, a user-level protocol, for file system performance im-
provement. It focuses on using user-level networking for
remote file transfer.

Our work is different from the previous work in that
we focus on the study of network performance impact on
utilizing remote memory for paging, and propose an opti-
mized design to fully utilize the InfiniBand features such as
RDMA operations and deliver a performance comparably
to local memory systems. It is a kernel level design, and
completely transparent to user applications.

�����������	�


���
����������������

��������
�������������������

�� !"�#���
���
������������$%&!%�

'���(��
���
�������������%�

$�$��)��
�$%&!%�

*�����))�+��%��#(�

�% �,�

����#-��
���
���������

���%�#)��
���
���������

Figure 1. Modern work in designing remote memory sys-
tem

3. Background

In this section, we provide the background of our work.
Our work focuses on using low latency and high bandwidth
network to design a remote memory system, so that it can
perform comparable as local memory system. Before we
present the design, an overview of InfiniBand, Linux swap-
ping mechanism and Network Block Device is introduced.

3.1. Infiniband Overview

The InfiniBand Architecture (IBA) [6] is a specification
designed for interconnecting processing nodes, I/O nodes
and devices in a system area network. It defines a commu-
nication architecture from the switched network fabric to
transport layer communication interface for inter-processor

2



communication and I/O. In an InfiniBand network, process-
ing nodes and I/O nodes are connected to the fabric by
Host Channel Adapters (HCA). HCAs expose a queue-pair
based transport layer interface. The send queue keeps con-
trol information for outgoing messages, while the receive
queue keeps descriptions for incoming message placement
information. Communication requests are submitted to the
queues through descriptors in a non-blocking mode. Com-
pletion of requests are reported through Completion Queues
(CQs), which can be shared among different queue pairs.
Memory registration for communication buffer is required
for communication using InfiniBand. Memory registration
pins down pages in the memory and registers them with the
HCA, and thus can facilitate buffer address translation.

Several service levels are provided in InfiniBand to meet
the needs of QOS. In this paper, we focus on RC (Reliable
Connection based service) for both reliability and perfor-
mance considerations.

For the communication operations, IBA supports both
channel and memory semantics. Therefore, messages
can be delivered using send/receive operations as well as
RDMA operations. In this paper, we take advantage of these
RDMA features for page transfer and offload the client
for request management, thus improving the overall system
performance.

InfiniBand also supports IP emulation IPoIB, with which
IP based application can run directly over InfiniBand trans-
parently. Figure 2 shows the basic latency numbers for
memcpy, RDMA WRITE operation, IPoIB and GigE. We
can see that RDMA WRITE latency is very close to mem-
cpy latency, and provide the potential of significant perfor-
mance improvement for remote paging.

�

���

���

���

���

����

����

����

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�


�
�

�
�
�
�
�

�
�
�
�
�

����������	�



��
�


�
�
�


�
�


�����

��

�����

����

Figure 2. Latency Comparison of Different Networks and
Memcpy Up to 128K

3.2. Linux Swapping Mechanism

Paging is an important part of the kernel’s virtual mem-
ory system (VM). VM manages all system memory re-
sources and sends out page-in requests to swap devices
when there is a page fault. And when free pages avail-
able to VM fall below a threshold, page-out requests will
be triggered by the kernel thread kswapd. Multiple priori-
tized swap devices are supported by the kernel. The kernel
chooses to place the page-out data based on the priority of
each swap device. The driver for the corresponding swap
device serves the swap requests from kernel as normal I/O
requests and deal with device specific operations.

Thus, designing a block device driver which supports I/O
requests to/from remote nodes becomes a good choice for
remote pager design. In this paper, we take this approach.
It is completely transparent to applications, and can be ben-
eficial to overall system performance. More details will be
discussed in the section 4.1.

3.3. Network Block Device

Network Block Device [11] is a software abstraction of
local block storage at the block device layer. The idea is to
simulate a local device interface to the upper layer, while
allocate and deallocate resources over the network for re-
mote resource utilization. It is widely used in file system
for data replication [17]. NBD is a Linux implementation
of such device over TCP/IP using kernel-level socket inter-
face for network communication; and it is available in the
Linux source tree.

As motivated by the network performance impact studies
on remote paging, we compare the performance of HPBD
with NBD. We activate this device over GigE and IPoIB for
our experiments. As of Linux-2.4 kernel, a single NBD de-
vice can only be served by a single remote server. Though
we are able to use NBD as a swap device in our experi-
ment, deadlock is reported [11] because of memory alloca-
tion problem in TCP networking.

4. Proposed Design

In this section, we analyze the design alternatives and
present our design of HPBD.

4.1. Design Alternatives

To implement a remote pager, several approaches could
be considered. The device driver approach taken by this
paper is introduced in section 3.2. Another approach is to
modify the dynamic memory allocation library implementa-
tion [3, 8], and provide remote memory allocation capabili-
ties for requests that can’t be filled by local memory system.
This approach is feasible, but several disadvantages are in-
herent for the design.

3



• Pages are still subject to disk paging by the underlying
OS unless the relevant page-out requests in the kernel
are intercepted and passed to the modified allocator,
which usually runs at user space. By doing so, the al-
locator essentially has to implement part of the kernel’s
swapping mechanism.

• To implement the page-in request for the swapped out
pages of the address space, memory pages must be pro-
tected and segmentation fault signal is used for page
fault trapping. These are very expensive operations.
On our testing platform, a single page fault operation
with dummy fault handling incurs an overhead of 11
µsec.

• User space design is not completely application trans-
parent. Either the application needs to use a new allo-
cator explicitly in the program or it has to be compiled
against a new library. Thus legacy applications can’t
run without recompilation.

With the device driver approach, we implement our
driver as a kernel module. Thus, no modification to the
OS is needed, and it can be easily ported to other Linux
based systems. With this approach, the kernel will be in
charge of making page-out decisions based on system wise
page aging with an approximate LRU algorithm. Also,
caching mechanism is in place to facilitate page sharing,
swap buffering and race condition handling. Our experience
shows that it is an efficient solution and is running success-
fully on both 32bit and 64bit systems. Figure 3 presents the
system architecture of our remote paging system.

Kernel−Space

User−Space

HPBD

Fault

Page

Node 1
Page Fault

Local Disk

Network

SWAP DEVICE

Virtual Memory Manager

Apps
Node 2 Node 3

Thread
Server

Thread
Server

Figure 3. Remote Memory System Architecture

4.2. Design Challenges

With the device driver approach in mind, our design
challenge is to propose a design that can leverage the In-
finiBand technology for paging requests in kernel space
that can deliver performance. Most work on InfiniBand de-
signs provide solutions for user-space communication sys-
tems such as MPI and PVFS [9, 21]. Design of HPBD
must address several additional issues for swap device ker-
nel module design:

• Memory registration and buffer management: Infini-
Band, as all the other high performance interconnects
depends on Network Interface (NI) aware DMAable
buffers to implement data transfer. In InfiniBand, com-
munication buffers must be registered with the HCA
before message passing can start. As shown in Fig-
ure 4, memory registration operation is a costly oper-
ation. Thus in most designs, applications allocate a
large memory buffer pool and pre-register it, avoiding
the repetitive registration cost to minimize the over-
head. This can be done by a user application in a trans-
parent way as in [9], which implements a malloc hook
for pre-registered buffer allocation and deallocation.
Though this method is viable with user space applica-
tion, it can’t be used directly for remote paging. Page
requests can potentially come from anywhere in the
paged memory system and be associated with any ap-
plication’s address space. Therefore, pre-registration
is not feasible. While registration on-the-fly remains a
choice, it will be very costly as shown in Figure. 4.

�

��

���

���

���

���

���

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�


�
�

�
�
�
�
�

�
�
�
�
�

����������	�



��
�


�
�
�


�
�


�����������

������

Figure 4. Memory Registration vs. Memcpy Cost

We design a pre-registered memory pool allocator and
copy pages to/from this area for communication. As
page swapping requests are within the range of 4K -

4



127K in size. And for most applications, the average
request size is much smaller than 127K, thus the copy
cost is much cheaper. As the memory pool is a shared
resource, an appropriate size must be specified to avoid
the bottleneck effect.

• Asynchronous communication: In a client-server ar-
chitecture, the swapping process sends out paging re-
quests to remote memory server and wait to be served.
In user space InfiniBand design, this can be accom-
plished by simply polling the completion queue(CQ).
With a kernel based approach, it is not feasible, as most
OS are not preemptive in kernel mode. Asynchronous
communication must be supported in this scenario.
Also at the server side, asynchronous mode can signif-
icantly decrease the host CPU usage by allowing the
server to sleep when no requests are coming.

• Thread safety: As a device driver, HPBD is shared
among all the processes that need to use this device,
thread safety must be ensured. As we take advantage
of the thread safety feature of VAPI [13], the verb in-
terface provided by our InfiniBand stack, our focus
will be mainly on exclusion of the internal device data
structures, such as internal request queues and buffer
management primitives.

• Reliability and error handling: Because failure in
swapping can easily crash the whole system. Thus reli-
ability is an important issue for swap device design. In
[4] and [10], several techniques such as mirroring and
parity are studied for reliability issues. As we choose
RC service as our network transport, it excludes most
of the reliability issues from network. We do not focus
on this issue for this paper.

4.3. Designing HPBD

HPBD is based on client-server architecture, as shown
in Figure 3. It serves the kernel’s paging requests by com-
municating with remote memory servers using native In-
finiBand communication verbs. The client side is a block
swap device driver, which servers I/O requests stream from
the VM system. The server is a ramdisk based user space
program, which provides local memory for paging store.

4.3.1 RDMA operations and Remote Server Design

As one of our motivations for this work, we design HPBD
to show the performance benefit of protocol off-loading net-
work. Thus performance impact of design choices is a ma-
jor issue. We propose to use RDMA operations for perfor-
mance optimizations, and support overlap between RDMA
and memory-copy operations for request processing at the
memory server.

In HPBD, there are two types of messages: control mes-
sage and data message. Control messages are used to send
paging request descriptions and acknowledge request com-
pletions. Data messages are for actual page transfers. In our
design, we use both RDMA READ and RDMA WRITE
operations for data message traffic. The remote memory
server decides the type of RDMA operations based on the
request type. As shown in Figure 5, A RDMA READ op-
eration is used for swap-out paging request to pull data out
of the client, and RDMA WRITE operation for swap-in re-
quest to push data into client. We support RDMA and mem-
cpy overlap by allowing multiple outstanding RDMA oper-
ations, thus host CPU can be utilized for ramdisk operations
while network transfers are in progress.

We choose to make the server initiate the RDMA opera-
tion for several reasons:

In our current design, ramdisk is used as a memory
provider. Since ramdisk is exposed by a file system inter-
face, we can’t directly obtain the memory address of the
server for the client to initiate RDMA operations.

Second, with this architecture the server can potentially
provide any device attached for page store instead of using
main memory only, thus more flexibility is allowed for fu-
ture work.

Third, as we plan to provide a more flexible server de-
sign, which can provide idle memory dynamically. For sim-
ilar reason discussed in section 4.2, pre-registration is not
a feasible solution. Thus, the server can’t export memory
address as a priori for client initiated RDMA operations.

4.3.2 Registration Cache Management

Registration cache is a pre-registered buffer pool, which is
initialized at device load time. The default cache size is
1MB. Memory buffers are allocated by a first-fit algorithm.

Allocation failure must be carefully dealt with, since
swap request failure will potentially crash applications or
even the entire system. A memory allocation wait queue is
designed to accommodate the allocation requests which can
not be filled temporarily. Deallocation of data buffer will
wake up any threads that is on the queue.

One problem with the allocation algorithm is external
fragmentation of the registration buffer pool. This can cause
lots of the complexities in the implementation, and may
cause multiple memcpy operations for a single request, and
negatively impact our system’s performance. To solve the
problem, a merging algorithm is used at buffer deallocation
time. The algorithm checks with neighbor regions of the
current buffer and merges with them if they are free. This
algorithm ensures contiguous buffer allocation for page re-
quests, and its simplicity incurs little overhead.

5



4.3.3 Event Based Asynchronous Communication

Client side performs asynchronous communication using
two threads. One thread is in charge of sending requests
to servers as soon as they are issued by the kernel. The
other thread is in charge of receiving replies from servers.
The receiver works in a bursting manner. It sleeps until a
receive completion event is triggered. When it wakes up,
it processes all the replies that are available and goes back
to sleep for the next event. By this way, the overhead of
repetitive event triggering for clustered replies is avoided.

The server works in a similar way. It processes requests
and issues RDMA operations asynchronously. When all
outstanding RDMA operations and replies are completed,
the server will go to sleep after idling for 200 µsec.

Figure 5. RDMA Design for Remote Memory Server

4.3.4 Flow control

Following the idea of user-level networking [19], Infini-
Band is designed to realize zero-copy message passing.
Such a design would require pre-posted receive buffers to
make message send operation complete successfully. This
introduces the problem of flow control, which is not an issue
for TCP based design for its stream semantics.

Here we use a water-mark to represent available credits.
A client is allowed to send requests to servers only if the
outstanding request number is less than a threshold (which
means the water-mark is above it). If water-mark falls be-
low, requests will be queued until credits are available.

4.3.5 Multiple Server Support

Multiple server support is important to remote pager in
a cluster environment, because only by allowing multiple

nodes to export their memory, cluster-wise idle memory can
be fully utilized. And from the perspective of client, mul-
tiple servers also enable a larger address space that can be
accommodated in the remote memory level of its memory
hierarchy.

In multiple servers scenario, load balancing is a new de-
sign issue. And using data striping or request multiplex-
ing is a traditional way to exploit parallelism. In our case,
it could potentially be used to reduce the impact of copy
cost at the server side. But the 128K bound of a single re-
quest size limits the benefit of such parallelism, since for a
single outstanding RDMA operation, multiple memcpy can
be completed with the overlap capability provided. Thus
server bottleneck is not an issue in our case. We choose
non-striping scheme in our design, and distribute the swap
area across the servers in a blocking pattern.

5. Implementation

In this section, we discuss the implementation details of
the HPBD client driver and the server program.

In the HPBD driver, we associate each minor device
an IBA context, which contains the IBA communication
specific information, such as HCA information, comple-
tion queue, shared registered memory pool and queue pair
arrays. The completion queues are shared among queue
pairs connecting different servers. A socket interface is cre-
ated at the initialize phase for queue pair information ex-
change. Each device maintains a request queue, which con-
tains the outstanding requests to servers. A single request
in the queue may represent multiple physical requests to
different servers depending on the address range and size
of the request. A request will be successfully served when
each physical request is replied with successful acknowl-
edgment.

To implement the event based asynchronous han-
dling of replies, an event handler is associated with
the receive completion queue using the VAPI interface
EVAPI set comp eventh. The handler, when invoked will
wake up a reply processing kernel thread. To support this
mechanism, the server needs to set the solicitation control
field of the send descriptor, thus the HCA driver at the client
can invoke the handler correspondingly.

The request queue and pre-registered memory pool are
shared resources among multiple instances of the driver
and different queue pairs, thus mutual exclusion of accesses
must be ensured.

The server is a typical daemon program. It is able to
serve multiple clients using different swap areas. For each
server process, receive queue is checked periodically for
requests, and RDMA operations are issued accordingly.
RDMA operation completions are checked asynchronously
to support memcpy overlap. Finally, a timer is used to count

6



the server idle time. The server yields the CPU after 200
µsec idle period, a similar VAPI interface described above
is used to wake up the server and notify the new incoming
request.

6. Performance Experiments and Evaluation

6.1. Experiment Setup

The experiments are conducted on a cluster of dual Intel
Xeon 2.66 GHz nodes. Each node has 512 KB L2 cache and
2GB physical memory and PCI-X 133 MHz bus. All nodes
are connected to InfiniBand network using Mellanox 144-
port switch (MTS 14400) and Mellanox MT23108 HCA.
Each node has a 40GB ST340014A ATA/ATAPI-6 hard
disk. The operating system is RedHat 9.0 Linux.

To compare the performance impact of remote paging
with local memory performance and study the impact of
network performance on remote paging, we change the total
local memory size available to the OS and vary the swap-
ping device.

Two testing scenarios are used in our evaluation. In each
scenario, we test with local memory only, swapping over
HPBD, NBD and local disk. And we use the performance of
applications running “in-memory” as the baseline for eval-
uation. Only one server case is reported for NBD, because
as of Linux-2.4 kernel, a single NBD device can only be
served by a single remote server.

For both test scenarios, we use all of the 2GB memory
physically available for local memory performance test.

• single server test swap area setup

In this scenario, we set the local memory size as 512M
and 1G ramdisk at remote server as swap area.

• multiple server test swap area setup

In this scenario, we set the local memory size as 512M
and 512M total swap area is evenly distributed among
the servers. Here we also include the single server re-
sults for this configuration as comparison base.

We use 3 different test programs. One is a micro-
benchmark “testswap”, which allocates a 1GB array and se-
quentially write integers into this array. Second is a quick-
sort algorithm [18], which sorts 256M random generated
integers, whose data set is around 1G on our ia32 platform
as well. We choose this application, because quick-sorting
is a frequently used algorithm for various applications. Im-
provement for sorting over HPBD will provide a ground
for benefits of other applications. Another application is
“Barnes”, which is an application in the Stanford Splash2
suite [20]. It implements the Barnes-Hut method to sim-
ulate the interaction of a system of bodies. We simulate

the interaction between 2097152 bodies. For this configu-
ration, the memory usage of this application incrementally
increases with a largest size of 516M observed. For each
of the tests, we run these applications multiple times and
report the average performance number.

6.2 Microbenchmark Performance Results and
Analysis

In this section, we provide the microbenchmark
testswap’s performance results for single memory server
test. A network overhead analysis is also presented.

As Figure 6 shows, the execution time of testswap in lo-
cal memory is around 5.8 seconds; HPBD is 8.4 seconds.
Thus local memory is only 1.45 times faster than HPBD,
while HPBD is 2.2 times faster than the disk. At the same
time HPBD performs 1.45 times better than GigE, and 1.29
times better than IPoIB.

�

�

�

�

�

��

��

��

��

��

��

��	
�� 
��� ������
�� �������� �
��������

�
�
�
�
�
�

����� �
!
"�	�
#$��%��&

Figure 6. Testswap Execution Time

These results show that network performance has a sig-
nificant impact on the remote pager, and HPBD performs
the best among the three.

The results also show that as network speed approaches
what the memory system can deliver, the host overhead
along the path for swapping becomes an important perfor-
mance factor. From Figure 6, we can see HPBD signifi-
cantly reduce the extra overhead compared to IPoIB, which
shows that simply using TCP/IP protocol over high perfor-
mance network can not truly benefit from the latency fea-
tures. And TCP/IP host overhead becomes an important
overhead on the critical path.

Since NBD-IPoIB and NBD-GigE follow exactly the
same code path above the IP protocol layer, and according
to our profiling for testswap shown in Figure 7, “testswap”
involves messages mostly of size around 120K. By applying

7



Amadahl’s law, we find out that network overhead is only
48% percent of the overhead of GigE and 34.5% for IPoIB.

�

�����

�����

�����

�����

������

������

������

������

������

� �� �� �� �� ��� ��	 ��� ��
 �
� ��� ��� ��� �	� �
�

���������	����
����
�


�
�
�
�

��
����
����

Figure 7. Testswap Average Request Size for Each Re-
quest Cluster

We can not make a direct comparison with HPBD using
Amadahl’s law, because of: a) HPBD does not go through
the TCP/IP stack, which means the host overhead for net-
work processing is less; b) HPBD does some optimization
to overlap the copy overhead and the RDMA time at the
server side, while NBD simply uses blocking mode transfer
for each request and response. Due to Linux asynchronous
I/O for swapping and prefetching for pages, an accurate
measurement of the network latency on the critical path is
not possible either without thorough analysis of the swap-
ping mechanism of the kernel and each run case, which is
beyond the scope of this paper. But a rough estimate with
Amadahl’s law would show that with HPBD, the network
cost is less than 30%, thus host overhead is much more dom-
inant for the performance.

6.3 Application Performance Results

In this section, we present the performance result for ap-
plication tests.

6.3.1 Single Server Performance

For quick sort test, as shown in Figure 8, local memory ex-
ecution time is 94 seconds, while HPBD delivers 138 sec-
onds. Thus memory is only 1.47 times faster than HPBD,
and HPBD is 4.5 times faster than local disk. Among dif-
ferent remote pagers, HPBD is 1.36 times faster than NBD
GigE and 1.13 times faster than IPoIB.

�

���

���

���

���

���

���

���

	
��
� ���� ��������� �������� ����������

�
�
�
�
�
�

� 
�!"��#
$��


Figure 8. Quick Sort Execution Time

For Barnes shown in Figure 9, similar trends are ob-
served. Since Barnes does not perform an intensive swap-
ping activity as quick sort for its relatively small memory
usage, the improvement is less evident.

�

���

���

���

���

���

���

���

	
��
� ���� ��������� �������� ����������

�
�
�
�
�
�

� 
�!"��#
$��


Figure 9. Barnes Execution Time

6.3.2 Multiple Server Performance

Multiple server support allows applications to take advan-
tages of more idle memory from multiple servers. This is
important when memory resources are scarce on a compute
node and contention is intensive. Figure 10 shows the case,
where two quick sort applications sorting 256M integers
respectively are run on a single node in a dual processor
system, where CPU contention is not an issue. It shows

8



that with HPBD, both applications are able to give reason-
able performance compared with the 2G local memory case.
When 50% of local memory is avaiable, HPBD performs
only 1.7 times slower, when only 25% of local memory is
available, HPBD performs 2.5 times slower. While with
only disk paging, the execution time is tremendously high,
which is 36 times of local memory case.

�

����

����

����

����

�����

�����

�����

�����

�����

�����

��	
���� ��	
����

�
�
�
�
�
�


�������	���������������������

�������	����������
��������� ��!���
�"����	����������
��������� ��!���
�"����	��

Figure 10. Quick Sort Execution Time for Two Concurrent
Execution Instances

Dealing with multiple servers involves some extra over-
head, since multiple connections have to be maintained.
Figure 11 presents the execution time up to 16 servers for
quick sort. The number shows HPBD performs similarly
up to 8 servers. For 16 nodes server there is some degrada-
tion. This is due to the HCA design for multiple queue pair
processing.

7. Conclusion and Future Work

In this paper, we study the design issues to use remote
memory for InfiniBand based high-performance clusters.
We analyze the pros and cons of different design alterna-
tives such as kernel level design vs. user level design and
compare different design trade offs. We propose HPBD, a
high performance network block device, and present its de-
sign and implementation. Our experiments show that using
HPBD for remote paging, quick sort runs only 1.45 times
slower than local memory system, and up to 21 times faster
than swapping using local disk. We also identify that host
overhead is a key component for further performance im-
provement for remote paging over high performance inter-
connects clusters.

In our future work, we plan to investigate ways of mini-
mizing host overhead on the swapping critical path and en-

�

��

���

���

���

���

���

���

���

���

���	
�	
�


���

�

�	
�	
�

�����

���	
�	
 ���	
�	
 �

�	
�	
�

�

�	
�	
�

��

�	
�	
�

�
�
�
�
�
�

��	������
���	

Figure 11. Quick Sort Execution Time With Multiple
Servers

able HPBD to utilize cluster wise idle memory in a dynamic
and cooperative manner. We also intend to investigate de-
signs that can eliminate copy cost and fully utilize the zero-
copy feature of RDMA operations.

References

[1] A. Barak, S. Guday, and R. G. Wheeler. The MOSIX
Distributed Operating System: Load Balancing for
UNIX, volume 672. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1993.

[2] M. Dahlin, R. Wang, T. E. Anderson, and D. A. Patter-
son. Cooperative caching: Using remote client mem-
ory to improve file system performance. In Operating
Systems Design and Implementation, pages 267–280,
1994.

[3] E. Anderson and J. Neefe. An exploration of network
RAM. Technical Report CSD-98-1000, UC Berkley,
1998.

[4] E. Felten and J. Zahorjan. Issues in the implementa-
tion of a remote memory paging system. Technical
Report 91-03-09, University of Washington, 1991.

[5] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Kar-
lin, H. M. Levy, and C. A. Thekkath. Implementing
global memory management in a workstation cluster.
In SOSP ’95: Proceedings of the fifteenth ACM sym-
posium on Operating systems principles, pages 201–
212, New York, NY, USA, 1995. ACM Press.

9



[6] Infiniband Trade Association. The infiniband archi-
tecture. http://www.infinibandta.org/specs.

[7] K. Kim, J.-S. Kim, and S.-I. Jung. Gnbd/via: A net-
work block device over virtual interface architecture
on linux. In IPDPS ’02: Proceedings of the 16th In-
ternational Parallel and Distributed Processing Sym-
posium, page 163, Washington, DC, USA, 2002. IEEE
Computer Society.

[8] S. Koussih, A. Acharya, and S. Setia. Dodo: A user-
level system for exploiting idle memory in workstation
clusters. In Proc. of the Eighth IEEE Int’l Symp. on
High Performance Distributed Computing (HPDC-8),
1999.

[9] J. Liu, J. Wu, and D. K. Panda. High perfor-
mance rdma-based mpi implementation over infini-
band. International Journal of Parallel Programming,
32(3):167–198, 2004.

[10] M. Flouris and E. Markatos. The Network RamDisk:
Using remote memory on heterogeneous NOWs.
Cluster Computing, 2(4):281–293, 1999.

[11] P. Machek. Network Block Device (TCP version).
http://nbd.sourceforge.net/.

[12] E. Markatos and G. Dramitinos. Implementation of a
Reliable Remote Memory Pager. In USENIX Annual
Technical Conference, pages 177–190, 1996.

[13] Mellanox Technologies. Mellanox VAPI Interface,
July 2002.

[14] Myricom, Inc. Myrinet Products Specifications.
http://www.myri.com/myrinet.

[15] J. Oleszkiewicz, L. Xiao, and Y. Liu. Parallel network
ram: Effectively utilizing global cluster memory for
large data-intensive parallel programs. In Proceed-
ings of the 33rd International Conference on Parallel
Processing, pages 353–360. IEEE Computer Society,
2004.

[16] Quadrics Ltd. Quadrics Documentation.
http://www.quadrics.com.

[17] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The
Global File System. In Proceedings of the Fifth NASA
Goddard Conference on Mass Storage Systems, pages
319–342, College Park, MD, 1996. IEEE Computer
Society Press.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest and Clifford Stein. Introduction to Algorithms.
The MIT Press, 55 Hayward Street,Cambridge, MA
02142-1315, 2001.

[19] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-
net: A user-level network interface for parallel and
distributed computing. In SOSP, pages 40–53, 1995.

[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22th International Symposium on Computer Archi-
tecture, pages 24–36, Santa Margherita Ligure, Italy,
1995.

[21] J. Wu, P. Wyckoff, and D. K. Panda. Pvfs over infini-
band: Design and performance evaluation. In ICPP,
pages 125–132, 2003.

[22] L. Xiao, X. Zhang, and S. A. Kubricht. Incorporating
job migration and network ram to share cluster mem-
ory resources. In HPDC ’00: Proceedings of the Ninth
IEEE International Symposium on High Performance
Distributed Computing (HPDC’00), page 71, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

10


