
High Performance RDMA Based All-to-all Broadcast
for InfiniBand Clusters

SAYANTAN SUR, UDAY KUMAR REDDY BONDHUGULA, AMITH MAMIDALA ,
HYUN-WOOK JIN AND D. K. PANDA

Technical Report
OSU-CISRC-5/05-TR32

High Performance RDMA Based All-to-all Broadcast
for InfiniBand Clusters ?

Sayantan Sur, Uday Kumar Reddy Bondhugula, Amith Mamidala,Hyun-Wook Jin,
and

Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, Ohio 43210
{surs, bondhugu, mamidala, jinhy, panda}@cse.ohio-state.edu

Abstract. The All-to-all broadcast collective operation is commonly used in par-
allel scientific applications. This collective operation is calledMPI Allgather
in the context of MPI. Contemporary MPI implementations use the Recursive
Doubling and Ring algorithms for implementing this collective on top of MPI
point-to-point calls. This leads to several performance bottlenecks. Depending
on message size and number of processes involved, the overheads include ex-
tra message copies, protocol handshake and multiple buffer registration costs. In
this paper, we propose a design of All-to-All broadcast using the RemoteDi-
rect Memory Access (RDMA) feature offered by InfiniBand, an emerging high
performance interconnect. Our design eliminates the overhead of protocol hand-
shake and multiple buffer registrations. Further, our design aims at cutting down
the copy cost by dynamically choosing an optimal threshold from a copy-based
approach to a zero-copy one as the collective progresses. Our results indicate
that latency of the All-to-all Broadcast operation can be reduced by 30%for 32
processes and a message size of 32 KB. In addition, our design can improve the
latency by a factor of 4.75 under no buffer reuse conditions for the same process
count and message size.

1 Introduction

Cluster based computing systems are becoming popular for a wide range of scientific
applications, owing to their superior cost-performance ratio. These systems are typically
built from commodity PCs connected with high speed Local Area Networks (LANs) or
High Performance Interconnects [4]. MPI [1] has become thede-facto standard in writ-
ing parallel scientific applications which run on these clusters. MPI provides bothpoint-
to-point andcollective communication semantics. Many scientific applications usecol-
lective communication primitives to synchronize or exchange data with multiple pro-
cesses [2, 11]. Of these collective operations, All-to-allbroadcast (MPI Allgather)
is an important one used in many applications such as matrix multiplication, lower and

? This research is supported in part by Department of Energy’s grant#DE-FC02-01ER25506,
National Science Foundation’s grants #CCR-0204429 and #CCR-0311542; grants from Intel
and Mellanox; and equipment donations from Intel, Mellanox, AMD, Appleand Sun Mi-
crosystems.

2

upper triangle factorization, solving differential equations, and basic linear algebra op-
erations.

InfiniBand [7] is emerging as a high performance interconnect for interprocess com-
munication and I/O. It provides powerful features such as Remote DMA (RDMA)
which enables a process to directly access memory on a remotenode. Traditional mech-
anisms of implementing All-to-all broadcast use point-to-point communication primi-
tives [19]. These designs are not optimal. Depending on the message size, they incur
the overhead of message copying and protocol handshake. In this paper, we propose ef-
ficient design of All-to-all broadcast using RDMA capability of InfiniBand. The basic
idea in our design is to bypass the multiple layers in the software stack and overlap the
protocol handshake with the communication.

We have implemented and incorporated our designs into MVAPICH [15], a pop-
ular implementation of MPI over InfiniBand used by more than 210 organizations
world wide. MVAPICH is an implementation of the Abstract Device Interface (ADI)
for MPICH [5]. MVAPICH is based on MVICH [10]. Our design directly uses RDMA
for collective operations. We cut down on several message copies and avoid protocol
handshake. In addition, our design reduces unnecessary cost of multiple buffer regis-
trations. Our performance evaluation reveals that our designs improve the latency of
MPI Allgather on 32 processes by 30% for 32 KB message size. Additionally, our
RDMA design can improve the performance ofMPI Allgather by a factor of 4.75
on 32 processes for 32 KB message size, under no buffer reuse conditions.

The rest of this paper is organized as follows: in section 2, we provide an overview
of the InfiniBand Architecture,MPI Allgather and existing algorithms for it. We
describe in detail our motivation in section 3. In section 4,we describe our RDMA
based design in detail. We follow up the design discussion with experimental evaluation
in section 5. We describe related work in section 6. Finally,this paper concludes in
section 7.

2 Background
2.1 Overview of InfiniBand Architecture

The InfiniBand Architecture [6] defines a switched network fabric for interconnecting
processing and I/O nodes. It provides a communication and management infrastructure
for inter-processor communication and I/O. In an InfiniBandnetwork, hosts are con-
nected to the fabric by Host Channel Adapters (HCAs). InfiniBand utilities and features
are exposed to applications running on these hosts through aVerbs layer. By calling
these verbs layer functions, applications can access the InfiniBand network.

InfiniBand uses a queue-based model. A Queue Pair in InfiniBand consists of two
queues: a send queue and a receive queue. The send queue holdsinstructions to transmit
data and the receive queue holds instructions that describewhere received data is to be
placed. Communication operations are described in the WorkQueue Requests (WQR),
or descriptors, and submitted to the work queue. The completion of WQRs is reported
through Completion Queues (CQs). Once a work queue element is finished, a com-
pletion entry is placed in the associated completion queue.Applications can check the
completion queue to see if any work queue request has been finished. InfiniBand sup-
ports different classes of transport services. In current products, Reliable Connection
(RC) service and Unreliable Datagram (UD) services are supported.

3

InfiniBand Architecture supports both channel semantics and memory semantics.
In channel semantics, send/receive operations are used forcommunication. In memory
semantics, InfiniBand provides Remote Direct Memory Access(RDMA) operations,
including RDMA Write and RDMA Read. RDMA operations are one-sided and do
not incur software overhead at the remote side. Write Gather and Read Scatter are sup-
ported in RDMA operations. RDMA Write operation can gather multiple data segments
together and write all data into a contiguous buffer at the receiver end. Gather/scatter
features are very useful to transfer noncontiguous data. The Gather/Scatter feature not
only reduces the startup costs, but also increases network utilization. RDMA Write with
Immediate data is also supported. With Immediate data, a RDMA Write operation con-
sumes a receive descriptor and then can generate a completion entry to notify the remote
node of the completion of the RDMA Write operation. Regardless of channel or mem-
ory semantics, InfiniBand requires that all communication buffers to be “registered”.
This buffer registration is done in two stages. In the first stage, the buffer pages are
pinned in memory (i.e. marked unswappable). In the second stage, the HCA memory
access tables are updated with the physical addresses of thepages of the communication
buffer.

2.2 MPI Allgather Overview
MPI Allgather is an All-to-all broadcast collective operation defined by the MPI
standard [13]. This operation is used to gather data from every process in a commu-
nicator and distribute the collected data to all.MPI Allgather is a blocking oper-
ation (i.e. control does not return to the application untilthe receive buffers are ready
with data from all processes). In addition,MPI Allgather can be used only if all
participating processes have a fixed length of buffer to sendand gather data. After
MPI Allgather is over, the block of data sent fromjth process is received by every
process and is placed in thejth block of the receive buffer.

2.3 Related Algorithms and their Cost Models
Several algorithms can be used to implementMPI Allgather. Depending on sys-
tem parameters and message size, some algorithms may outperform the others. Cur-
rently, MPICH [5] 1.2.6 uses the Recursive Doubling algorithm for power-of-two pro-
cess numbers and up to medium message sizes. For non-power oftwo processes, it uses
the Bruck’s algorithm [3] for small messages. Finally, the Ring algorithm is for large
messages [18].

In this section, we provide a brief overview of the RecursiveDoubling and Ring
algorithms. We will use these algorithms in our RDMA based design.

Recursive Doubling In this algorithm, pairs of processes exchange their buffercon-
tents. But in every iteration, the contents collected during all previous iterations are also
included in the exchange. Thus, the collected informationrecursively doubles. Natu-
rally, the number of steps needed for this algorithm to complete islog(p), wherep is
the number of processes. Figure 1(a) depicts the various stages of this algorithm. The
communication pattern is very dense, and involves one half of the processes exchang-
ing messages with the other half. On a cluster which does not have constant bisection
bandwidth, this pattern will cause contention. The total communication time of this
algorithm is:

4

Trd = ts ∗ log(p) + (p − 1) ∗ m ∗ tw (1)

Where,ts = Message transmission startup time,tw = Time to transfer one byte,
m = Message size in bytes andp = Number of processes.

Ring Algorithm In this algorithm, the processes exchange messages in a ring-like
manner. At each step, a process passes on a message to its neighbor in the ring. The
number of steps needed to complete the operation is(p − 1) wherep is the number
of processes. At each step, the size of the message sent to theneighbor is same as the
MPI Allgathermessage size,m. Figure 1(b) depicts the execution of this algorithm.
The total communication time of this algorithm is:

Tring = (p − 1) ∗ (ts + m ∗ tw) (2)

(a) Recursive Doubling Algorithm (b) Ring Algorithm

Fig. 1. MPI Allgather Algorithms

3 Can RDMA benefit Collective Operations?

Using RDMA, a process can directly access the memory locations of some other pro-
cess, with no active participation of the remote process. While it is intuitive that this
approach can speed up point-to-point communication, it is not clear howcollective
communications can benefit from it. In this section, we present the answer to this ques-
tion and present the motivation of using RDMA for collectiveoperations.

3.1 Bypass intermediate software layers

Most MPI implementations [5] implement MPI collective operations on top of MPI
point-to-point operations. This is shown in Figure 2(a). The MPI point-to-point imple-
mentation in turn is based on another layer called the ADI (Abstract Device Interface).
This layer provides abstraction and can be ported to severaldifferent interconnects. For
example, thep4 device is an implementation over TCP/IP,shmem for shared mem-
ory communication and so on. As can be observed from the figure, the communication
calls pass through several software layers before the actual communication takes place.
This can add unnecessary overhead. On the other hand, if collectives are directly im-
plemented on top of the InfiniBand RDMA interface, all these intermediate software
layers can be bypassed.

5

3.2 Reduce number of copies

High-performance MPI implementations, MVAPICH [15], MPICH-GM [14] and MPICH-
QsNet [16] often implement an eager protocol for transferring short and medium-sized
messages. In this eager protocol, the message to be sent is copied into internal MPI
buffers and is directly sent over to an internal MPI buffer ofthe receiver. This causes two
copies for each message transfer. For a collective operation, there are either2 ∗ log(p)
or 2 ∗ (p − 1) sends and receives (every send has a matching receive). It isclear that
as the number of processes in a collective grows, there are increasingly more and more
message copies. Thus, collectives based on MPI point-to-point operations have lots of
message copies. Instead, with RDMA based design, messages can be directly trans-
ferred without undergoing several copies. But in order to utilize RDMA, the source
process needs to know the destination memory address. This information can be pro-
vided using our design as explained in section 4.

3.3 Reduce Rendezvous handshaking overhead

For transferring large messages, high-performance MPI implementations often imple-
ment the Rendezvous Protocol. This protocol is illustratedin Figure 2(b). In this pro-
tocol, the sender sends aRNDZ START message. Upon its receipt, the receiver replies
with RNDZ REPLY. This reply contains the memory address of the destination buffer.
Finally, the sending process sends theDATA message directly to the destination mem-
ory buffer and issues aFIN completion message. By using this protocol, zero-copy
message transfer can be achieved.

This protocol provides high performance for MPI point-to-point communication,
but imposes bottlenecks for MPI collectives based on point-to-point design. The pro-
cesses participating in the collective need to continuously exchange addresses. How-
ever, these address exchanges are redundant. Once the base address of the collective
communication buffer is known, the source process can compute the destination mem-
ory address for each iteration. This computation can be donelocally by the sending
process by calculating the array index for the particular algorithm and iteration num-
ber. Thus, for each iteration, RDMA can be directly used without any need for address
exchange.

3.4 Reduce Cost of Multiple Registrations

InfiniBand [6], like most other RDMA capable interconnects,requires that all com-
munication buffers be registered with the InfiniBand HCA. This “registration” actually
involves locking of pages into physical memory and updatingHCA memory access ta-
bles. After registration, the application receives a “memory handle” with keys which
can be used by a remote process to directly access the memory.Thus, for performing
each send or receive, the memory area needs to be registered.

Collective operations implemented on top of point-to-point calls would need to
issue several MPI sends or receives to different processes (with different array off-
sets). This will cause multiple registration calls. For current generation InfiniBand soft-
ware/hardware stacks, each registration has high setup overhead of around 90µs (sec-
tion 5). Thus, point-to-point implementation of collectives requires multiple registration

6

calls with significant overhead. However, the RDMA based design would need onlyone
registration call. The entire buffer passed to the collective call can be registered in one
go. Thus, this will eliminate unnecessary registration calls.

(a) Software Layers in MPICH (b) Rendezvous Protocol

Fig. 2.Motivation for RDMA based MPIAllgather Design

4 Proposed RDMA Based All-to-all Broadcast Design

In this section, we describe our RDMA based design in detail.The proposed imple-
mentation path for our RDMA based design is shown as a dashed line in Figure 2(a).
By choosing to implement the All-to-all broadcast directlyon the InfiniBand RDMA
interface, we can avoid the extra software overhead caused by several layers. Since we
also bypass the point-to-point implementation, we can avoid the cost of extra message
copies. Additionally, by choosing this approach, we have complete knowledge of the
collective communication buffer. This information can be used to eliminate multiple
registration costs, by just issuingone registration call for the entire buffer. Further, the
knowledge of the base address allows us to exchange buffer addresses (required for zero
copy) only once, and not repeatedly use the Rendezvous protocol (as in the point-to-
point based design).

However, before we use RDMA, we have to deal with several design choices that
are posed by the RDMA semantics.

4.1 RDMA Design Choices: Copy Based or Zero Copy

As stated in section 2.1, InfiniBand (like other modern RDMA capable interconnects)
requires communication buffers to be registered. Thus, fortransferring a message, either
(1) the message is copied to a pre-registered buffer, or (2) the message buffer itself is
registered at both sender and receiver ends. Registration is an expensive operation. In
addition, for performing RDMA Write, the sending process needs to know the memory
address of the receiving buffer. On current generation InfiniBand hardware, the address
exchange phase costs around 10µs. Since the registration operation is expensive, it is not

7

feasible for smaller message sizes. Additionally, the copy-based approach avoids on-
the-fly registration and address exchange costs. On the other hand, the cost for copying
large sized buffers can be prohibitively high.

The above trade-offs present two different approaches: Copy based and Zero copy.
The former is suitable for small message sizes while the latter is good for larger mes-
sages. Now, we discuss the RDMA design for the two algorithmsstated in section 2.3.

4.2 RDMA-based Design for Recursive Doubling

We propose a RDMA based design for Recursive Doubling (RD) algorithm. In RD, the
size of the message exchanged by pairs of nodes doubles each iteration along with the
distance between the nodes as shown in Fig 1(a). Ifm is the message size contributed
by each process, the amount of data exchanged between two processes increases from
m in the first iteration tomp

2
in the log(p)th iteration. As we observed in section 4.1,

the optimal method to transfer short messages is copy based and for longer messages,
we need to use zero copy. However, since in the RD algorithm, the actual message size
in each iteration changes, we also have to dynamically switch between copy based and
zero copy protocols to achieve an optimal design.

Hence, we switch between the two design alternatives at an iterationk (1 ≤ k ≤

log(p)) such that the message size being exchanged,2k−1m, crosses a fixed threshold
MT . The thresholdMT is determined empirically. Hence, message exchanges in the
first k dimensions use a copy-based approach, and those in higher dimensions from
k+1 throughlog(p) use a zero copy approach. It is to be noted that ifm itself is greater
thanMT , we end up using a zero-copy approach for all the iterations.Similarly, if mp

2
≤

MT , the above approach leads to a purely copy-based one. Hence,both approaches are
used and a switch occurs between them only when a small message is being gathered
over a large number of processes. We find that anMT of 4 KB is optimal for our
experimental system as described in section 5.

For performing the copy based approach, we need to maintain apre-registered
buffer. We call it “Collective Buffer”. The design issues relating to maintaining this
buffer and buffering schemes are described as follows:

Collective Buffer: We refer to the buffer used for the copy-based approach as the
collective buffer. This is registered at communicator initialization time. Processes ex-
change addresses of their collective buffers also during that time. Some pre-defined
space in the collective buffer is reserved to store the peer addresses and completion
flags required for zero-copy data transfers. Data sent in anyiteration comprises data re-
ceived in all previous iterations along with the process’ own message. When using the
copy-based approach, we need to thus copy the received data from the collective buffer
to the user’s receive buffer immediately at the end of each iteration. This ensures that
whenever we make a switch to the zero-copy approach, all the necessary data required
to be sent in the higher iterations is present in the user’s receive buffer.

Buffering Scheme: In RD, data is always sent from and received to contiguous
locations in either the collective buffer or the user’s receive buffer. Hence, RDMA writes
are sufficient for implementation. Fig 3 shows the bufferingscheme at a node with rank
five for RD on eight processes when a pure copy-based approachis used. Since the
amount of data written to a collective buffer cannot exceedMT , the collective buffer
never needs to be more than2MT which is 8 KB (ignoring space for peer addresses

8

and completion flags) for a single Allgather call. The position of the tail flags in the
collective buffer is not constant for different Allgather message sizes it is used for.
Hence, the entire portion of the buffer that was used for the previousMPI Allgather
call needs to be cleared before it is used for anotherMPI Allgather call. The time
taken to reset the buffer contents also affects the optimum value ofMT .

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

2 3 4 5 6 7

Collective buffer at Process 5

Data

i

Tail flag

Iteration 3

Iteration 2

Iteration 1

Tail

0 1

Tail Flag Polled

Fig. 3.Recursive Doubling: Copy-based approach RDMA buffer scheme

Back-to-back buffers: To allow back-to-backMPI Allgather collectives, we
provide three contiguous collective buffers which are usedin a cyclic manner. It is to
be noted that due to the copy-based buffering scheme used forsmall messages, two
sets of contiguous buffers are not sufficient. If a process enters aMPI Allgather
call, we can be sure that no other process is writing into the next collective buffer.
However, since in our design no process actually waits for all sends to complete from a
specific collective buffer, some sends might still be pending. 1 Thus, we are required to
have three sets of collective buffers. Since each collective buffer is 8KB (as mentioned
before), the total buffer requirements for RDMA RD is 24KB.

Upon a call to RDMA basedMPI Allgather, if it is determined that zero copy
approach will be used (depending on message size during any step), then we must make
sure that we wait for all the sends from the buffer to be complete. This is required since
the message is not buffered, the application cannot be givencontrol without ensuring
that all sends from that buffer are indeed complete.

4.3 RDMA Ring for large messages

We implement the Ring algorithm forMPI Allgather over RDMA only for large
messages and large clusters. As observed in [19], large clusters may be better near-
neighbor bandwidth. Under such scenarios, it is beneficial for MPI Allgather to
mainly communicate between neighbors. The Ring algorithm is ideal for such cases.
Since we implement this algorithm for only large messages, we use a complete zero

1 In [17], the authors propose two back-to-back buffers for the Direct Eager RDMA buffering
scheme. In that case two buffers were enough because control reached the application only on
completion of all sends.

9

copy approach here. The design in this case is much simpler. The benefit of the RDMA-
based scheme comes from the fact that we have a single buffer registration and a single
address exchange performed by each node instead ofp registrations, and(p−1) address
exchanges in the point-to-point based design. We use this Ring algorithm for messages
larger than 1 MB and process numbers greater than 32.

5 Experimental Evaluation

In this section, we evaluate the performance of our designs.We use two cluster config-
urations for our tests. The cluster descriptions are as follows:

1. Cluster A: 32 Dual Intel Xeon 2.66 GHz nodes with 512 KB L2 cache and 2 GB
of main memory. The nodes are connected to Mellanox MT23108 HCA using PCI-
X 133 MHz I/O bus. The nodes are connected to Mellanox 144-port switch (MTS
14400).

2. Cluster B: 16 Dual Intel Xeon 3.6 GHz nodes (EM64T) with 1MB L2 cache and
4 GB of main memory. The nodes are connected to Mellanox MHES18-XT HCA
using PCI-Express (x8) I/O bus.

We have integrated our RDMA based design in the MVAPICH [15] stack. Our
RDMA implementation uses both Recursive Doubling and Ring algorithms as dis-
cussed in section 4. Since our implementation automatically switches between both al-
gorithms based on the message size and the number of processes, we simply refer to the
new design as “MVAPICH-RDMA”. The current implementation of MPI Allgather
over point-to-point is referred to as “MVAPICH-P2P”.

Our experiments are classified into two types. First, we demonstrate the latency
of MPI Allgather for varying message sizes and process numbers. Secondly, we
investigate the performance of our RDMA based designs in thecase where buffer reuse
ratio is very low.

5.1 Latency benchmark forMPI Allgather

In this experiment, we measure the basic latency of ourMPI Allgather implemen-
tation. All the processes are synchronized with a barrier and thenMPI Allgather is
repeated 1000 times. For all the iterations, the same communication buffers are used.
The time observed is averaged over all the iterations, and finally averaged over all pro-
cesses. The results are shown in Figure 4 and 5 for Cluster A. Results for cluster B
results are shown in Figure 6. The results from both Cluster Aand B follow the same
trends. The results are explained as follows:

Small Messages:We observe that for smaller messages, we can reduce the overhead.
As described in section 3, the RDMA based design can avoid thevarious copy over-
heads in different layers of the MPI point-to-point implementation. In addition, it can
avoid other software overheads too. The results indicate that latency can be reduced by
17%, 13% and 15% for 16 processes on Cluster A (Fig 4(a)), 32 processes on Cluster A
(Fig 5(a)) and 16 processes on Cluster B (Fig 6(a))for 4 byte message size respectively.

10

Medium MessagesFor medium sized messages, the point-to-point based designre-
quired rendezvous address exchange for transferring messages at every step of the al-
gorithm. However, for the RDMA basedMPI Allgather, no such exchange is re-
quired (section 4). We note from section 2.3, the number of steps is proportional to ei-
therlog(p) or (p−1) (depending on message size). Thus, this cost of address exchanges
increases with number of processes. Our RDMA based design isable to successfully
avoid this increasing cost.

The results indicate that latency can be reduced by 23%, 30% and 37% for 16 pro-
cesses on Cluster A (Fig 4(b)), 32 processes on Cluster A (Fig5(b)) and 16 processes
on Cluster B (Fig: 6(b))for 32 KB message size respectively.
Large MessagesLarge messages are also transferred using the same zero copytech-
nique used for medium sized messages. Hence, the same address exchange cost can be
saved (as described in the previous case). However, since the message sizes are large,
the address exchange forms a lesser portion of the overall cost of MPI Allgather.
The results for large messages indicate that latency can be reduced by 7%, 6% and 21%
for 16 processes on Cluster A (Fig 4(c)), 32 processes on Cluster A (Fig: 5(c)) and
16 processes on Cluster B (Fig 6(c)) for 256 KB message size respectively. The perfor-
mance improvement for Cluster B is larger because PCI-Express has much higher band-
width than PCI-X. Since Cluster B is equipped with PCI-Express, removing the syn-
chronization overhead (required for the rendezvous protocol) can lead to better band-
width utilization for larger message sizes.
Scalability We plot theMPI Allgather latency numbers with varying process counts,
for a fixed message size to see the impact of RDMA design on scalability. Figure 7(a)
shows the results for 32 KB message size. We observe that as the number of processes
increase, the gap between the point-to-point implementation and RDMA design in-
creases. This is due to the fact that the RDMA design eliminates the need for address
exchange (which increases as the number of processes).
5.2 MPI Allgather latency with no buffer reuse

In the above experiment, we measured the latency ofMPI Allgather when utilizing
the same communication buffers for a large number of iterations. The cost of regis-
tration was thus amortized over all the iterations by the registration cache maintained
by MVAPICH. As mentioned in section 3, InfiniBand requires communication buffers
to be registered. The cost of registration is quite high. Figure 7(b) shows the cost of
registration on Cluster A for varying buffer sizes (in termsof number of pages).

However, it is not necessary that all MPI applications will always reuse their buffers.
In the case where applications useMPI Allgather with different buffers, the point-
to-point based design will be forced to register the buffersseparately, thus incurring
high cost.

In this experiment, we conduct the same latency test (as mentioned in previous
section), but the buffers used for each iteration are different. Thus, there is no buffer
reuse. Figures 8 and 9 show the results for Clusters A and B respectively.

We observe from Figure 8 that there is a sudden jump in the point-to-point based
MPI Allgather for message size 16KB. This is because at this time, the Ring algo-
rithm is being used. From section 2.3, we note that this wouldlead top registrations
instead oflog(p) in Recursive doubling.

11

The RDMA basedMPI Allgather performs 4.75 and 3 times better for Cluster
A and B for 32 KB message size, respectively.

 0

 10

 20

 30

 40

 50

 4 8 16 32 64 128 256

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Small Messages

 0

 500

 1000

 1500

 2000

32K16K8K4K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Medium Messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

256K128K64K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(c) Large Messages

Fig. 4.MPI Allgather performance on 16 Processes (Cluster A)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 16 32 64 128 256

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Small Messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

32K16K8K4K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Medium Messages

 0

 5000

 10000

 15000

 20000

 25000

256K128K64K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(c) Large Messages

Fig. 5.MPI Allgather performance on 32 Processes (Cluster A)

6 Related Work

Recently, a lot of work has been done to improve the performance of collective op-
erations in MPI. In [19] the authors have implemented several well known collective
algorithms over the MPI point-to-point primitives. In [9] and [17] and [12] the au-
thors have shown the benefits of using RDMA forMPI Barrier, MPI Alltoall
andMPI Allreduce collective primitives respectively. In addition, researchers have
been focusing on framework for non-blocking collective communication [8]. However

12

 0

 10

 20

 30

 40

 50

 4 8 16 32 64 128 256

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Small Messages

 0

 500

 1000

 1500

 2000

32K16K8K4K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Medium Messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

256K128K64K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(c) Large Messages

Fig. 6.MPI Allgather performance on 16 Processes (Cluster B)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 4 8 16 32

L
a

te
n

c
y
 (

u
s
)

Number of Processes

MVAPICH-P2P
MVAPICH-RDMA

(a) Scalability of RDMA De-
sign for 32 KB message size

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140

R
e

g
is

tr
a

ti
o

n
 L

a
te

n
c
y
 (

u
s
)

Number of Pages

registration cost

(b) Cost of Registration

Fig. 7.Scalability and Registration Cost on Cluster A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

32K16K8K4K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Medium Messages

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

512K256K128K64K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Large Messages

Fig. 8. No buffer reuse performance results for 32 processes on Cluster A

13

 0

 500

 1000

 1500

 2000

 2500

32K16K8K4K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Medium Messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

256K128K64K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Large Messages

Fig. 9.No buffer reuse performance results for 16 processes on Cluster B

our work is different from the above since our work mainly focuses on the All-to-all
broadcast of messages using RDMA feature and intelligentlychoosing the thresholds
for copy and zero-copy approaches. Our solution is also according to the MPI specifi-
cation which require blocking collectives.

7 Conclusion and Future Work

In this paper, we propose a novel RDMA based design for the All-to-all Broadcast
collective operation. Our design reduces software overhead, copy costs, protocol hand-
shake – all required by the implementation of collectives over MPI point-to-point. Our
design can dynamically choose the optimal threshold for performing zero copy while
the collective progresses. Our design can significantly reduce costs by reducing the need
for multiple buffer registrations. Performance evaluation of our designs reveals that the
latency ofMPI Allgather can be reduced by 30% for 32 processes and a message
size of 32 KB. Additionally, the latency can be improved by a factor of 4.75 under no
buffer reuse conditions for the same process count and message size.

Our future work plan is as follows: Our RDMA based design of All-to-all broad-
cast can be internally utilized to perform several tasks forother MPI collectives which
require virtual buffer address distribution at the collective start (e.g. RDMA based All-
to-all personalized communication [17]). We want to evaluate the impact of this design
on a much larger scale cluster. Further, we would like to extend this design to have an
optimal algorithm for clusters of SMPs (combining shared memory and RDMA based
design).

8 Acknowledgments

We would like to thank Intel for providing us access to their 16-node PCI-Express
cluster. We would also like to thank Abhinav Vishnu, Wei Huang, Lei Chai, Gopal San-
thanaraman, Pavan Balaji, Karthikeyan Vaidyanathan, Sundeep Narravula and Weikuan
Yu for their feedback on technical issues.

14

9 Software Distribution

As indicated earlier, the open-source MVAPICH [15] software is currently being used
by more than 210 organizations world-wide. The latest release is 0.9.5. The proposed
RDMA based All-to-all broadcast solution will be availablein the 0.9.6 release.

References

1. MPI: A Message-Passing Interface Standard. http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html.

2. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.Venkatakrishnan, and
S. K. Weeratunga. The NAS parallel benchmarks. volume 5, pages 63–73, Fall 1991.

3. J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient Algorithms for All-to-
All Communications in Multiport Message-Passing Systems.IEEE Transactions in Parallel
and Distributed Systems, 8(11):1143–1156, November 1997.

4. J. Duato, S. Yalamanchili, and L. Ni.Interconnection Networks: An Engineering Approach.
The IEEE Computer Society Press, 1997.

5. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implemen-
tation of the MPI, Message Passing Interface Standard. Technical report, Argonne National
Laboratory and Mississippi State University, 1996.

6. InfiniBand Trade Association. InfiniBand Architecture Specification,Volume 1, Release 1.2.
http://www.infinibandta.com.

7. InfiniBand Trade Association. InfiniBand Trade Association. http://www.infinibandta.com.
8. L. V. Kale, S. Kumar, and K. Vardarajan. A Framework for Collective Personalized Com-

munication. InInternational Parallel and Distributed Processing Symposium, 2003.
9. S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda. Fast and Scalable Barrier using RDMA

and Multicast Mechanisms for InfiniBand-Based Clusters. InEuro PVM/MPI, 2003.
10. Lawrence Berkeley National Laboratory. MVICH: MPI for VirtualInterface Architecture.

http://www.nersc.gov/research/FTG/mvich/index.html, August 2001.
11. Lawrence Livermore National Laboratory. The ASCI Purple Benchmarks.

http://www.llnl.gov/asci/platforms/purple/rfp/benchmarks/.
12. A. Mamidala, J. Liu, and D. K. Panda. Efficient Barrier and Allreduce on IBA clusters using

hardware multicast and adaptive algorithms. InIEEE Cluster Computing, 2004.
13. Message Passing Interface Forum.MPI-2: Extensions to the Message-Passing Interface, Jul

1997.
14. Myricom Inc. Portable MPI Model Implementation over GM, March 2004.
15. Network-Based Computing Laboratory. MPI over InfiniBand Project. http://nowlab.cis.ohio-

state.edu/projects/mpi-iba/.
16. Quadrics. MPICH-QsNet. http://www.quadrics.com.
17. S. Sur, H.-W. Jin, and D. K. Panda. Efficient and Scalable All-to-All Exchange for

InfiniBand-based Clusters. InInternational Conference on Parallel Processing (ICPP),
2004.

18. R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective communication oper-
ations in MPICH.Int’l Journal of High Performance Computing Applications, 19(1):49–66,
Spring 2005.

19. Rajeev Thakur and William Gropp. Improving the Performance of Collective Operations in
MPICH. In Euro PVM/MPI 2003, 2003.

