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Abstract. The All-to-all broadcast collective operation is commonly used in par-
allel scientific applications. This collective operation is cal&d _Al | gat her

in the context of MPI. Contemporary MPI implementations use the Re®ursi
Doubling and Ring algorithms for implementing this collective on top of MPI
point-to-point calls. This leads to several performance bottleneckseriing
on message size and number of processes involved, the overhehdfe ipx-
tra message copies, protocol handshake and multiple buffer registcaists. In
this paper, we propose a design of All-to-All broadcast using the ReDiste
rect Memory Access (RDMA) feature offered by InfiniBand, an egimey high
performance interconnect. Our design eliminates the overhead otptdtand-
shake and multiple buffer registrations. Further, our design aims atgulbvwn
the copy cost by dynamically choosing an optimal threshold from a taged
approach to a zero-copy one as the collective progresses. Olis rieslicate
that latency of the All-to-all Broadcast operation can be reduced by f80%2
processes and a message size of 32 KB. In addition, our design cesverthe
latency by a factor of 4.75 under no buffer reuse conditions for theegarocess
count and message size.

1 Introduction

Cluster based computing systems are becoming popular fadexnange of scientific
applications, owing to their superior cost-performant¢®rdhese systems are typically
built from commodity PCs connected with high speed Localadxetworks (LANS) or
High Performance Interconnects [4]. MPI [1] has becometthfacto standard in writ-
ing parallel scientific applications which run on these ®@us MPI provides botpoint-
to-point andcollective communication semantics. Many scientific applicationsame
lective communication primitives to synchronize or exapaata with multiple pro-
cesses [2, 11]. Of these collective operations, All-tasatladcastiPl _Al | gat her)

is an important one used in many applications such as matritiptication, lower and
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upper triangle factorization, solving differential egoas, and basic linear algebra op-
erations.

InfiniBand [7] is emerging as a high performance interconfardnterprocess com-
munication and I/O. It provides powerful features such améte DMA (RDMA)
which enables a process to directly access memory on a rerodée Traditional mech-
anisms of implementing All-to-all broadcast use poingtmat communication primi-
tives [19]. These designs are not optimal. Depending on teesage size, they incur
the overhead of message copying and protocol handshak®s lpetper, we propose ef-
ficient design of All-to-all broadcast using RDMA capalyilitf InfiniBand. The basic
idea in our design is to bypass the multiple layers in thenswof stack and overlap the
protocol handshake with the communication.

We have implemented and incorporated our designs into MZAP]15], a pop-
ular implementation of MPI over InfiniBand used by more thd® Drganizations
world wide. MVAPICH is an implementation of the Abstract De¥ Interface (ADI)
for MPICH [5]. MVAPICH is based on MVICH [10]. Our design dicdy uses RDMA
for collective operations. We cut down on several messagesa@and avoid protocol
handshake. In addition, our design reduces unnecessarpfomailtiple buffer regis-
trations. Our performance evaluation reveals that ourgtssimprove the latency of
MPI _Al | gat her on 32 processes by 30% for 32 KB message size. Additionally, o
RDMA design can improve the performanceM®l _Al | gat her by a factor of 4.75
on 32 processes for 32 KB message size, under no buffer rengéions.

The rest of this paper is organized as follows: in section@pvovide an overview
of the InfiniBand ArchitecturelPl _Al | gat her and existing algorithms for it. We
describe in detail our motivation in section 3. In sectionv, describe our RDMA
based design in detail. We follow up the design discussioh @iperimental evaluation
in section 5. We describe related work in section 6. Findhis paper concludes in
section 7.

2 Background
2.1 Overview of InfiniBand Architecture

The InfiniBand Architecture [6] defines a switched netwotrfa for interconnecting
processing and I/O nodes. It provides a communication anthgement infrastructure
for inter-processor communication and I/O. In an InfiniBaretwork, hosts are con-
nected to the fabric by Host Channel Adapters (HCAS). Infami@ utilities and features
are exposed to applications running on these hosts throughba layer. By calling
these verbs layer functions, applications can access filBand network.

InfiniBand uses a queue-based model. A Queue Pair in InfiniBansists of two
queues: a send queue and a receive queue. The send quelastaldsions to transmit
data and the receive queue holds instructions that desetibee received data is to be
placed. Communication operations are described in the \Qokue Requests (WQR),
or descriptors, and submitted to the work queue. The complef WQRs is reported
through Completion Queues (CQs). Once a work queue elemadittished, a com-
pletion entry is placed in the associated completion quApgplications can check the
completion queue to see if any work queue request has beshdihinfiniBand sup-
ports different classes of transport services. In curreotlyicts, Reliable Connection
(RC) service and Unreliable Datagram (UD) services are aueg.



InfiniBand Architecture supports both channel semantiasrmaemory semantics.
In channel semantics, send/receive operations are usedrfununication. In memory
semantics, InfiniBand provides Remote Direct Memory Acq8d3MA) operations,
including RDMA Write and RDMA Read. RDMA operations are origesl and do
not incur software overhead at the remote side. Write GattReead Scatter are sup-
ported in RDMA operations. RDMA Write operation can gathettiple data segments
together and write all data into a contiguous buffer at theeiker end. Gather/scatter
features are very useful to transfer noncontiguous data.Géther/Scatter feature not
only reduces the startup costs, but also increases netuibrkiion. RDMA Write with
Immediate data is also supported. With Immediate data, a RBWite operation con-
sumes a receive descriptor and then can generate a commatiy to notify the remote
node of the completion of the RDMA Write operation. Regarslieschannel or mem-
ory semantics, InfiniBand requires that all communicatiaffdss to be “registered”.
This buffer registration is done in two stages. In the firsgst the buffer pages are
pinned in memory (i.e. marked unswappable). In the secagksthe HCA memory
access tables are updated with the physical addressegazfghe of the communication
buffer.

2.2 MPI _Al | gat her Overview

MPI _Al | gat her is an All-to-all broadcast collective operation defined bg MPI
standard [13]. This operation is used to gather data fromygmecess in a commu-
nicator and distribute the collected data to 8Pl _Al | gat her is a blocking oper-
ation (i.e. control does not return to the application utht@ receive buffers are ready
with data from all processes). In additiod?l _Al | gat her can be used only if all
participating processes have a fixed length of buffer to sawdi gather data. After
MPI _Al | gat her is over, the block of data sent frojith process is received by every
process and is placed in thith block of the receive buffer.

2.3 Related Algorithms and their Cost Models
Several algorithms can be used to implemiBt _Al | gat her . Depending on sys-
tem parameters and message size, some algorithms mayfoutpdéine others. Cur-
rently, MPICH [5] 1.2.6 uses the Recursive Doubling alduoritfor power-of-two pro-
cess numbers and up to medium message sizes. For non-pawerriocesses, it uses
the Bruck’s algorithm [3] for small messages. Finally, thedRalgorithm is for large
messages [18].

In this section, we provide a brief overview of the Recurdd@ubling and Ring
algorithms. We will use these algorithms in our RDMA basesigie.

Recursive Doubling In this algorithm, pairs of processes exchange their buffer
tents. But in every iteration, the contents collected dy&l previous iterations are also
included in the exchange. Thus, the collected informatemarsively doubles. Natu-
rally, the number of steps needed for this algorithm to catepisiog(p), wherep is
the number of processes. Figure 1(a) depicts the variogestat this algorithm. The
communication pattern is very dense, and involves one tiglfeoprocesses exchang-
ing messages with the other half. On a cluster which doesana bonstant bisection
bandwidth, this pattern will cause contention. The totahownication time of this
algorithm is:



Tra =ts xlog(p) + (p— 1) x m x ty, Q)
Where t, = Message transmission startup timg,= Time to transfer one byte,
m = Message size in bytes apd= Number of processes.

Ring Algorithm In this algorithm, the processes exchange messages in dikéng
manner. At each step, a process passes on a message to lilsoneigthe ring. The
number of steps needed to complete the operatidp is 1) wherep is the number
of processes. At each step, the size of the message sentreitfior is same as the
MPI _Al | gat her message sizep. Figure 1(b) depicts the execution of this algorithm.
The total communication time of this algorithm is:

Tring = (10 - ]-) * (ts + m tw) (2)

NodesQ@

(a) Recursive Doubling Algorithm (b) Ring Algorithm

Fig. 1. MPI_Allgather Algorithms

3 Can RDMA benefit Collective Operations?

Using RDMA, a process can directly access the memory logatid some other pro-
cess, with no active participation of the remote process.I&\ihis intuitive that this
approach can speed up point-to-point communication, itoisatear howcollective
communications can benefit from it. In this section, we pnetige answer to this ques-
tion and present the motivation of using RDMA for collectiygerations.

3.1 Bypass intermediate software layers

Most MPI implementations [5] implement MPI collective opgons on top of MPI

point-to-point operations. This is shown in Figure 2(a)ePI point-to-point imple-

mentation in turn is based on another layer called the ADIsffdrt Device Interface).
This layer provides abstraction and can be ported to seddfatent interconnects. For
example, the4 device is an implementation over TCP/Bhnmemfor shared mem-

ory communication and so on. As can be observed from the figheecommunication
calls pass through several software layers before thelamimanunication takes place.
This can add unnecessary overhead. On the other hand,eéttiedis are directly im-
plemented on top of the InfiniBand RDMA interface, all thesteimediate software
layers can be bypassed.



3.2 Reduce number of copies

High-performance MPI implementations, MVAPICH [15], MRHIEGM [14] and MPICH-
QsNet [16] often implement an eager protocol for transfgrghort and medium-sized
messages. In this eager protocol, the message to be seriésl éoto internal MPI
buffers and is directly sent over to an internal MPI buffettef receiver. This causes two
copies for each message transfer. For a collective opardtiere are eithez x log(p)

or 2 x (p — 1) sends and receives (every send has a matching receivefldaisthat
as the number of processes in a collective grows, there areasingly more and more
message copies. Thus, collectives based on MPI pointitd-pperations have lots of
message copies. Instead, with RDMA based design, messagedsecdirectly trans-
ferred without undergoing several copies. But in order ibzet RDMA, the source
process needs to know the destination memory address. ffbisniation can be pro-
vided using our design as explained in section 4.

3.3 Reduce Rendezvous handshaking overhead

For transferring large messages, high-performance MPlementations often imple-
ment the Rendezvous Protocol. This protocol is illustrateBigure 2(b). In this pro-
tocol, the sender sendsRAIDZ_START message. Upon its receipt, the receiver replies
with RNDZ_REPLY. This reply contains the memory address of the destinatidiet
Finally, the sending process sends BT A message directly to the destination mem-
ory buffer and issues Bl N completion message. By using this protocol, zero-copy
message transfer can be achieved.

This protocol provides high performance for MPI point-toit communication,
but imposes bottlenecks for MPI collectives based on pifieint design. The pro-
cesses participating in the collective need to contingyoasthange addresses. How-
ever, these address exchanges are redundant. Once theddesssaof the collective
communication buffer is known, the source process can cterthe destination mem-
ory address for each iteration. This computation can be doraly by the sending
process by calculating the array index for the particulgoathm and iteration num-
ber. Thus, for each iteration, RDMA can be directly used authany need for address
exchange.

3.4 Reduce Cost of Multiple Registrations

InfiniBand [6], like most other RDMA capable interconneatsquires that all com-
munication buffers be registered with the InfiniBand HCAisThiegistration” actually
involves locking of pages into physical memory and updaki@A memory access ta
bles. After registration, the application receives a “megiwandle” with keys which
can be used by a remote process to directly access the mefmoigy, for performing
each send or receive, the memory area needs to be registered.

Collective operations implemented on top of point-to-paialls would need to
issue several MPI sends or receives to different proceseg#ls different array off-
sets). This will cause multiple registration calls. Forreat generation InfiniBand soft-
ware/hardware stacks, each registration has high setupea of around 9@s (sec-
tion 5). Thus, point-to-point implementation of colle&s/requires multiple registration



calls with significant overhead. However, the RDMA basedgiesould need onlpne
registration call. The entire buffer passed to the colectiall can be registered in one
go. Thus, this will eliminate unnecessary registratiotscal

Sender Receiver

RNDZ_START
Collectives |.. \

DATA
(RDMA Write)

ADI

InfiniBand
RDMA Interface

(a) Software Layers in MPICH (b) Rendezvous Protocol

Fig. 2. Motivation for RDMA based MPJAllgather Design

4 Proposed RDMA Based All-to-all Broadcast Design

In this section, we describe our RDMA based design in dethie proposed imple-
mentation path for our RDMA based design is shown as a daghedhl Figure 2(a).
By choosing to implement the All-to-all broadcast direably the InfiniBand RDMA
interface, we can avoid the extra software overhead causseveral layers. Since we
also bypass the point-to-point implementation, we candatloé cost of extra message
copies. Additionally, by choosing this approach, we havaglete knowledge of the
collective communication buffer. This information can beed to eliminate multiple
registration costs, by just issuirge registration call for the entire buffer. Further, the
knowledge of the base address allows us to exchange butfezsses (required for zero
copy) only once, and not repeatedly use the Rendezvouscptdi@s in the point-to-
point based design).

However, before we use RDMA, we have to deal with severalgmheshoices that
are posed by the RDMA semantics.

4.1 RDMA Design Choices: Copy Based or Zero Copy

As stated in section 2.1, InfiniBand (like other modern RDMapable interconnects)
requires communication buffers to be registered. Thudrdmsferring a message, either
(1) the message is copied to a pre-registered buffer, oh@jressage buffer itself is
registered at both sender and receiver ends. Registratian éxpensive operation. In
addition, for performing RDMA Write, the sending processdeet® know the memory
address of the receiving buffer. On current generationiBéind hardware, the address
exchange phase costs aroungid Since the registration operation is expensive, itis not



feasible for smaller message sizes. Additionally, the eog@sed approach avoids on-
the-fly registration and address exchange costs. On theluthe, the cost for copying
large sized buffers can be prohibitively high.

The above trade-offs present two different approachesy ®aped and Zero copy.
The former is suitable for small message sizes while therlatgood for larger mes-
sages. Now, we discuss the RDMA design for the two algorithtaed in section 2.3.

4.2 RDMA-based Design for Recursive Doubling

We propose a RDMA based design for Recursive Doubling (R§9rithm. In RD, the
size of the message exchanged by pairs of nodes doublestegtfon along with the
distance between the nodes as shown in Fig 1(aj). i the message size contributed
by each process, the amount of data exchanged between taespss increases from
m in the first iteration to™ in thelog(p)'" iteration. As we observed in section 4.1,
the optimal method to transfer short messages is copy baskfbalonger messages,
we need to use zero copy. However, since in the RD algorithenattual message size
in each iteration changes, we also have to dynamically bvhigtween copy based and
zero copy protocols to achieve an optimal design.

Hence, we switch between the two design alternatives ataationk (1 < k <
log(p)) such that the message size being exchar@fed,m, crosses a fixed threshold
M. The thresholdVit is determined empirically. Hence, message exchanges in the
first k& dimensions use a copy-based approach, and those in highensions from
k+ 1 throughlog(p) use a zero copy approach. ltis to be noted that ifself is greater
thanM 7, we end up using a zero-copy approach for all the iterat®msilarly, if 2 <
M, the above approach leads to a purely copy-based one. Hestbeapproaches are
used and a switch occurs between them only when a small neesshging gathered
over a large number of processes. We find thatlén of 4 KB is optimal for our
experimental system as described in section 5.

For performing the copy based approach, we need to maintgire-aegistered
buffer. We call it “Collective Buffer”. The design issuedatng to maintaining this
buffer and buffering schemes are described as follows:

Collective Buffer: We refer to the buffer used for the copy-based approach as the
collective buffer. This is registered at communicatoriatization time. Processes ex-
change addresses of their collective buffers also duriaf) time. Some pre-defined
space in the collective buffer is reserved to store the pddrezses and completion
flags required for zero-copy data transfers. Data sent intaration comprises data re-
ceived in all previous iterations along with the processhanessage. When using the
copy-based approach, we need to thus copy the receivedrdatalfe collective buffer
to the user’s receive buffer immediately at the end of easfatiion. This ensures that
whenever we make a switch to the zero-copy approach, allebessary data required
to be sent in the higher iterations is present in the usecsive buffer.

Buffering Scheme:In RD, data is always sent from and received to contiguous
locations in either the collective buffer or the user’s reeduffer. Hence, RDMA writes
are sufficient for implementation. Fig 3 shows the buffedogeme at a node with rank
five for RD on eight processes when a pure copy-based appisaced. Since the
amount of data written to a collective buffer cannot excéégd, the collective buffer
never needs to be more thani; which is 8 KB (ignoring space for peer addresses



and completion flags) for a single Allgather call. The pasitbf the tail flags in the
collective buffer is not constant for different Allgatheressage sizes it is used for.
Hence, the entire portion of the buffer that was used for tegipusMPl _Al | gat her
call needs to be cleared before it is used for anolfi®dr_Al | gat her call. The time
taken to reset the buffer contents also affects the optimaioevof M.

@' Tail HTaiI flag ITaiI Flag Polled
= Data
0 12 3 4 5 6 7

Iteration 1 ‘

Iteration 2 ‘

Collective buffer at Process 5
Fig. 3. Recursive Doubling: Copy-based approach RDMA buffer scheme

Back-to-back buffers: To allow back-to-backvPl _Al | gat her collectives, we
provide three contiguous collective buffers which are usea cyclic manner. It is to
be noted that due to the copy-based buffering scheme usesirfalt messages, two
sets of contiguous buffers are not sufficient. If a procedereraMPl _Al | gat her
call, we can be sure that no other process is writing into & nollective buffer.
However, since in our design no process actually waits farealds to complete from a
specific collective buffer, some sends might still be pegdirThus, we are required to
have three sets of collective buffers. Since each colledtivfer is 8KB (as mentioned
before), the total buffer requirements for RDMA RD is 24KB.

Upon a call to RDMA basedPl _Al | gat her , if it is determined that zero copy
approach will be used (depending on message size duringepy then we must make
sure that we wait for all the sends from the buffer to be coieplEhis is required since
the message is not buffered, the application cannot be gieatrol without ensuring
that all sends from that buffer are indeed complete.

4.3 RDMA Ring for large messages

We implement the Ring algorithm favPl _Al | gat her over RDMA only for large
messages and large clusters. As observed in [19], largéecdusiay be better near-
neighbor bandwidth. Under such scenarios, it is beneficmMPI _Al | gat her to
mainly communicate between neighbors. The Ring algorithideal for such cases.
Since we implement this algorithm for only large messagesuse a complete zero

11n [17], the authors propose two back-to-back buffers for the Disger RDMA buffering
scheme. In that case two buffers were enough because contberkthe application only on
completion of all sends.



copy approach here. The design in this case is much simpleb@&nefit of the RDMA-
based scheme comes from the fact that we have a single bedfistration and a single
address exchange performed by each node instearkgfstrations, an¢h— 1) address
exchanges in the point-to-point based design. We use thig &gorithm for messages
larger than 1 MB and process numbers greater than 32.

5 Experimental Evaluation

In this section, we evaluate the performance of our desiylesuse two cluster config-
urations for our tests. The cluster descriptions are aevisi

1. Cluster A: 32 Dual Intel Xeon 2.66 GHz nodes with 512 KB L2 cache and 2 GB
of main memory. The nodes are connected to Mellanox MT23108 Lising PCI-
X 133 MHz I/O bus. The nodes are connected to Mellanox 144gwitch (MTS
14400).

2. Cluster B: 16 Dual Intel Xeon 3.6 GHz nodes (EM64T) with 1MB L2 cache and
4 GB of main memory. The nodes are connected to Mellanox MEBESIL HCA
using PCI-Express (x8) I/O bus.

We have integrated our RDMA based design in the MVAPICH [1takck. Our
RDMA implementation uses both Recursive Doubling and Rilgprithms as dis-
cussed in section 4. Since our implementation automatisallitches between both al-
gorithms based on the message size and the number of precessgmply refer to the
new design as “MVAPICH-RDMA". The current implementatiohMPl _Al | gat her
over point-to-point is referred to as “MVAPICH-P2P".

Our experiments are classified into two types. First, we destnate the latency
of MPI _Al | gat her for varying message sizes and process numbers. Secondly, we
investigate the performance of our RDMA based designs icdlse where buffer reuse
ratio is very low.

5.1 Latency benchmark foriMPl _Al | gat her

In this experiment, we measure the basic latency ofMRIr_Al | gat her implemen-
tation. All the processes are synchronized with a barridrthenMPl _Al | gat her is
repeated 1000 times. For all the iterations, the same corication buffers are used.
The time observed is averaged over all the iterations, aadlyfiaveraged over all pro-
cesses. The results are shown in Figure 4 and 5 for Clustere8uli® for cluster B
results are shown in Figure 6. The results from both Clustané B follow the same
trends. The results are explained as follows:

Small Messages:We observe that for smaller messages, we can reduce thecaderh
As described in section 3, the RDMA based design can avoiddheus copy over-
heads in different layers of the MPI point-to-point implentegion. In addition, it can
avoid other software overheads too. The results indicatieldtency can be reduced by
17%, 13% and 15% for 16 processes on Cluster A (Fig 4(a)), 8@gsises on Cluster A
(Fig 5(a)) and 16 processes on Cluster B (Fig 6(a))for 4 bygssage size respectively.
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Medium Messages For medium sized messages, the point-to-point based design
quired rendezvous address exchange for transferring gessa every step of the al-
gorithm. However, for the RDMA basedPl _Al | gat her, no such exchange is re-
quired (section 4). We note from section 2.3, the numbereygssts proportional to ei-
therlog(p) or (p—1) (depending on message size). Thus, this cost of addresaregeh
increases with number of processes. Our RDMA based desiginlésto successfully
avoid this increasing cost.

The results indicate that latency can be reduced by 23%, 3@P82a% for 16 pro-
cesses on Cluster A (Fig 4(b)), 32 processes on Cluster ASfHp and 16 processes
on Cluster B (Fig: 6(b))for 32 KB message size respectively.

Large MessageslLarge messages are also transferred using the same zertecbpy
nigue used for medium sized messages. Hence, the samesdxchange cost can be
saved (as described in the previous case). However, sieaméissage sizes are large,
the address exchange forms a lesser portion of the ovestliof®/Pl _Al | gat her .
The results for large messages indicate that latency caedoeed by 7%, 6% and 21%
for 16 processes on Cluster A (Fig 4(c)), 32 processes onteéZlés (Fig: 5(c)) and
16 processes on Cluster B (Fig 6(c)) for 256 KB message sspeotively. The perfor-
mance improvement for Cluster B is larger because PCI-Eggdras much higher band-
width than PCI-X. Since Cluster B is equipped with PCI-Exgseremoving the syn-
chronization overhead (required for the rendezvous pabdf@an lead to better band-
width utilization for larger message sizes.

Scalability We plottheMPl _Al | gat her latency numbers with varying process counts,
for a fixed message size to see the impact of RDMA design oalsitia). Figure 7(a)
shows the results for 32 KB message size. We observe tha¢ asithber of processes
increase, the gap between the point-to-point implemenmtaaind RDMA design in-
creases. This is due to the fact that the RDMA design eliresgite need for address
exchange (which increases as the number of processes).

5.2 MPI _Al | gat her latency with no buffer reuse

In the above experiment, we measured the latendyPbf Al | gat her when utilizing
the same communication buffers for a large number of itenati The cost of regis-
tration was thus amortized over all the iterations by théstegtion cache maintained
by MVAPICH. As mentioned in section 3, InfiniBand requiresrcaunication buffers
to be registered. The cost of registration is quite highufégr(b) shows the cost of
registration on Cluster A for varying buffer sizes (in teraisyumber of pages).

However, it is not necessary that all MPI applications willays reuse their buffers.
In the case where applications ugel _Al | gat her with different buffers, the point-
to-point based design will be forced to register the bufeparately, thus incurring
high cost.

In this experiment, we conduct the same latency test (asioment in previous
section), but the buffers used for each iteration are differThus, there is no buffer
reuse. Figures 8 and 9 show the results for Clusters A andpcésely.

We observe from Figure 8 that there is a sudden jump in thetpoipoint based
MPI _Al | gat her for message size 16KB. This is because at this time, the Ring a
rithm is being used. From section 2.3, we note that this wéedd top registrations
instead oflog(p) in Recursive doubling.
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The RDMA basedWPl _Al | gat her performs 4.75 and 3 times better for Cluster
A and B for 32 KB message size, respectively.
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6 Related Work

Recently, a lot of work has been done to improve the perfoomasf collective op-
erations in MPI. In [19] the authors have implemented séweedl known collective
algorithms over the MPI point-to-point primitives. In [9hd [17] and [12] the au-
thors have shown the benefits of using RDMA fd?l Barrier, MPl _Al | t oal |

andMPI _Al | r educe collective primitives respectively. In addition, resdsacs have
been focusing on framework for non-blocking collective coamication [8]. However
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our work is different from the above since our work mainlydees on the All-to-all
broadcast of messages using RDMA feature and intelligenfithosing the thresholds
for copy and zero-copy approaches. Our solution is alsordawpto the MPI specifi-
cation which require blocking collectives.

7 Conclusion and Future Work

In this paper, we propose a novel RDMA based design for thetoAdlll Broadcast
collective operation. Our design reduces software ovelhezpy costs, protocol hand-
shake — all required by the implementation of collectivesrdMPI point-to-point. Our
design can dynamically choose the optimal threshold fofopeaing zero copy while
the collective progresses. Our design can significantlycedosts by reducing the need
for multiple buffer registrations. Performance evaluatid our designs reveals that the
latency of VPl _Al | gat her can be reduced by 30% for 32 processes and a message
size of 32 KB. Additionally, the latency can be improved byaatbr of 4.75 under no
buffer reuse conditions for the same process count and gressze.

Our future work plan is as follows: Our RDMA based design oftlall broad-
cast can be internally utilized to perform several taskotber MPI collectives which
require virtual buffer address distribution at the collezstart (e.g. RDMA based All-
to-all personalized communication [17]). We want to evidithe impact of this design
on a much larger scale cluster. Further, we would like torekthis design to have an
optimal algorithm for clusters of SMPs (combining sharedmoey and RDMA based
design).
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9 Software Distribution

As indicated earlier, the open-source MVAPICH [15] softevés currently being used
by more than 210 organizations world-wide. The latest sddda 0.9.5. The proposed
RDMA based All-to-all broadcast solution will be availaliethe 0.9.6 release.
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