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Abstract

Message Passing Interface (MPI) is a popular parallel
programming model for scientific applications. Most high-
performance MPI implementations use Rendezvous Proto-
col for efficient transfer of large messages. This protocol
can be designed using either RDMA Write or RDMA Read.
Usually, this protocol is implemented using RDMA Write.
The RDMA Write based protocol requires a two-way hand-
shake between the sending and receiving processes. On the
other hand, to achieve low latency, MPI implementations
often provide a polling based progress engine. The two-
way handshake requires the polling progress engine to dis-
cover multiple control messages. This in turn places a re-
striction on MPI applications that they should call into the
MPI library to make progress. For compute or I/O inten-
sive applications, it is not possible to do so. Thus, most
communication progress is made only after the computa-
tion or I/O is over. This hampers the computation to com-
munication overlap severely, which can have a detrimental
impact on the overall application performance. In this pa-
per, we evaluate several mechanisms to exploit RDMA Read
and selective interrupt based asynchronous progress to pro-
vide better computation/communication overlap on Infini-
Band clusters. Our evaluations reveal that it is possible
to achieve 100% computation/communication overlap us-
ing our RDMA Read and RDMA Read with Interrupt based
Protocols. Additionally, our schemes yield a 50% better
communication progress rate when computation is over-
lapped with communication. Further, our application eval-
uation with Linpack (HPL) and NAS-SP (Class C) reveals
that MPI Wait time is reduced by around 30% and 28%
respectively for a 36 node InfiniBand cluster. We observe

∗This research is supported in part by Department of Energy’s grant
#DE-FC02-01ER25506, National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542.

that the gains obtained in theMPI Wait time increase as
the system size increases. This indicates that our designs
have a strong positive impact on scalability of parallel ap-
plications.

Keywords: MPI, InfiniBand, Rendezvous Protocol,
RDMA Read, Computation and Communication Overlap

1 Introduction

Cluster based computing systems are becoming popular
for a wide range of scientific applications, owing to their
cost-effectiveness. These systems are typically built from
commodity PCs connected with high speed Local Area Net-
works (LANs) or System Area Networks (SANs). MPI [17]
is thede-factostandard in writing parallel scientific applica-
tions which run on these clusters. MPI provides bothpoint-
to-pointandcollectivecommunication semantics. Of these,
point-to-point communications are used very widely. In
fact, most of the implementations of collective communica-
tions are written on top of basic point-to-point communica-
tion functions. Further, many MPI applications [2, 14] use
point-to-point communication with large messages [26, 25].
Thus, a high performance MPI point-to-point design for
large messages is very critical for such applications.

For transferring large messages, typically aRendezvous
Protocol is used. In this protocol, the sender and the re-
ceiver negotiate the buffer availability on both sides be-
fore the message transfer actually takes place. For achiev-
ing high performance message passing for large messages,
it is critical that message copies are avoided. The Ren-
dezvous Protocol provides a way to achieve zero-copy mes-
sage transfer because sender can know the location of the
receiver’s buffer and vice-versa.

Remote Direct Memory Access(RDMA) is a technique
by which a message can be directly placed in a remote
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node’s memory thereby avoiding intermediate copies. In-
finiBand [9] is an emerging high-performance intercon-
nect with RDMA capabilities. It can provide low latencies
(around 4µs) and high bandwidth (around 900 MB/s). Re-
mote memory access can be of two types: RDMA Write,
in which the process sending the message buffer can di-
rectly write into the memory of the receiving process; or
RDMA Read, in which the process receiving the message
can directly read from the sending process’s memory into
its own. Either of these RDMA Write or RDMA Read can
be utilized to design the Rendezvous Protocol. The design
choice of the RDMA semantics has impact on computation
and communication overlap and the overall MPI progress
engine. MPI provides non-blocking message passing calls.
Many applications use these calls in an attempt to overlap
computation with communication.

In this paper, we analyze in detail the design alternatives
in implementing the Rendezvous Protocol using the best of
these RDMA semantics. We present a set novel designs
to use RDMA Read or RDMA Read with Interrupt for im-
plementing the Rendezvous Protocol. Though our design
and evaluation was done on InfiniBand, we believe that it is
applicable to most RDMA capable high-performance inter-
connects. To the best of our knowledge, no other research
work proposes an event-driven RDMA Read based Ren-
dezvous Protocol. In addition, no other research work has
thoroughly analyzed these design alternatives in the con-
text of computation/communication overlap and communi-
cation progress.

The new designs have been implemented on MVA-
PICH [20] implementation of MPI over InfiniBand. MVA-
PICH is an implementation of the Abstract Device Interface
(ADI) for MPICH [7]. MVAPICH is based on MVICH [13].
Compared to the current RDMA Write based Rendezvous
Protocol, the new RDMA Read based designs have been
able to increase the overlap between computation and com-
munication to 100%. Additionally, our schemes yield a
50% better communication progress rate when computation
is overlapped with communication. Further, our application
evaluation with Linpack (HPL) [5] and NAS-SP (Class C)
reveals thatMPI Wait time is reduced by around 30% and
28% respectively on a 36 node InfiniBand cluster.

The rest of the paper is organized as follows: In sec-
tion 2, we provide an overview of the InfiniBand Architec-
ture. In section 3, we provide an overview of the Existing
RDMA Write based Rendezvous Protocol and describe its
limitations. In section 4, we outline the design alternatives
for the Rendezvous Protocol using RDMA Read and inter-
rupts. We evaluate the performance of our new designs in
section 5. We discuss the related work in this area in sec-
tion 6. Finally in section 7, we conclude this paper and
present future research directions.

2 Overview of InfiniBand Architecture

The InfiniBand Architecture [8] defines a switched net-
work fabric for interconnecting processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. In
an InfiniBand network hosts are connected to the fabric by
Host Channel Adapters (HCAs). InfiniBand uses a queue-
based model. A Queue Pair in InfiniBand consists of two
queues: a send queue and a receive queue. The send queue
holds instructions to transmit data and the receive queue
holds instructions that describe where received data is to
be placed. Communication operations are described in the
Work Queue Requests (WQR), or descriptors, and submit-
ted to the work queue. The completion of WQRs is re-
ported through Completion Queues (CQs). Once a work
queue element is finished, a completion entry is placed in
the associated completion queue. Applications can check
the completion queue to see if any work queue request has
been finished. InfiniBand also supports different classes of
transport services. In current products, Reliable Connec-
tion (RC) service and Unreliable Datagram (UD) services
are supported.

InfiniBand Architecture supports both channel semantics
and memory semantics. In channel semantics, send/receive
operations are used for communication. In memory seman-
tics, InfiniBand provides Remote Direct Memory Access
(RDMA) operations, including RDMA Write and RDMA
Read. RDMA operations are one-sided and do not incur
software overhead at the remote side. Write Gather and
Read Scatter are supported in RDMA operations. RDMA
Write operation can gather multiple data segments together
and write all data into a contiguous buffer at the receiver
end. Gather/scatter features are very useful to transfer non-
contiguous data. The Gather/Scatter facility not only re-
duces the startup costs, but also increases network utiliza-
tion. RDMA Write with Immediate data is also supported.
With Immediate data, a RDMA Write operation consumes a
receive descriptor and then can generate a completion entry
to notify the remote node of the completion of the RDMA
Write operation. Figure 1 shows the InfiniBand architec-
ture.

3 RDMA Write Based Rendezvous Protocol
and its Limitations

Most high-performance MPI implementations use a
Rendezvous Protocol to efficiently transfer large messages.
This protocol can eliminate all copies and implement a zero
copy message transfer. Usually, this protocol is imple-
mented using RDMA Write [20, 19, 22].

The RDMA Write based protocol is illustrated in Fig-
ure 2(a). The sending process first sends a control message
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Figure 1. Overview of InfiniBand Architecture (courtesy IBT A)

to the receiver (RNDZ START). The receiver replies to the
sender using another control message (RNDZ REPLY). This
reply message contains the receiving application’s bufferin-
formation along with the remote key to access that memory
region. The sending process then sends the large message
directly to the receiver’s application buffer by using RDMA
Write (DATA). Finally, the sending process issues another
control message (FIN) which indicates to the receiver that
the message has been placed in the application buffer.

MPI uses a progress engine to discover incoming mes-
sages and to make progress on outstanding sends. To
achieve low latency, the progress engine senses incoming
messages by polling various memory locations. As can be
seen in Figure 2(a), the RDMA Write based Rendezvous
Protocol generates multiple control messages which have
to be discovered by the progress engine. Since the progress
engine is polling based, it requires the application to call
into the MPI library.

However, the MPI applications might be busy doing
some computational work or I/O. In this case the applica-
tions cannot make any call into the MPI library. As a re-
sult, the message transfer has to simply wait until the con-
trol messages are discovered. This scenario is illustrated
in Figure 2(b). The delayed discovery of important control
messages leads to serialization of the computation and com-
munication operations. As a result, the overlap potential of
computation and communication is severely hampered as
shown.

4 Rendezvous Protocol: Design Alternatives

In this section we discuss in detail various design alterna-
tives for designing a high-performance Rendezvous Proto-
col. The main issues for designing this high-performance
protocol are: computation/communication overlapand
communication progress.

4.1 RDMA Read / RDMA Write: Which is
beneficial?

In this section, we compare RDMA Read and Write as
design alternatives and pick the best one of them. We will
compare the two based on parameters like: communication
progress, computation/communication overlap, number of
I/O bus transactions etc.

Typically, small messages are sent over Eager Protocol
(which is copy-based) and larger messages are set over Ren-
dezvous Protocol. According to the MPI specification, only
the sender can choose the actual protocol efficiently. Par-
ticularly, the MPI Specification [17, 18] states that:“The
length of the received message must be less than or equal to
the length of the receive buffer. An overflow error occurs if
all incoming data does not fit, without truncation, into the
receive buffer. If a message that is shorter than the receive
buffer arrives, then only those locations corresponding to
the (shorter) message are modified.”According to the re-
quirements imposed by MPI semantics, the receiver may
post a much larger buffer than what the sender chooses to
send. Since, the choice of size of the message actually sent
(not posted size), lies with the sender, the sender can effi-
ciently make a choice of which protocol to use (Eager or
Rendezvous).

Now, we consider the case in which the sender decides
to use the Rendezvous Protocol for the message transfer.
Based on program execution and timing, there can be three
cases.

• Sender arrives first: If the sender arrives first at the
send call, it can send theRNDZ START message im-
mediately. Inside theRNDZ START message, it can
also embed the virtual address and memory handle in-
formation about the buffer to be sent. It is to be noted
that upon the receipt of thisRNDZ STARTmessage, all
the information about the application buffer is avail-
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(a) Rendezvous Protocol
with RDMA Write

(b) Limitation of Current Rendezvous Protocol

Figure 2. RDMA Write Based Rendezvous and its Limitations

able to the receiving process. Clearly, the receiving
process does not need to send aRNDZ REPLY mes-
sage any more. It can simply perform a RDMA Read
from the application buffer location of the sending pro-
cess.

• Receiver arrives first: Even if the receiver arrives first
at the receive call, it cannot choose which protocol the
message will be actually sent over. So, it must wait for
the sender’s choice of protocol. The receiver waits for
theRNDZ START message from the sender. However,
once the receiver gets theRNDZ START message, it
can perform the RDMA Read directly from the sender
buffer, without sending any moreRNDZ REPLY mes-
sage.

• Sender and receiver arrive at the same time: In
this case, the sender and the receiver arrive concur-
rently. However, neither the sender or the receiver
knows whether the other process has arrived. Hence,
in this case, the receiver must wait for the protocol
choice from sender (as stated before), and the sender
must assume that it has arrived first. Hence, again
in this case, the optimal choice would be to have the
sender send aRNDZ START message to the receiver.
As stated above, the receiving process can simply per-
form a RDMA Read from the sender buffer directly.

As per the above three cases, RDMA Read is chosen to
reduce the number of control messages. Since the num-
ber of control messages is reduced, the total number of I/O
bus transactions are reduced too. In addition, since the re-
ceiver can progress independently of the sender (once the
RNDZ START message is sent), we can enhance the com-
munication progress. Further, even if the sender does not
call any MPI progress, the data transfer can proceed over

RDMA Read. This leads to much better overlap of compu-
tation with communication, if RDMA Read is used.

Thus, we conclude from the above that: The optimal
choice of data transfer semantics is RDMA Read in all pos-
sible combinations of sender or receiver arriving at the com-
munication point.

4.2 Design Issues for RDMA Read Based
Rendezvous Protocol

In this section we describe our design and implemen-
tation of the Rendezvous Protocol using RDMA Read.
The basic Rendezvous Protocol over RDMA Read is il-
lustrated in Figure 3(a). The sending process sends the
RNDZ START message. Upon its discovery, the receiving
process issues theDATA message over RDMA Read. When
it is done, it informs the sending process by aFIN mes-
sage. But before we can directly utilize RDMA Read, we
must address some design challenges.

Limited Outstanding RDMA Reads: The number of
outstanding RDMA reads on any Queue Pair (QP) is a fixed
number decided during the QP creation (typically 8 or 16).
This means that we cannot directly issue a RDMA Read
whenever an incomingRNDZ START matches a posted re-
ceive. Instead, we use a token bucket for keeping track of
the number of RDMA Reads already issued. Every time a
RDMA Read is issued, we decrement the number of RDMA
Read tokens available. If no more tokens are available, the
RDMA Read request is placed in a FIFO queue. When
the MPI progress engine is active, first requests from this
FIFO queue are processed, before issuing any other RDMA
Reads.

IssuingFIN Message: According to InfiniBand specifi-
cation [8], Send or RDMA Write transactions are not guar-
anteed to finish in order with outstanding RDMA Reads. In

4



(a) RDMA Read Protocol
Operation

(b) RDMA Read Computation Overlap

Figure 3. RDMA Read Based Rendezvous Protocol

order to deal with this, we have to wait for the RDMA Read
completion, before we issue theFIN message (over Send
or RDMA Write).

The RDMA Read based Rendezvous Protocol can make
progress independent of the sender (after theRNDZ START
message is sent). Since the sender does not need to explic-
itly call MPI progress function, we can achieve good com-
putation/communication overlap on the sender side. This
can be seen in Figure 3(b). However, if the receiver does
not discover theRNDZ START message (i.e. it is busy do-
ing computation), then the RDMA Read will be delayed.
This effect can be seen in the same Figure 3(b). Hence, the
RDMA Read based Rendezvous Protocol can achieve com-
putation/communication overlap only at the sender side, not
at the receiver. The solution for this case is discussed in the
next section.

4.3 Design Issues for RDMA Read with Interrupt
Based Rendezvous Protocol

In this section we describe the design of Rendezvous
Protocol using RDMA Read with interrupt. As we de-
scribed earlier in this in section, RDMA Read is the best
data transfer mechanism when the sender arrives first. How-
ever, if the receiver arrives first, it still needs to wait forthe
RNDZ START message from the sender. In the meantime,
the receiver might be busy computing. The discovery of this
RNDZ STARTmessage is critical to achieving good overlap
between computation and communication. Since this con-
trol message is critical, we can cause an interrupt on its ar-
rival. This message should be handled by anasynchronous
completion handler. The basic protocol is illustrated in Fig-
ure 4(a). However, before we start to use this design, there
are certain challenges which we have to meet.

Selective Interrupt: Interrupts are usually associated
with various overheads. Causing too many interrupts can
harm the overall application performance. We devise a
method by which we can cause a selective interrupt only
on the arrival ofRNDZ START message and completion of
RDMA ReadDATA message. The Mellanox implementa-
tion of the Verbs Level API(VAPI) [16] provides such a
feature. In order to have selective interrupts, two things
must be done. First, the sender has to set a solicit bit in
the descriptor (solicit event) of the message which is
intended to cause the interrupt. Secondly, the receiver must
request for interrupts from the completion queue by setting
VAPI SOLIC COMP prior to the arrival of the message.

Interrupt Suppression: Even though we have a se-
lective interrupt scheme, back-to-backRNDZ START mes-
sages should not generate multiple interrupts. This will
harm the overall application performance. For designing
this scheme, we disable any interrupts on the completion
queue automatically after the asynchronous event handler is
invoked. The event handler then keeps on polling the com-
pletion queue until there are completion descriptors. Thus,
in this design even though back-to-backRNDZ START
messages might arrive, only one interrupt is generated. Fi-
nally, when there are no more completion descriptors left,
the asynchronous event handler resets the request for inter-
rupts before exiting.

Dynamic Interrupt Requests:The approximate cost of
an interrupt is 18µs (experimental platform description is
given in Section 5). However, the cost of the receiver re-
questing an interrupt and clearing it is only 7µs. Our de-
sign of RDMA Read with Interrupt, has such adynamic
scheme, in which the receiving process requests for inter-
rupts only when pending receives are posted. If no receives
are pending, then the request for interrupts is turned off, and
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(a) RDMA Read with Interrupt
Protocol Operation

(b) RDMA Read with Interrupt Computation Overlap

Figure 4. RDMA Read with Interrupt based Rendezvous Protoco l

the MPI goes into polling based progress. Whenever the in-
terrupt is set, an internal flag indicates this status. On post-
ing of subsequent receives, this interrupt does not need to
be re-requested. Similarly, when the interrupt is cleared,an
internal flag indicates that status too. This dynamic scheme
can reduce the number of interrupts in the case where the
sender arrives first, but the receive application hasn’t posted
the receive as yet.

Hybrid Communication Progress: In this new design,
our asynchronous event handler is invoked by an interrupt.
It executes as a separate thread to the MPI program. As
we mentioned in Section 3, many MPI implementations are
based on a polling progress engine. This means that when-
ever a MPI call is issued by the application, the MPI imple-
mentation checks all communication channels for incoming
messages and makes progress on pending sends. Hence, we
can potentially have two threads of the progress engine (one
polling and the other handling the event) active at the same
time. Thus, we need to provide a thread safe mechanism to
implement this hybrid progress engine. At the same time as
providing thread safety, it should also provide high perfor-
mance. If there are no interrupts caused, the overhead im-
posed by this thread safety mechanism should be minimal.
We use the well-known Peterson’s algorithm [21] for solv-
ing this Concurrent Reading While Writing(CRWW) prob-
lem.

Figure 4(b) shows the computation/communication at
both the sender and receiver side. In this figure, the
RNDZ START message causes an interrupt at the receiver.
The RDMA ReadDATA message is issued immediately.
Hence, the computation and communication can be over-
lapped at both sender and receiver.

5 Experimental Evaluation

In this section we evaluate our proposed designs for
the optimized Rendezvous Protocol. We compare three
schemes, the first one being the RDMA Write (MVAPICH
version 0.9.4) [20], the second one being the RDMA Read
and the third one being RDMA Read with interrupt based
Rendezvous Protocol. Since the Rendezvous Protocol is
used for large messages, we mainly consider large messages
in this evaluation section. It is to be noted that any of our
designs do not put any additional overhead for small mes-
sages. Our evaluation platforms used were of two types:

• Cluster A: 8 SuperMicro SUPER X5DL8-GG nodes
with dual Intel Xeon 3.0 GHz processors. Each node
has 512KB L2 cache and 2GB of main memory. The
nodes are connected to the InfiniBand fabric with 64-
bit, 133 MHz PCI-X interface.

• Cluster B: 36 nodes, dual Intel Xeon 2.66 GHz pro-
cessors. Each node has 512KB L2 cache and 2GB of
main memory. The nodes are connected to InfiniBand
fabric with 64-bit, 133 MHz PCI-X interface.

All the machines have Mellanox InfiniHost MT23108
Host Channel Adapters (HCAs). The clusters are con-
nected using a Mellanox MTS 14400 144 port switch. The
Linux kernel version used on Cluster A and Cluster B were
2.4.22smp and 2.4.20-8smp respectively. The InfiniHost
SDK used was 3.2 and the HCA firmware version was 3.3.

5.1 Computation and Communication Overlap
Performance

In this section we evaluate the ability of our designed
schemes to effectively overlap computation and communi-
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cation. We designed two micro-benchmarks and carried out
the evaluation on Cluster A.

Sender Overlap: In this experiment, we evaluate how
well the sending process is able to overlap computation with
communication. The sender initiates communication us-
ing MPI Isend, then computes forW µs. At the same
time, the receiver is just blocking on aMPI Recv. After
the sender has finished computing, it checks for comple-
tion of the pending sends. The entire operation is timed at
the sender. If the entire operation lasted forT µs, then the
computation to communication overlap ratio isW/T .

Figure 5 shows this ratio versus the computation time.
We can see that for the RDMA Write scheme, the overlap
ratio is quite low. This is because the sender process is un-
able to send theRNDZ REPLYmessage due to the computa-
tion. On the other hand, the RDMA Read and RDMA Read
with Interrupt schemes show 100% overlap. It is to be noted
that for low values of computation time (W ), the value of
the ratio is low, since in this case, the time for communica-
tion is dominant.

Receiver Overlap: In this experiment, we evaluate how
well the receiving process is able to overlap computation
with communication. This experiment is similar in nature
with the sender overlap experiment. In this experiment, the
receiver posts a receive usingMPI Irecv and computes
for W µs, while the sender blocks on aMPI Send. After
the computation, the receiver waits for the communication
to complete. The entire time is marked asT . The computa-
tion to communication ratio isW/T .

Figure 6 shows this ratio versus the computation time.
We can see that for the RDMA Write and the RDMA Read
schemes, the overlap ratio is quite poor. This is because the
receiving process is unable to issue theRNDZ REPLY or
DATA message due to the computation. On the other hand,
the RDMA Read with Interrupt scheme show 100% overlap,
since the arrival of theRNDZ START message generates an
interrupt and the receiving process immediately issues the
DATA message. As noted before, for low values of com-
putation time (W ), the communication time is dominant,
resulting in a low overlap ratio.

5.2 Communication Progress Rate

In this section we evaluate the communication progress
of the various Rendezvous Protocol design schemes. In
order to evaluate the progress, we take consecutive time
stamps from the application execution. We use the sender
overlap and the receiver overlap benchmarks as described in
section 5.1. While the benchmarks are executing, we take
time stamps from successive iterations of computation, wait
for communication loop. These time stamps are recorded
just before the application enters the computation phase, in
theMPI Wait and from inside the MPI library when the

actual communication takes place.
Figure 7(a) shows the progress snapshot during the

sender overlap test. We observe from this figure, that in the
RDMA Write based Rendezvous Protocol, the computation
and communication are completely serialized. It offers no
overlap at all. Whereas, in the RDMA Read based schemes,
the communication happens during the application is com-
puting. The RDMA Read based schemes can progress 50%
faster when transferring messages of 1MB and computing
for 1500µs.

Similarly, Figure 7(b) shows the progress during the re-
ceiver overlap test. We observe from this figure, that in
the RDMA Write and the RDMA Read based protocol, the
computation and communication are completely serialized.
They hardly offer any overlap. Whereas, in the RDMA
Read with Interrupt scheme, the communication happens
during the application is computing. The RDMA Read with
Interrupt schemes can progress around 50% faster when
transferring messages of 1MB and computing for 1500µs.

5.3 Application level Evaluation

In this section, we evaluate the impact of our RDMA
Read and RDMA Read with Interrupt schemes on applica-
tion wait times. For our evaluation, we choose two well
known applications - HPL and NAS-SP (Scalar Pentadiag-
onal Benchmark).

High Performance Linpack (HPL) is a well known
benchmark for distributed memory computers [5]. It is used
to rank the top 500 computers [24] twice every year. NAS-
SP [2] is a CFD simulation which solves linear equations
for the Navier-Stokes equation. We used the Class C bench-
mark for our evaluation.

To find out the communication time for these applica-
tions, we use a light-weight MPI profiling library [10],
mpiP. This profiling tool reports the top aggregate MPI
calls and the time spent in each one of them. We collect
the aggregate time spent in theMPI Wait() function call.
This time is spent by the application just busy waiting for
the pending sends and receives to be completed. Since this
time is just wasted by the application waiting for the net-
work to complete the operations, this represents time which
is which can possibly be overlapped with computation.

Figure 8(a) and 8(b) show theMPI Wait times for HPL
and NAS-SP (Class C) with increasing number of pro-
cesses, respectively.

We observe that the wait time of HPL is reduced by
around 30% for 32 processes by the RDMA Read and
RDMA Read with Interrupt designs. Similarly, for the
NAS-SP, we can see around 28% improvement for 36 pro-
cesses. This is mainly because the RDMA Write based
Rendezvous implementation waits till theMPI Wait() to
issue theDATA message, and hence cannot achieve good
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(a) Sender Overlap (b) Receiver Overlap

Figure 7. Computation and Communication Overlap with Time S tamps

overlap. In addition, we observe from the figure that the
benefits provided by the new design are scaling with the
number of processes. Hence, our new design is capable of
taking better advantage of network when there is possibility
of overlap.

In these results we see that the RDMA Read and RDMA
Read with Interrupt perform equally well. This might be
due to the fact that these applications do not require compu-
tation/communication overlap on the receiver side.

6 Related Work

Several researchers have proposed various schemes to
achieve better MPI communication progress. The aspect of
communication and computation overlap has also received
due attention from researchers. In this section we present
related work in this area. Sitsky and Hayashi [23] pro-
pose several methods of communication progress for the
Fujitsu AP1000+. They propose an interrupt driven mes-
sage detection approach for better communication progress.
However, they do not consider specific interrupts for effi-
ciently implementing the Rendezvous Protocol and in gen-
eral their design considers every incoming message gener-
ating an interrupt. Keppitiyagama et al [11, 12] describe
asynchronous message progress mechanism for MPI-NPII
which is a network-processor based message manager for
MPI. Their work highlights the benefits of computation and
communication overlap, however it does not deal directly

with optimizing host based Rendezvous Protocols. Amer-
son et al [1] describe the communication progress problem
with large message transfer using the Rendezvous Proto-
col. Their solution also relies on an interrupt handler based
approach. However, they only consider the RDMA write
based semantics and not RDMA read. Brightwell et al [4, 3]
have analyzed the impact of overlap on large scientific ap-
plications. They indicate the potential benefits RDMA read
can provide to overlap. However, their study is mainly an
analysis of applications, not an optimization of the Ren-
dezvous Protocol itself. Majumder et al [15] have proposed
an event based progress mechanism for LA-MPI [6]. They
indicate the benefits of such an approach to overlap in ap-
plications. However, their work is mainly over TCP/IP and
does not consider RDMA read as a part of their design.

7 Conclusions and Future Work

In this paper, we have presented new designs which ex-
ploit the RDMA Read and the capability of generating se-
lective interrupts to implement a high-performance Ren-
dezvous Protocol. We have evaluated in detail the perfor-
mance improvement offered by the new design in several
different areas of high performance computing. We have
observed that the new designs can achieve 100% computa-
tion and communication overlap. Additionally, our schemes
yield a 50% better communication progress rate when com-
putation is overlapped with communication. Further, our
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Figure 8. Application Level Evaluation for Proposed Design s

application evaluation with Linpack (HPL) and NAS-SP
(Class C) reveals thatMPI Wait time is reduced by around
30% and 28% respectively for a 36 node InfiniBand cluster.
We observe that the gains obtained in theMPI Wait time
increase as the system size increases. This indicates that
our designs have a strong positive impact on scalability of
parallel applications.

We plan on continuing work in this direction. We want to
evaluate the impact of our proposed schemes on larger scale
clusters. We want to study a broad variety of applications
and evaluate the benefits to them due to the new scheme.
Also, we want to investigate fine grain locking by Peterson’s
algorithm to reduce the size of the critical section in the MPI
progress engine. Finally, we want to improve the progress
engine to support blocking mode support and see the impact
of running several processes per node on end application
performance.
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