Convergent Anycast: A Low Duty-Cycle MAC
Layer for Sensor Networks

Kai-We Fan, Sha Liu, and Prasun Sinha
Computer Science & Engineering, Ohio State University
Email: {fank,liusha,prasun}@cse.ohio-state.edu

Abstract— Energy conservation is critical for ex-
tending the lifetime of wireless sensor networks. A
simple way to conserve energy is to turn off the radio
transceiver for brief durations. Without any synchro-
nization of wakeup schedules, such a mechanism is
prone to an increased event detection latency. Cur-
rent techniques either require periodic synchronization
messages to achieve low detection latency using syn-
chronized wakeup, or incur high latency due to the
lack of any synchronization. We propose a convergent
wakeup protocol, called Convergent-MAC or CMAC, to
distributedly determine their wakeup schedules upon
event detection. CMAC requires zero communication
during quiet periods with no event detections. It con-
verges from anycast-based forwarding in unsynchro-
nized networks to unicast-based forwarding. While
converging to the optimal path, nodes distributedly
determine their wakeup schedules based only on local
information. Simulations show that even when operat-
ing at a 1% duty cycle, the throughput and latency
for CMAC are comparable to 802.11 based protocols,
while using 88.5% lower energy during event detection.
For operation at 0.1% duty cycle, CMAC maintains
comparable throughput and latency although at the
expense of increase in the initial detection latency. Due
to its extreme energy conserving capability, CMAC is
particularly suited for event triggered sensor networks
that often require an extended network lifetime.

I. INTRODUCTION

Extending the lifetime in battery powered wireless
sensor networks is critical due to multiple reasons.
Frequent human intervention to replace batteries in
sensors is an expensive operation especially when
sensors are deployed in large numbers or when they
are deployed in hard-to-reach areas. Hazardous envi-
ronments often pose challenges to the deployer if sen-
sors run out of battery too quickly. Sensor networks
deployed for detecting chemical leaks, bio-chemical
attacks, and poisonous gases in waste management
facilities are some such examples. Often sensors show
nondeterministic behavior during periods with low
battery power, which can result in false positive or
false negative detections. For certain applications,
deployed sensors are impossible to recover physically.
One such example is the Glacsweb project [1] where
sensors are embedded 60 feet below the surface of
the glaciers for studying their movement patterns.
For military and defense applications where sensors
are deployed in foreign territories and hostile envi-
ronments, replacing batteries is often not an option.

Thus, it is critical to design protocols for energy
conservation in wireless sensor networks.

Sensors networks can be primarily classified into
the following two types: Periodic Sampling Networks
(PSNs) or Event Triggered Networks (ETNs). PSNs
are used for collecting data periodically over a certain
time. The frequency of data collection is often pre-
decided. As the network traffic is deterministic, sig-
nificant pre-deployment planning can optimize the use
of network resources. Some such examples are sensors
deployed for gathering environmental conditions in
forest [2], [3] and sensors for habitat monitoring
[4], [5]- ETNs are typically used for detecting non-
periodic and infrequent events based on certain trig-
gers. Examples include networks for intrusion de-
tection [6], chemical and biological hazard detection
[7], and detection of faults in bridges [8]. ETNs are
often more challenging to design as pre-deployment
optimizations are difficult to perform due to the non-
periodic nature of events. Our study and evaluation
focuses on ETNs, although some of the ideas are
applicable to PSNs as well.

For a MAC layer protocol for sensor networks, low
energy consumption, high throughput, and low delay
are essential goals. We seek to design an efficient
wakeup schedule and packet forwarding strategy with
the following additional specific goals:

1: The protocol must be robust and adaptive to
topological changes.

2: The protocol must operate in sparse as well as
dense networks.

3: The protocol must operate at very low duty
cycles (e.g., 0.1%) during idle times.

4: For sustained traffic, the routes must converge
to optimal routes without requiring explicit mes-
saging.

5: The amount of energy consumed during event
detection must be optimized.

Several MAC protocols have been proposed to
conserve energy in sensor networks. Protocols such as
S-MAC [9], [10], T-MAC [11] and DMAC are based
on synchronization of wakeup schedules. Frequent
synchronization messages consume significant energy
in such protocols even when there are no events
to report. Other approaches such as GeRaF [12],
[13], B-MAC [14], PEAS [15] and GAF [16] do
not use synchronization messages. However, GeRaF

is prone to high latency because of unsynchronized
sleeping schedules which either leads to multiple
packet retransmissions or the discovery of sub-optimal
routes. B-MAC requires long preambles leading to
high transmission delays and limiting its capability
to conserve energy. PEAS and GAF both require
overhead messages even when there is no traffic in
the network.

To meet our design goals, we propose a combined
wakeup schedule and routing approach that converges
from anycasting in an unsynchronized network to uni-
casting on synchronized routes. Due to its capability
to converge from anycasting to unicasting, we call our
approach Convergent-MAC, or CMAC. Unicasting is
based on greedy forwarding like in GPSR [17], and
anycasting prefers forwarding nodes that are closer
to the greedy choice. Triggered by the flow of data
packets, the routes progressively converge to greedy
routes at which point the protocol becomes akin to
unicasting. Nodes on the unicast route start following
a wakeup schedule to efficiently forward data with
low latency. The proposed convergent wakeup ap-
proach results in low average latency and low energy
consumption. It requires zero communication during
periods with no event activity.

We implement our protocol in ns2 [18] and com-
pare it with GeRaF and 802.11 based unicast protocol.
The highlights of our simulation based study are as
follows:

« For static events scenario, our protocol outper-
forms IEEE 802.11 based unicast with 100%
duty cycle and anycast based GeRaF. With higher
throughput and lower latency, CMAC saves more
energy than GeRaF. CMAC saves up to 94%
energy compared to 802.11 based unicast.

o For dynamic events, CMAC achieves 90%
throughput of 802.11 based unicast with compa-
rable latency, while saving up to 88.5% energy.

The rest of the paper is organized as follows. Sec-

tion Il motivates the design of our protocol. Section
111 presents the details of our protocol. In Section IV,
we present results from simulations comparing CMAC
with other protocols. Section V summarizes related
work on this topic Finally, Section VI concludes the

paper.
I1. MOTIVATION

Various MAC layer protocols have been proposed
for power conservation in sensor networks. In this
section, we outline the weaknesses of some of these
protocols to motivate the design of CMAC. Our key
observations are as follows:

« Synchronized wakeup is wasteful: The idea of
synchronized wakeup is used in S-MAC [9]
and Adaptive S-MAC [10] protocols. In these
protocols, communication is restricted to the
awake periods of the periodic sleep cycles. To
maintain synchronization, nodes need to send
periodic synchronization messages. For typical

Mica2 hardware, the suggested periodicity of
such messages is 10 seconds [9], [10]. Suppose
the size of a synchronization packet is 40 bytes,
including the physical layer overhead and the
preamble. For the Mica2 radio with a raw bit-rate
of 38.4Kbps, it takes 8.333ms to transmit a syn-
chronization packet. Using 27m A as the current-
drawn during transmission for Mica2 motes, the
energy consumption for a synchronization mes-
sage is,

40 x 8
38400

Suppose the network operates at 1% duty cycle
by waking up for 0.1s every 10 seconds. Using
10mA as the current drawn during idle listening
for Mica2, the idle energy consumption for a
node in every 10 seconds is

0.014 x 0.1s x 3V = 3mJ

0.027A x s x 3V =0.675mJ

Thus, synchronization messages consume almost
18% of the total energy in the absence of
data traffic. Eliminating these synchronization
messages can increase the network lifetime by
22%. If we further lower the duty-cycle, the
synchronization messages will start dominating
the total energy consumption. For example, if
nodes operate at 0.1% duty cycle, the synchro-
nization messages consume 70% of the total
energy. While operating at 0.1% duty cycle, the
networks lifetime can be increased by 225% by
eliminating the synchronization messages. Thus,
for operation at lower duty cycles, the network’s
lifetime can be significantly increased by elimi-
nating synchronization messages.

Anycasting has high overhead in non-
synchronized networks: To address the overhead
of synchronization messages in S-MAC and
Adaptive S-MAC, GeRaF [12], [13] proposes
non-synchronized wakeup for all nodes. GeRaF
uses local anycast to forward packets to any
neighbors closer to the sink. It assumes that the
location of neighbors and the location of the
sink is known to all nodes. Such information can
be made available during network deployment.
Anycast based GeRaF has the following three
disadvantages over unicast based protocols. First,
the computed route could be longer since the
optimal forwarding nodes may be asleep during
anycasting. Second, the overhead of anycast is
higher than unicast as a sending node has to wait
to obtain a response from one of the forwarding
nodes. The waiting time is typically longer than
in unicast. Third, the RTS/CTS packets are
usually longer than unicast RTS/CTS as they
contain anycast-specific additional information.
Thus, although GeRaF does not suffer from the
overhead of synchronization messages, it incurs
higher overhead during data transmissions.

« Long preamble leads to high latency for low duty
cycles: As events may be rare in sensor networks,
the idle energy is the dominant component of the
total energy consumption when synchronization
messages are not used. By reducing the duty-
cycle, the idle energy consumption could be
further reduced at the expense of increase in
event detection latency. In B-MAC [14], nodes
use a long preamble with fixed length to establish
contact with next hop nodes. The preamble must
be long enough to ensure that all neighbors can
hear it. From [14], the time required to turn on
the radio and sample the channel is 3ms. If
the nodes work on 1% duty cycle, nodes will
wake up every 300ms to monitor the channel.
To ensure that all neighbors hear the packet, the
preamble in B-MAC must be at least 300ms
long. We observe that the preamble length in-
creases as the duty-cycle decreases. Moreover,
a fixed preamble length is wasteful and leads
to higher detection latency, as the node to be
contacted may hear the preamble much before
300ms. In addition, if it is an anycast packet as
opposed to a unicast packet, the expected length
of the preamble will be even shorter.

1. CONVERGENT MAC (CMAC)

The mechanisms in CMAC that address the above
goals are as follows:

Based on the above observations, we design the
following mechanisms of CMAC to meet the design
goals outlined in Section 1.

« Anycast based initial detection (Goal 1): CMAC
uses zero-communication during periods of inac-
tivity. To address the asynchronous sleep sched-
ules, it uses anycast to establish contact with
the forwarding node. Anycast naturally provides
robustness against node failures and link quality
fluctuations.

o Aggressive RTS (Goals 2, 3): For scenarios with
low density and low duty-cycle, the possibility
of finding an awake forwarding node is also
reduced. To discover a forwarding node, anycast
is enhanced with multiple RTS transmissions
without interim backoffs.

« Converging from Anycast to Unicast (Goal 4):
Anycast incurs high overhead which is avoided
by gradual convergence to unicast for sustained
traffic.

« Staggered Wakeup Schedule (Goal 5): After con-
vergence, the nodes on the unicast route follow
a staggered wakeup schedule. This allows the
nodes to synchronize packet transmission and
sleep schedules, with immediate upstream and
downstream nodes by the packet flow without
time synchronization.

The rest of the section presents an overview of

CMAC, followed by details on each component of
CMAC.

A. CMAC Overview

In an idle network, all nodes use non-synchronized
random wakeup schedules with a pre-defined duty
cycle, called the idle duty cycle. Upon observing
an event, nodes use anycasting with aggressive RTS
retransmission to establish contact with forwarding
nodes and forward packets toward the sink. In any-
casting, the nodes with a better metric (in this paper
we have assumed remaining distance to the sink as the
metric) respond first. The node that receives packets
during anycasting remains fully awake for a short du-
ration in anticipation of the next packet. This ensures
that at least one node will be awake for subsequent
packet’s transmission, and anycast will be responded
by this node, or by a neighbor with a better metric.
Once a node finds a next hop with a high enough
metric, it switches from anycasting to unicasting, and
only forwards packets to that node in following trans-
missions. Thus the forwarding path formed by anycast
progressively converges to unicast driven by the flow
of data packets. Once nodes agree on unicasting, they
use synchronized wakeup schedules that are staggered
to efficiently forward packets with low latency. After
convergence, the wakeup schedule uses a different
duty cycle, called the active duty cycle, to forward
packets. Thus CMAC allows the network to operate
at low duty cycles, avoids synchronization messages,
and provides high throughput and low latency while
ensuring a long network lifetime.

B. Anycast based Initial Detection

Anycasting provides a low latency mechanism to
find a next hop node for forwarding packets to. In
anycast, the sender attempts to forward the packet
to any node among a set of forwarding nodes, with
preference given to nodes with a better metric. Like
GeRaF [12], [13], we use the remaining distance to
the sink as the metric with preference given to nodes
closer to the sink. To address problems with low
reliability of long links, several other metrics such
as ETT [19], ETX [20] and PRRxDist [21], have
been proposed. Our anycast protocol can be readily
modified to accommodate any such metric.

Our implementation of anycasting uses an RTS-
CTS exchange between the sender and the prospective
receiver. Other anycast mechanisms [12], [13], [22]
can also be used in place of our anycast approach in
the CMAC protocol. As there are multiple neighbors
who can respond with a CTS, the time instant at which
they can start sending CTS is staggered to give prefer-
ence to neighbors that have better metrics. Following
the principles of greedy forwarding [17], only nodes
that are closer to the sink than the current sender are
allowed to respond with a CTS. We assume that the
sensors are aware of their own location, and the sink’s
location. The area that is closer to the sink than the
sender is divided into n regions, Ry, Ro, - -+ R, such
that all nodes in R; are closer to the sink than nodes in
R; where i < j. Figure 1 shows an example where the

area is divided into three regions. Nodes in region R;
send the CTS in time slot . Nodes that have similar
metric (in the same region) will choose a random time
between 0 and k£ — 1, to decide on a mini-slot to
start transmitting the CTS, where k& is the number of
mini-slots per slot, as shown in Figure 2. The slots
are used to give preference to forwarding nodes with
better metrics, and the mini-slots are used to avoid
collisions between forwarding nodes that have similar
metrics (in the same region). If nodes overhear any
traffic before transmitting CTS, they cancel the CTS
transmission. If neighbors can sense the channel busy
when any other neighbor transmits, the incidence of
CTS collisions can be further reduced. This requires
the range of radio sensing to be at least twice the
range of transmission. Nodes in Ry will have the
opportunity to send the CTS only if all nodes in R are
sleeping or are unable to send the CTS. Therefore, the
nodes closer to the sink always have higher priority in
transmitting CTS. The DATA and ACK packets follow
the CTS like in the 802.11 protocol [23].

Fig. 1. Coverage area closer than the sender is divided
into regions according to the distance to the sink.

mini-slot ~ CTS slot
N
Senaer WIHH“HH“HM
Node in R, R
Node in R, |
Node in R, |
Node in Ry |

Fig. 2. Nodes in different regions transmit their CTS in the
corresponding CTS slot, while nodes in the same region
transmit their CTS in randomly selected mini-slot k.

C. Aggressive RTS

In order to extend network lifetime, nodes should be
able to work on a low duty cycle to reduce idle energy
consumption. But for non-synchronized networks, a
high density is needed along with low duty cycles,
to ensure that at least one forwarding node is awake
to receive the packet. To expand the operating region
of the protocol and allow operation in low duty cycle
mode in sparse networks, B-MAC [14] proposed an
approach using fixed length preambles. B-MAC uses
a long preamble to ensure that the selected receiver
will be awake when the sender transmits the packet.

However, such a long preamble is not required for our
anycast. Consider a scenario with a 1% duty cycle
where each cycle is 300ms. Let L ms be the length
of the preamble, and x = =& be the normalized
preamble length. Let the random variable X represent
the normalized length of the preamble such that the
first forwarding out of n nodes wakes up exactly
at the end of the preamble. The CDF (Cumulative
Distribution Function) F'(z) for X is given by:

Fz)=P{X<=z}=1—-(1—-2a)"

Figure 3 shows the CDF for several different values
of n

2

8

fo}

[=]

o

I

0 50 100 150 200 250
Preamble Length (ms)

Fig. 3. The CDF F(x) for 1% duty cycle with a cycle of
300ms.

The expected value of « is therefore:

1
E(x) = /OLL'XF/(SE)dl'
= /lwdF(x)
0
= xxX F(z /F
- ()n—i—l 1
= lx F@) - @+ D)
B 1
- on+1

So, the expected preamble length is ﬂms De-
pending on the number of forwarding nodes n, the
expected preamble length could be much smaller than
300ms. A shorter preamble leads to lower event de-
tection latency and lower power consumption. We ob-
serve that for anycasting, the preamble length should
be a function of the number of forwarding nodes.
Motivated by the above analysis, we propose an
aggressive RTS mechanism, to wake up neighboring
nodes. Unlike the fixed length preamble in B-MAC,
aggressive RTS uses multiple RTS packets. When a
node wants to transmit a packet, it sends an RTS
packet for initiating anycast. If no CTS is received

300

for the RTS, the next RTS is transmitted without a
backoff. The maximum number of such aggressive
RTS transmissions is limited by the length of the
cycle. The interval between the end of one RTS and
the beginning of the next aggressive is the sum of
the SIFS, maximum propagation delay, and the length
of all CTS slots. CMAC uses a wakeup period of
3ms, which is higher than this interval to ensure that
neighbors do not miss consecutive RTS packets during
aggressive RTS transmissions. Aggressive RTS is used
only when the channel is idle to reduce the contention
and interference.

D. Converging from Anycast to Unicast

Although anycast obviates the need for synchro-
nization messages and has better chance of making
progress in forwarding packet, it has three main
shortcomings. First, anycast does not always choose
the best route. The best next hop may not be able
to send the CTS because it is sleeping or because
of interference. Second, the overhead and delay may
be higher. For example, if there are no nodes in R1,
a slot is wasted. Third, anycast packets are usually
larger because they contain additional anycast-specific
information such as location information or expected
forwarding nodes IDs [12], [22].

The forwarding node that responds with a CTS may
have a metric close to the best metric. For example
a node in region Ry (Figure 1) may respond to an
RTS. When such a case occurs, there is no need to
perform anycast for the subsequent packets as this
node can be chosen as the next hop for all such
packets. Subsequent packets can simply use unicast.
The sender indicates its willingness to synchronize its
schedule with the receiver by using a synchronization
flag in the DATA packet header. The MAC layer
ACK from the receiver serves as a confirmation for
the receiver’s acceptance of a synchronized staggered
schedule. After converging to unicast, the two nodes
start following a staggered wakeup schedule with the
active duty cycle. The sender and receiver will main-
tain the schedule as long as there is traffic between
them. If there is no traffic for a certain period, which
may be due to the end of the event or the failure of
the sender or receiver, the synchronization times out,
and the nodes go back to the non-synchronized mode
and start following the idle duty cycle.

The node that is selected as the receiver during
anycasting remains fully awake for a fixed duration
if it is not selected to synchronize with the sender.
This ensures that anycast for the next packet will be
received by the current receiver or a neighbor that
has better metrics than the current receiver, and also
reduces the overhead incurred by aggressive RTS If
it cannot find a better next hop to synchronize with
for a duration, it assumes that there is no better node
and starts to synchronize with the latest receiver. Thus
anycasting progressively converges to unicasting on a
synchronized route, as shown in Figure 4.

Time 1 Time 2
o
o o
® Fao o O o
\1 ~
° % S U
\
o /'. P
é o
o S © .
N o
N\,
© % . © o
° ° * ° ® ©
h o
o o
© | © o O © o .
P o
© o
o
.
© © . o o
© o

— Unicast links
------ > Anycast links

* Active nodes
o Sleeping nodes

Figl.I 4. Anycasting route converges to unicast route grad-
ually.

Notice that the packets can still be forwarded to the
sink using anycasting before the route converges. The
converging mechanism only tries to find a better node
as next hop, and the convergence occurs gradually
while the data is forwarded to the sink. Therefore
before the route converges, the packets are still for-
warded to the sink, although with a higher overhead
due to anycasting on some hops.

E. Synchronization on a Single Route

After nodes converge from anycast to unicast, they
use a synchronized schedule with the active duty-cycle
to forward packets. A 100% active duty-cycle results
in high contention between upstream and downstream
nodes, and low channel utilization. To reduce such
contention, the transmission and reception slots are
split. The synchronized schedule is illustrated in Fig-
ure 5. Each wakeup cycle has a sleep time slot and
an active time slot. In active time slot, time is divided
into a receiving slot and a transmitting slot. Nodes
can only transmit data during the transmitting slot.
Therefore, the downstream nodes must schedule their
receiving time slot to match their upstream node’s
transmitting slot. Figure 6 illustrates the synchroniza-
tion schedules of a few synchronized nodes. The
receiving and transmitting slots are staggered such
that the upstream nodes can transmit to downstream
nodes without contention between them. The stag-
gered schedule allows nodes to forward packets from
the source to the sink with low delay.

One cycle

active sleep

I s .

Rx Tx Rx Tx

Fig. 5. Synchronization Schedule.

BB B B
%

Hop 1

Hop 2

Hop 3

Fig. 6. Staggered synchronization schedules.

When two nodes agree to synchronize, they must
schedule their wakeup periods in a staggered way. We
consider the following two cases for synchronization.

« The sender is the source and is not synchronized.
When a sender is not synchronized, the schedule
can be started at any time. Figure 7 illustrates a
scenario where an unsynchronized sender wants
to synchronize with the receiver. The schedule
will be started as of the time the sender sends
the RTS packet for the first successful data
transmission.

« The sender is an intermediate node, and is al-
ready synchronized with its upstream node. As
the sender is already synchronized, it can not
change its schedule. So when it needs to syn-
chronize, it explicitly indicates the time elapsed
since the beginning of the current transmitting
slot (see Figure 8). The receiver uses this offset
to determine its staggered wakeup schedule to
properly match the sender. Therefore even if
the transmission failed for the first few tries,
the receiver can still know the time to start the
schedule.

RTS of first successful

data transmission ,
H
H
H
Unsynch. :
H i
H H
H H
H H
H H
H H

sender S
Next Tx time for sender

Next Rx time for receiver

Unsync
receiver

One cycle length

Fig. 7. An unsynchronized sender synchronizes with an
unsynchronized receiver. The schedule will be started as
of the time the sender sends the RTS packet of the first
successful data transmission.

F. Synchronization on Merging Routes

Multiple sources may simultaneously send data in
case of a static event that triggers multiple nodes or in
case of a mobile event. When multiple sources need
to report data to the sink synchronization needs to
be managed across merging routes. If a sender is not
synchronized but the receiver is already synchronized

RTS of first successful
data transmission

Sync.
sender

& /’& ¥R
' 1 1
| H H
| H H
1 H
o i ! i
Relative time + H \
offset H \ _Next Rx Time for receiver i
h | |
+ B
' 7
| 5
|
|
| \

Unsync.
receiver

One cycle length

Fig. 8. A synchronized sender synchronizes with an un-
synchronized receiver. The sender explicitly indicates the
receiver the time offset of its schedule in DATA header.

with another sender (at the junction of two merging
flows), it follows the receiver’s schedule. The receiver
indicates the time elapsed since the beginning of the
last receiving time slot in the CTS header, and the
sender learns when to start its transmitting slot. If both
the sender and the receiver are synchronized with their
upstream nodes (receiver is synchronized with another
sender) but they are not synchronized with each other,
the following approaches can be used to adjust their
synchronization:

« The sender can match the receiver’s schedule and
request its upstream nodes to adjust their wakeup
schedules. However, this causes a ripple effect
that needs to be propagated to the leaf nodes of
the tree.

o The receiver switches to a wakeup schedule
that satisfies the new sender as well as the old
sender(s). However, this requires the receiver to
maintain a higher active duty cycle (see Figure
9).

« The sender splits its receiving and transmitting
slots to match with its upstream as well as
downstream nodes as shown in Figure 10. We
have chosen this approach to implement as it
incurs lower overhead compared to the other
approaches.

RTS of first successful

data transmission
}

Synchronized
Sender

1
Extending Rx time '
to match sender \N '

Synchronized
Receiver

Fig. 9. A synchronized receiver accommodates a synchro-
nized sender by extending its receiving slot.

G. CMAC Extension

Although staggered wakeup alleviates the con-
tention between upstream and downstream nodes,
multiple merging flows can cause significant cross-
route interference. Such interference is observed when
multiple events occur simultaneously and also when

RTS of first successful
data transmission

Synchronized ,,/// §\\a}\\\\§

Sender

—
VA
: K:rs Splitting Rx/Tx to
' match receiver
H

Synchronized
Receiver

length of a time slot for receivers to reply with a CTS
should be long enough such that the probability of
CTS collision for nodes in the same region is low.
We use 0.2ms in the following simulations. Table IV
lists the parameters we used in the simulations.

Fig. 10. A synchronized sender accommodates a synchro-
nized receiver by splitting its receiving and transmitting
slots to match the receiver’s slots.

the event is mobile. To address this problem, we pro-
pose an extension to CMAC. After converging from
anycast to unicast, nodes remain fully awake (rather
than following an active duty cycle) without any
synchronization. So, nodes can transmit and receive
at any time rather than wait for the Rx or Tx slots.
Although it increases the energy consumption during
active periods, only the nodes that forward data are
required to remain fully awake. When traffic ceases,
the nodes go back to follow the non-synchronized idle
duty cycle. We study the trade-offs between CMAC
and CMAC Extension as part of our performance
evaluation.

IV. PERFORMANCE EVALUATION

To evaluate the proposed scheme, we compare the
throughput, latency and normalized energy consump-
tion of our protocols with other protocols using the
network simulator ns2. Our study is based on the
following four protocols:

o 802.11: Using RTS-CTS-DATA-ACK 802.11
protocol with optimal routing. Nodes have a
duty cycle of 100%. This protocol servers as the
baseline for optimal throughput performance.

o GeRaF: Using RTS-CTS-DATA-ACK anycast-
ing protocol described in Section 111-B. Our
implementation has some differences from the
description of GeRaF in [12]. First we do not
use busy tone to detect if the channel is busy.
Second, we use the anycast protocol described in
111-B, which is slightly different from the anycast
protocol described in GeRaF [12].

« CMAC: Our proposed scheme described in Sec-
tion 111. Nodes work on a 1% idle duty cycle.

o CMAC-Ext: Our proposed scheme with the ex-
tension described in Section 111-G. When nodes
are synchronized, they remain active with a 100%
duty cycle to receive and forward packets.

We use 250m as the transmission range, but our
protocol works for any radio transmission range. We
configure the bandwidth to 38.4Kbps, the maximum
transmission power to 27mA, the receiving power to
10mA and idle listening power to 10mA. The CTS
for anycast contains extra information of the receiver’s
address (6 bytes) and the offset value of the receiver’s
schedule (2 bytes) as described in Il1I-F, therefore the
size of CTS for anycast is 14+6+2 = 22 bytes. The

TX range 250m | RTS size 14 bytes

Bandwidth 38.4Kbps | CTS size 14 bytes

TX power 2/mA | ACK size 28 bytes

RX power I0mA | Data header | 20 bytes

Idle power I0mA | Data payload | 50 bytes

Preamble+PLCP | 24 bytes | Anycast CTS | 22 bytes
TABLE |

SIMULATION PARAMETERS

In this section, we first present results on static
event scenario followed by evaluating the performance
in mobile event scenarios for varying parameters
including, data rate, initial duty-cycle, node density,
location error, and the link quality.

A. Satic Event

First we evaluate the performance in a simple
scenario with one static event to justify our design.
The performance is shown in Figures 11, 12, and 13.
We can see that in this scenario, CMAC and CMAC-
Ext have the same throughput and delay as 802.11
and consume only 6% energy as 802.11 does when
the date rate is less than 4 packets/s. This is because
the channel is not full loaded. While in high data rate,
the CMAC protocol outperforms all others protocols
in terms of throughput, delay and normalized energy
consumption. That is because by splitting the RX and
TX time slots, nodes can avoid contention between
upstream and downstream nodes, therefore packets
can be quickly forwarded to the sink. These graphs do
not show GeRaF performance as only a few packets or
no packets can be transferred to the sink successfully
using GeRaF.

The rest of the evaluation is based on mobile events
in the grid network in different scenarios. Unless oth-
erwise mentioned, the configuration for simulations
is as follows. An event moves randomly in the grid
network for 400 seconds at the speed of 10 m/s. The
grid size is 20 nodes by 20 nodes, and the distance
between two nodes is 100m. The sensing range of
sensors is configured such that the entire region is
covered with the least value. Therefore the sensing
range is 71m if the distance between two nodes is
100m (100x v/2/2 ~ 71). In the following simulation,
we use 1% idle duty cycle in our protocols and
in GeRaF unless otherwise mentioned. We did not
consider variation of the event size in this paper due
to space limitation.

B. Data Rate

Figures 14, 15, and 16 show the simulation results
of throughput, latency and energy consumption of dif-
ferent protocols for different date reporting rates. In

2000

1800

1600

1400

Throughput (bps)

1200

1000

800 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10

Datarate (packets/s)

Fig. 11. Average throughput of protocols with one static
event. Using only 1% idle duty cycle, CMAC outperforms
other protocols because it separates RX and TX slots. It
reduces contention and increases the channel utilization.

20

10 +

Delay (s)

3 4 5 6 7 8 9 10
Data rate (packets/s)

Fig. 12. Average end-to-end latency delay with one static
event.

0.1

T 008

3

3

& 006

o,

c

L

8 oost 1

©

£

2 002}]
R - e T

0 L L L L L L L

3 4 5 6 7 8 9 10
Data rate (packets/s)

Fig. 13. Normalized energy consumption, the amount of
energy spent per byte. CMAC consumes only 6% energy
in comparison to 802.11, and consumes 60% of the energy
consumed by CMAC-Ext.

1800
1600
1400 |oxo, BT

T 1200 1

)

5 1000 f 1

o

c

S 800°f 1

o

= 600 |- 1
400 1
200 +]

R PA——— ‘ ‘ ‘

3 4 5 6 7 8 9 10
Data rate (packets/s)

Fig. 14. Average throughput of protocols with one mobile
event. Using only 1% idle duty cycle, CMAC and CMAC-
Ext can achieve 80% to 90% throughput of 802.11.

70 \ \ \

50

Delay (s)

<
20 ¢

10 -

0 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10

Data rate (packets/s)

Fig. 15. Average end-to-end latency delay with one mobile
event.

0.14

0.12

0.08 - pa—— 1

006 .~ |

0.04 - b

Normalized Energy (J/byte)

0.02 b

3 4 5 6 7 8 9 10
Data rate (packets/s)

Fig. 16. Normalized energy consumption, the amount of
energy spent per byte.

mobile event scenarios, CMAC and CMAC-Ext still
use the least energy, while achieving 80% to 90% of
throughput in 802.11. The reason that the throughput
of CMAC and CMAC-Ext are lower is due to two
reasons. First, the duty cycle is only 1% initially,
which limits the initial throughput. Second, the event
may move out of a sensor’s sensing range before
the route fully converges. However, 802.11 achieves
higher throughput with very high power consumption
as nodes remain 100% awake. When the network is
idle, 802.11 will spend 100 times more energy than
CMAC/CMAC-Ext. When there are events, 802.11
provides only 10% higher throughput than CMAC-
Ext, but spends 5 to 9.5 times more energy than
CMAC/CMAC-Ext. Therefore CMAC/CMAC-Ext are
more suitable for networks that require longer network
lifetime.

In mobile scenarios, CMAC-Ext has better perfor-
mance than CMAC. That is because in such scenar-
ios, there are multiple neighboring nodes transmitting
concurrently. The splitting of the RX and TX slot in
CMAC limits the channel utilization under such high
interference.

The latency for CMAC-Ext is lower than 802.11.
The reason is that the throughput in CMAC-Ext
is lower than 802.11, therefore more packets are
dropped. The dropped packets are usually those pack-
ets with more retransmissions and higher delay. There-
fore the average delay in CMAC-Ext is lower than
802.11.

C. Initial Duty Cycle

Now we vary the idle duty cycle from 0.1% to
1% to evaluate the impact of the idle duty cycle
on our protocols. If the protocol can work on very
low duty cycle, the network can extend its lifetime
further. Figures 17, 18, and 19 show the performance
on different idle duty cycle using data rate of 10
packets/s.

1800 ‘ ‘ ‘
80211 ——
1600 f geraf e
" CMaC. . wmees
1400 + BB R GGG
? ooy T
=)
5 1000 f
o
<
S 800
o
£ 600
400 f
200 +
0 “ " eoooo) S — S Yo
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Idle duty cycle
Fig. 17. Average throughput v.s. idle duty cycle.

We can see that the throughput decreases gradu-
ally when the initial duty cycle becomes lower. The

70 ‘
60 , 77777 T geemremm R i o
50 + /
@ 40 + ° //)6 = = =
%‘ = //E—" a
2 30f
20t /"
10 ¢
0 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
Idle Duty Cycle (%)
Fig. 18. Average end-to-end delay v.s. idle duty cycle.
0.06 ‘
802.11
geraf —
m 0.05 | cmac oo
= -ext =
3 cmac-ex
S o004t
B
g
G 003
B
N
© 0.02
£
o =]
Z 00§ g g G g R
0 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
Idle Duty Cycle (%)
Fig. 19. Normalized energy consumption v.s. idle duty
cycle.

throughput drops about 17% when duty cycle changes
from 1% to 0.1%, and the normalized energy con-
sumption dropped about 27%. The average throughput
and delay are close and energy consumption is less
when nodes work on 0.1% duty cycle. In an idle
network operating at 0.1% duty-cycle extends the
network lifetime by 10 times in comparison to a 1%
duty cycle. However, this energy saving comes at the
expense of higher initial detection latency. Tracing the
simulation results data we found that the delay for
the first packet to arrive at the sink increases from 2
seconds to almost 14 seconds. The tolerance to such
delays are dependent on the application’s needs.

D. Node Density

Next we evaluate the performance of our protocol
on network in different node density.

We can see that in our protocols, the throughput,
delay and normalized energy increase gradually when
the node density becomes higher. This is because with
more nodes, we have more choices for routes, therefor
we can have higher throughput. The delay is lower
because the number of packet transmitted to the sink is
smaller. And with more nodes, the network consumes

1800
1600
1400
T 1200
5 1000 e |
<
2 800 |
o
£ 600 ,
400 f ,
200 + ,
[Smmmmmmmmmemmmmmmmmeee oo
100 169 256 400
Node Density
Fig. 20. Average throughput v.s. Node density.
70
80211 —+——
65 gerl .]
cmac x|
| R CmACEKE
D 50 +]
8 ’ 4 |
D
D 4
25 7/’/ 4
20t \ ‘
100 169 256 400
Node Density
Fig. 21. Average end-to-end delay v.s. Node density.
0.06
g 005 |
2
S oo |
B
5
G 003 ,
B
N
® 0.02]
£
o s &
Z o01t e R—— ;
0 \ ‘
100 169 256 400
Node Density

Fig. 22. Normalized energy consumption v.s. Node Density.
The normalized energy consumption of GeRaF is so high
because the number of received packet is too low, its energy
consumption is not shown here.

more energy on idle listening. The initial detection
delay increases a little, from 2 to 3 seconds. This
shows that the node density has only little impact on
our protocols.

E. Location Error

Our protocols rely on an anycast protocol to find
a feasible route, and most of the anycast protocols
depend on the nodes’ location to decide the for-
warding nodes. In realistic environment, the location
information may not be absolutely accurate, therefore
we evaluate the impact of inaccuracy on our protocols.

We conducted simulations with varied errors of
the location, from 0 to 50m. The minimum inter-
nodal separation in all the experiments was 100m.
Because of the limited space, we did not put the
graphs here. The simulation result shows that the
location inaccuracy has no impact on our protocols
because as long as the anycast protocol can find a
route, our protocols can forward packets to the sink.

F. Link Quality

Last we evaluate the impact of the link quality on
our protocols by varying the shadowing deviation o
in ns2’s propagation shadow model. o represents the
variation of the received power at certain distance,
which represents the link quality. Figures 23, 24, and
25 shows the results.

We can see that when ¢ increases, the performance
of all protocols drops since the link quality is getting
worse. Our protocols do not suffer more than 802.11
in terms of throughput, and CMAC-EXxt still performs
better than 802.11 in terms of delay and energy
consumption.

1600
1400
& 1200 .
Q
)
< 1000
o
c
g’ 800
N
F 600
400
200 :
4 5 6 7 9 10 11 12

Fig. 23. Average throughput v.s. o.

V. RELATED WORK

The life time of wireless sensor networks can
be increased by putting nodes into sleep mode for
brief periods periodically. However, nodes are unable
to forward data while they are sleeping. Therefore
different approaches are proposed to ensure that pack-
ets can be forwarded to the destination despite that

300 ‘
80211 ——
geraf—
250 T emag e
) cmac-ext E
200 +
& 150 f X e
Ko) e KX
o e
100 |
50 /w/”/ﬁ/j’—’é—;\h
O 1
4 5 6 7 8 9 10 11 12
o
Fig. 24. Average end-to-end delay v.s. o.
0.16 ; ‘
802.11 ——
0.14 f
T
> o012+
2
3 01 r
)
G 008t
E 0.06 |
5 0.04 - ’Xx
b R o
0.02 oo ’ IR
,,,,, B . ity °
0 1 1 1 1
4 5 6 7 8 9 10 11 12
o
Fig. 25. Normalized energy consumption v.s. o.

some nodes are sleeping. These approaches can be
broadly divided into two categories: synchronized and
unsynchronized.

Synchronized approaches. Protocols using this
mechanism require nodes to periodically synchronize
with their neighbors using synchronization messages,
and nodes wake up and sleep according to the syn-
chronized schedule.

In S-MAC [9], nodes exchange their wakeup and
sleep schedules before following common schedules
among neighborhood nodes. Thus nodes can work at
low duty cycles. In later work [10], the authors extend
S-MAC with adaptive listening using overhearing
during listening period to reduce the latency.

T-MAC [11] uses the same mechanism as S-MAC
to synchronize nodes, but save more energy by ending
the listening period dynamically to reduce the amount
of idle listening. In S-MAC, the listening time is fixed.
When a node wakes up to listen, it will remain active
until its listening time ends. In T-MAC, instead of idly
listening the channel for entire listening time, nodes
will go back to sleep if it does not hear anything
withing a timeout.

DMAC [24] and [25] schedule the nodes’ ac-

tive/sleep time like a ladder from sources to the
sink such that the packet can be forward to the
sink without delay. The active time is divided into
receiving and transmitting slots to avoid interference
with the upstream and downstream nodes. In DMAC,
nodes can dynamically adapt to higher traffic load
by using more-to-send (MTS) packet to adjust their
wakeup frequency.

Unsynchronized approaches. Synchronization mes-
sages consume significant energy in networks even
if there is no event. Therefore other approaches are
proposed to avoid the overhead incurred by synchro-
nization messages.

In [26], nodes wakes up after getting triggered by
communication events and work at 100% duty cycle
while being active. GAF [16] divides the network into
virtual grids and maintains one awake node in each
grid cell to ensure connectivity. PEAS [15] provides a
resilient, long-lived sensor network for an unreliable
environment by explicit querying and response when
a node wakes up.

In B-MAC [14], nodes wake up periodically to
check if there is traffic. It uses clear channel access
(CCA) to detect if the channel is busy, and use low
power listening (LPL) to check the radio activity.
When a node wakes up, it uses CCA to check the
radio activity. If no activity is detected, the node goes
back to sleep. If activity is detected, the node stays
awake to receive the packets. In order to let the nodes
detect the traffic reliably, the packet preamble length
must be long enough to be detected. For example, if
a node checks the channel every 100ms, the preamble
must be at least 100ms long to be detected. By using
low power listening, nodes can work on very low
duty cycle and therefore can save energy and extend
network lifetime.

GeRaF [12][13] eliminates the synchronization and
probing messages by using anycast. In GeRaF, nodes
know the location of their neighbors and the sink.
When a node needs to send a packet, it broadcasts an
RTS to all its neighbors. Nodes that receive the RTS
reply with a CTS packet according to their distance
to the sink. Nodes that are closer to the sink will
first send the CTS. When the source node receives
the CTS, it sends the DATA packet to the node
answering the RTS. Other potential receiving nodes
overhearing the CTS or the data packet cancel their
CTS transmission. This mechanism is simple because
nodes do not have to maintain synchronization or
exchange schedule information with their neighbors.
Moreover, with high enough node density, nodes
can work on very low duty cycle while maintaining
network connectivity. [27] proposes another anycast
protocol in which transmitters specify the potential
receiver list along with their replying priorities in a
modified RTS packet.

VI. CONCLUSION

This paper proposes CMAC, a MAC layer approach
for maximizing network lifetime and maintaining high
throughput and low detection delay for event triggered
sensor networks. During idle periods, the nodes are
unsynchronized and use a low duty cycle (termed idle
duty cycle) to randomly wakeup and sleep. CMAC
initially uses anycasting due to lack of synchroniza-
tion across nodes, but converges to unicasting to
reduce latency. The converged routes switch to using
an active duty cycle with staggered synchronized
schedules. The staggered wakeup schedules result in
routes with less interference and low latency. The use
of low idle duty cycle during idle periods and active
duty cycle during active periods result in low energy
consumption and longer network lifetime. A simple
extension to CMAC, termed CMAC-Ext is proposed
for dealing with cross-route interference. In CMAC-
Ext nodes remain fully awake as long as they are for-
warding traffic and time is not split into transmission
and reception slots. Using extensive simulations, we
observe that for detection of static events, CMAC out-
performs other protocols in terms of throughput and
latency with only 6% energy consumption of 802.11
unicast. For mobile events, CMAC-Ext achieves 90%
throughput of 802.11 unicast with similar latency
while spending only 11% to 22% energy of unicast.
With higher tolerance for initial detection latency,
CMAC/CMAC-Ext can even work at 0.1% duty cycle
with comparable performance with 802.11. Based on
our study, we conclude that CMAC is highly suited
for event triggered sensor networks that require long
network lifetime. As part of future work, we plan to
implement CMAC on the Mica2 motes to evaluate its
performance.

REFERENCES
[1] “ GlacsWeb: Autonomous Sub-glacial ~ Probes,”
http://envisense.org/glacsweb.htm.
[2] “Networked Infomechanical Systems,”

http://www.cens.ucla.edu .

[3] “Center for Embedded Networked Sensing at UCLA,”
http://www.cens.ucla.edu .

[4] J. Polastre, “Design and Implementation of Wireless Sensor
Networks for Habitat Monitoring,” Master’s Thesis, Univer-
sity of California at Berkeley, Spring 2003.

[5] A. Mainwaring, R. Szewczyk, J. Anderson, and J. Po-
lastre, “Habitat Monitoring on Great Duck Island,”
http://www.greatduckisland.net.

[6] A. Arora, P. Dutta, and S. Bapat, “Line in the Sand: A Wire-
less Sensor Network for Target Detection, Classification, and
Tracking,” OSU-CISRC-12/03-TR71, 2003.

[7] S. Corporation, “Chemical/Bio Defense and Sensor Net-
works,” http://lwww.sentel.com/html/chemicalbio.html .

[8] D. Culler, J. Demmel, G. Fenves, S. Kim, T. Oberheim, and
S. Pakzad, “Structural Health Monitoring of the Golden Gate
Bridge,” http://envisense.org/glacsweb.htm.

[9] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient

MAC Protocol for Wireless Sensor Networks,” in INFO-

COM 2002, 2002.

W. Ye, J. Heidemann, and D. Estrin, “Medium access con-

trol with coordinated adaptive sleeping for wireless sensor

networks,” in IEEE/ACM Tran. on Networking, Volume 12,

Issue 3 (June 2004), 2004.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

T. van Dam and K. Langendoen, “An adaptive energy-
efficient MAC protocol for wireless sensor networks,” in
Proceedings of the 1st international conference on Embed-
ded networked sensor systems, 2003.

M. Zorzi and R. R. Rao, “Geographic Random Forwarding
(GeRaF) for Ad Hoc and Sensor Networks: Energy and La-
tency Performance,” in IEEE Trans. on Mobile Computing,
October-December 2003(Vol. 2, No. 4), 2003.

M. Zorzi and R. R. Rao, “Geographic Random Forwarding
(GeRaF) for Ad Hoc and Sensor Networks: Multihop Per-
formance,” in IEEE Trans. on Maobile Computing, October-
December 2003(Vol. 2, No. 4), 2003.

J. Polastre, J. Hill, and D. Culler, “Versatile low power
media access for wireless sensor networks,” in Proceedings
of the 2nd international conference on Embedded networked
sensor systems, 2004, pp. 95 — 107.

F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A Robust En-
ergy Conserving Protocol for Long-lived Sensor Networks,”
2003.

Y. Xu, J. S. Heidemann, and D. Estrin, “Geography-
informed energy conservation for Ad Hoc routing,” in Mo-
bile Computing and Networking, 2001, pp. 70-84.

B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks,” in Proc. of ACM MOBI-
COM 2000, Aug. 2000, pp. 243-254.

“The Network Simulator:
http://www.isi.edu/nsnam/ns/ .

J. Padhye, R. Draves, and B. Zill, “Routing in multi-radio,
multi-hop wireless mesh networks,” in MOBICOM 2004,
2004.

D. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,”
in MOBICOM 2003, 2003.

K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari,
“Energy-Efficient Forwarding Strategies for Geographic
Routing in Lossy Wireless Sensor Networks,” in SENSYS
2004, 2004.

R. R. Choudhury and N. H. Vaidya, “MAC-Layer Anycast-
ing in Wireless Ad hoc Networks,” in UIUC ECE Technical
Report, 2003.

IEEE, “Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications,” ISO/IEC 802-
11:1999, 1999.

G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An
Adaptive Energy-Efficient and Low-Latency MAC for Data
Gathering in Wireless Sensor Networks,” in 18th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 04), 2004.

M. L. Sichitiu, “Cross-layer scheduling for power efficiency
in wireless sensor networks,” in IEEE INFOCOM 2004, vol.
23, no. 1, 2004, pp. 1741-1751.

R. Zheng and R. Kravets, “On-demand Power Management
for Ad Hoc Networks,” in Proc. IEEE INFOCOM ' 03, 2003.
S. Jain and S. R. Das, “Exploiting Path Diversity
in the Link Layer in Wireless Ad Hoc Networks,”
http://www.cs.sunysb.edu/ samir/Pubs/anycast.pdf, 2004.

ns-2,”

