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ABSTRACT

Isosurface reconstruction algorithm applied to adjacent rectangular
regions of different sizes may create cracks in the isosurface be-
tween the regions. We avoid this cracking by contracting some
edges of the smaller regions, repositioning hanging vertices and
faces so that adjacent regions intersect properly. The convex hull
based isosurface reconstruction algorithm applied to this mesh will
create a crack-free isosurface. By adding a preprocessing split-
ting step, we can also guarantee that our edge contraction will not
change the isosurface topology.

1 GRID COLLAPSE

Consider a regular � -dimensional rectangular region partitioned
into axis-parallel rectangular regions called boxes. Adjacent boxes
may have different sizes and the intersection of hypercubes may be
different from their faces. Our goal is to modify this partition into
a mesh so that the intersection of adjacent mesh elements is a face
of each. Applying the convex hull based isosurface reconstruction
algorithm to this mesh will produce a crack free surface.

Our grid contraction algorithm can be broken into three steps.
The first is a “balancing” step which ensures that adjacent rectan-
gles have dimensions which are not too different. The second is a
splitting step which propogates the subdivision in each direction.
The third is a vertex relocation which relocates “hanging” vertices
so that adjacent partition elements intersect on their faces.

We say that a set of line segments in ��� is balanced if, whenever
two line segments intersect at more than a point, either the two line
segments are equal or the endpoints of one line segment are the
endpoint and the midpoint of the other. In the latter case, one line
segment has exactly half the length of the other.

A partition into boxes is balanced if, for every axis ��� , the pro-
jection of the boxes onto � � is balanced. In other words, whenever
two boxes intersect along some dimension, the length of one box
along that dimension is either equal to or half the length of the other
and the boxes are aligned along that dimension.

We require that our partition into boxes be balanced. This re-
quirement controls the geometric distortion in the resulting mesh.
Our algorithm ensures that boxes are aligned along each dimension
by only creating boxes on certain boundaries. It ensures the size
restriction by splitting boxes which are too long compared to their
neighbors.

A box vertex is called hanging if it lies on the boundary of some
adjacent box but is not a vertex of that box. A box vertex is proper
if it is not hanging. The second step in our algorithm splits boxes at
hanging vertices.

For each box 	 containing a hanging vertex 
 which is not a ver-
tex of 	 , we split 	 by � distinct axis parallel hyperplanes through
the center of 	 into �� boxes. The splitting step may create new
hanging vertices and does not solve the meshing problem. How-
ever, any of the original vertices are now proper. This step controls

the amount of geometric distortion induced at the final step which
moves only the hanging vertices.

Proposition 1. Let � be a partition of a rectangular region in � �
into axis parallel boxes. If each box 	 containing a hanging vertex

 which is not its vertex is split by the � distinct axis parallel hy-
perplanes through the center of 	 , then any vertex of � is a proper
vertex of the new partition ��� .
Proof. Any ����� dimensional face � in � which contains a vertex

 is split into ��� faces. Vertex 
 is a vertex of each of those faces
and of the boxes in � � containing those faces. Thus vertex 
 is not
in the interior of any face of � � and is proper.

The last step moves hanging vertices to nearby proper vertices.
Each hanging vertex lies in the interior of one or more box faces.
Since each box face is axis parallel, one vertex of the box has lowest
coordinates among all face vertices. Let ������� be the vertex of face
� with lowest coordinate. For each hanging vertex 
 , choose the
face � with largest dimension which contains the hanging vertex in
its interior and merge 
 with the vertex ������� .

Vertex ������� may itself be a hanging vertex lying on some face � �
of a box and thus merged with vertex ����� � � . This merger implicitly
merges 
 and ����� � � . The three merged vertices 
! "������� and ����� � �
are located at the vertex with lowest coordinates ����� � � . Of course,
if ����� � � is also a hanging vertex, then it will be merged with some
vertex with lower coordinates.

The moving of hanging vertices implicitly moves the edges with
endpoints at those vertices. It also changes the higher dimensional
faces containing those vertices. However, the moved vertices of
a � -dimensional face may no longer lie on a � -dimensional affine
subspace. For instance, the four vertices defining a cube’s facet
may no longer be co-planar. Thus the new � -face is no longer sim-
ply the convex hull of its vertices but is some deformation of the
� -dimensional face of a hypercube. This is not different than curvi-
linear meshes in �$# where grid elements are combinatorially cubes
but the facets are not necessarily planar.

We will show that the final mesh is proper, in the sense that inter-
section of adjacent mesh elements is a face of each. To prove this,
we show that our final mesh can be produced by a specific set of
box collapses applied to a regular mesh.

Given a partition � of a rectangular region into axis parallel
boxes, let �&% be the partition formed by passing a hyperplane
through every vertex of � . Partition � % is combinatorially and
topologically equivalent to a regular grid, although the the rectan-
gular elements in � % do not have uniform size. Each box in � is
subdivided into a set of smaller boxes in �&% .

Each box 	 has two facets orthogonal to a given axis �'� . Let(*) �+	, "����� be the facet orthogonal to ��� with larger -�� coordinates
and

(/. �+	, "� � � be the orthogonal facet with smaller - � coordinates.
Define collapsing a box along axis ��� as mapping

(*) �+	, 0�1�2� onto(/. �+	3 0� � � . A box can be simultaneously collapsed along multiple
axes. Similarly, for any face � of 	 which is not orthogonal to �'� ,(*) ���4 "�1�2� and

( . ���4 5�1��� are the �+�7698:� -dimensional faces of �



orthogonal to � � . Collapsing � along � � is mapping
( ) ���4 "� � � to( . ���! 0����� .

Collapsing a box along axis ��� is equivalent to collapsing all the
box edges parallel to �1� . The collapse of a block in �&% induces a
collapse of the faces of adjacent blocks. It distorts the mesh but does
not change the connectivity between mesh elements. In particular,
mesh elements are still joined at their faces.

We define a particular set of collapses applied to the boxes in � %
and show that they generate a mesh equivalent to the one produced
by moving hanging vertices. Each box ��� � % is contained in
some box 	��9� . Collapse box � along axis � � if

(*) ��� "� � � is not
a subset of

(*) �+	, "����� . In other words, collapse � along ��� if � does
not rest on facet

(*) �+	3 0����� of 	 . Let � � be the mesh produced
after applying all these collapses to the boxes in � % .

Note that the only box of � % in 	 which does not collapse at
all is the one sharing the vertex of 	 with largest coordinates is all
directions.

2 ISOSURFACE RECONSTRUCTION

The edge collapse described in the previous section eliminates
hanging vertices from the mesh and guarantees that the elements of
the image intersect properly in their faces. However, the edge col-
lapse changes the elements of the mesh so that they are no longer
hypercubes. In fact, they are no longer polyhedra and may not be
convex. How do we reconstruct the isosurface in such a mesh?

One potential way to do so is to treat each mesh element as a hy-
percube with degenerate edges. Using the Marching Cubes lookup
table [3] or its variants [4, 5, 1, 2], one could construct an isosurface
patch for each mesh element and then move the vertices of the patch
to correspond to the movement of vertices and edges caused by the
edge collapse. Unfortunately, the edge collapse of the regular grid
can induce edge collapses in the isosurface patches. These edge
collapses can, in certain cases, destroy the manifold property of the
isosurface. While it is potentially possible to check for such “bad”
collapses and handle such cases specially, we propose an alternate
solution.

Instead of constructing the isosurfaces from the uncollapsed hy-
percubes, we perform a collapse on each hypercube separately and
then construct the isosurface patch within each collapsed hyper-
cube. The collapsed hypercube is not necessarily a polyhedron.
We show that nevertheless the edges of the original map to edges
of the convex hull of the vertices of the collapsed hypercube. Thus,
the algorithm in [1, 2] can be used to construct an isosurface patch
in the collapsed hypercube.

Given an edge ��� �  ��
	 � of a hypercube, collapsing edge ��� �  ���	 �
means deleting edge ��� �  ���	 � from the 1-skeleton of the hypercube
and identifying vertices � � and � 	 . We say that vertex � � collapses
to vertex ��	 if edge ��� �  ���	 � collapses and vertex � � is mapped to
the location of � 	 . We also say that vertex � � collapses to vertex � �
if there is a sequence of edges, ��� �  ���	 � , ����	 �� # � , �� , ��� � . �  �� � �
such that ��� collapses to ��� ) � � for �����/6 8 .

Assume that the hypercube facets are normal to the coordinate
axes, - � . The hypercube edges are parallel to those axes. We say
that vertex � � collapses in coordinate axis direction �-�� if � � col-
lapses to ��	 and edge ��� �  ���	 � is parallel to axis -�� in the hypercube.
Note that edges collapses may move � � or � 	 but we consider the
original orientation of edge ��� �  ���	 � in determining if it is parallel
to axis - � .

Collapsing edges of the hypercube deforms the hypercube faces,
many of which will no longer be convex polyhedra. However, the
faces remain cells (homeomorphic to the interior of a ball,) and thus
their topological behaviour is the same. Collapsing multiple edges
can also cause the identification of different edges of the hypercube.

Given a hypercube whose facets are normal to the coordinate
axes, we say that vertex � � dominates vertex ��	 if every coordinate

of vertex � � is greater than or equal to the corresponding coordinate
of vertex ��	 .

We claim that the set of hypercube edge collapses in the previous
section satisfies the following conditions:

1. If vertex � � does not dominate vertex ��	 , then � � does not
collapse to � 	 .

2. If � � collapses to ��	 , then any point � which dominates ��	 and
is dominated by � � also collapses to ��	 .

3. For every hypercube edge ��� �  �� 	 � , either � � collapses in ev-
ery direction in which ��	 collapses, or ��	 collapses in every
direction in which � � collapses.

Condition 1 is satisfied by the way edges are collapsed. Condi-
tion 2 is satisfied since � � collapses to ������� where � is the largest
face containing � � on its interior. If � dominates ������� and is dom-
inated by � � , then some subface �!� of � contains � in its interior.
Since � � dominates � , ����� � � must equal ������� and so � maps to
������� .

The step down operation ensures Condition 3. If either � � or ��	
are proper, then either � � or ��	 does not collapse and Condition 3 is
trivially satisfied. If both � � and � 	 are hanging, then both vertices
were created in the partition of box 	 at step down. Vertices � � and
� 	 are located at the centers of faces � � and � 	 of 	 , respectively.
Either ��	 is a subface of � � or vice versa. Without loss of generality,
assume that ��	 is a subface of � � . After step down, for any face
which contains � � in its interior, there is a parallel face containing
��	 in its interior. Thus ��	 collapses in every direction in which � �
collapses.

We show that under the three conditions, hypercube edges col-
lapse to convex hull edges.

Proposition 2. Let � be a set of hypercube edge collapses, and
let ��������� be the location of vertex ��� in the collapsed hypercube
Given the above conditions on a set of hypercube edge collapses,
if ��� �  �� 	 � is an uncollapsed hypercube edge, then line segment
��� ��� � �  �� ���
	 �"� is an edge of the convex hull of the vertices of the
collapsed hypercube.

Proof. Let �
��������������� � be the set of vertices of the collapsed hy-
percube. Let ��� �  �� 	 � be a hypercube edge which does not collapse.
Without loss of generality, assume that �!	 collapses in every direc-
tion in which � � collapses conforming to Condition 3. If � � and
��	 collapse in the same direction, then edge ��� �  ��
	 � is translated
in that direction and identified with another edge of the hypercube.
Thus we may assume that � � does not collapse in any direction.

Assume that � 	 collapses in exactly � directions to a vertex � .
Line segment ������� � �  �� ����	 �"�"� ��� �  �� � is the diagonal of a �$#
8 -dimensional hypercube face � . Face � has two � -dimensional
subfaces, % � and %&	 , which are orthogonal to ��� �  ���	 � . One of these
subfaces, say % , contains � � , while the other contains ��	 and � .

Let ' be the set of hypercube vertices except for the vertices of
% . By Condition 2, every vertex in % 	 collapses to � . Thus � � is a
subset of ')(*���&� . The boundary of the convex hull of ')(*���&�
contains a pyramid whose base is % � and whose apex is � . Line
segment ��� �  �� �+� ��� ��� � �  �� ��� 	 �"� is an edge of this pyramid and
thus of the convex hull of ',(-���&� . Since ��� is a subset of ',(-���&� ,
line segment ��� �  �� ��� ������� � �  ������ 	 �"� is an edge of the convex hull
of �
� .
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