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Abstract
In fields such as computer graphics and computer vision, viewpoint comparison techniques have been used to find
good views of a given scene, or to find a minimal set of representative views which capture the entire scene. In
this paper, we present a view selection method designed for volume rendering. We introduce a viewpoint goodness
measure based on the formulation of entropy from information theory. The measure takes into account the transfer
function, the data distribution and the visibility of the voxels. Our framework can integrate domain specific knowl-
edge about voxel noteworthiness, resulting in behavior tailored to very specific situations. This technique can be
used as a guide which suggests good viewpoints for further exploration. We generate a view space partitioning,
and select one representative view for each partition. Together, this set of views encapsulates the most important
and distinct views of the data. Viewpoints in this set can be used as starting points for interactive exploration
of the data, thus reducing the human effort in visualization. In non-interactive situations, this set can be used
as a representative visualization of the dataset from all directions. We extend the viewpoint goodness measure to
time-varying datasets by including the changes between adjacent time-steps.

1. Introduction

Over the past few years, data sizes have grown quite rapidly.
And the trend is apt to continue at the same pace, if not faster.
Even with the predicted advances in silicon technology, it
is unlikely that computing power and bandwidth will catch
up with the data explosion in the foreseeable future. This
scenario poses many challenges to the field of visualization,
which is defined as the act of a person viewing some repre-
sentation(s) of the data in a bid to discover new insights from
the data. Larger datasets translate to greater amount of work
required from the person, and also to greater response times
of the computers.

The visualization process frequently involves a hit and
trial method of parameter tweaking in an effort to create bet-
ter representations. This works well for smaller datasets, but
for large data, the response times of the visualization system
can become uncomfortably large. Many user studies have
shown that there is an inverse relationship between human
productivity and the response times of the systems [Shn84].
Moreover, longer waiting times are known to significantly
increase the anxiety levels of users [Guy88]. For complex
tasks, there is evidence that human errors increase when the
response takes longer than an optimal time dependent on the
tasks [Shn84][BHCL83]. While this problem can be tack-

led by creating more interactive systems [SBL∗02], we take
the approach of reducing the hit and trial tweaking the user
has to do to create a desirable visualization. Automatic (or
semi-automatic) methods for generating transfer functions
[MAB∗97][KD98] can be thought of as efforts in this di-
rection. In this paper, we focus on helping the user with one
specific component of interaction– view selection in the case
of volume rendering.

In a typical volume rendering scenario, the user starts with
a default viewpoint. After the first image is rendered, she
changes the view to look at parts of the dataset that are oc-
cluded in the current view. This process continues till she
is satisfied. The longer she has to wait for the rendering at
the new viewpoint to show up, the less efficient and more
frustrated she would become. The problem is exacerbated in
highly non-interactive situations, and it is desirable that she
quickly find a satisfactory view. This manual view selection
method can be specially tricky and time consuming in the
case of volume rendering of a time-varying dataset. The user
tries to get a better view based on a few time steps, but it is
very difficult for her to imagine how the image will change
with the viewpoint for all the time steps in the sequence. Our
algorithm makes the manual view selection faster by sug-
gesting good viewpoints to the user. These viewpoints can
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then be used as a starting point for further exploration. Once
the user finishes exploration in the neighborhood of one sug-
gested viewpoint, she can pick another suggested viewpoint
to explore.

The viewpoints suggested by our technique can also be
used to improve image-based volume rendering algorithms
[MSHC99][CKT01]. Frequently, IBR methods use the scene
properties to create a non-uniform camera placement for
the pre-rendered views based on the scene. Our formulation
can be used to quantify the change between two volume-
rendered views. An adaptive sampling of the view space
can be generated by creating more pre-rendered samples in
neighborhoods of large view changes and vice-versa. This
can help the IBR system achieve better rendering quality
with less storage.

We introduce a ‘goodness’ measure of viewpoints based
on the information theory concept of entropy, also called
average information. We proposition that good viewpoints
are ones which provide higher visibilities to the more im-
portant voxels, the importance being judged by the opacities
assigned by the transfer function. This interpretation leads us
to the formulation of viewpoint information presented in this
paper. We utilize a property of our entropy definition which
indicates that when the visibilities are close to their desired
values, the viewpoint information is maximized. This mea-
sure allows us to compare different viewpoints and suggest
the best ones to the user. Given a desired number N of views,
our algorithm can be used to find N good viewpoints over the
view space. We use an entropy based similarity measure for
views, which is then used to create a view space partition-
ing and return the best views in each partition. Together, this
set of views represents most of what can be seen from all
directions. For time-dependent data, we present a modifica-
tion of the ‘goodness’ measure of a viewpoint by taking into
account not only the static information but also the change
in each time-step.

2. Related Work

The idea of comparing different views developed much be-
fore computer graphics and visualization matured. As early
as 1976, Koenderink and van Doorn [KvD76][KvD79] had
studied singularities in 2D projections of smooth bodies.
They showed that for most views (called stable views), the
topology of the projection does not change for small changes
in the viewpoint. The topological changes between view-
points can be stored in an aspect graph. Each node in the
graph represents a region of stable views, and each edge rep-
resents a transition from one such region to an adjacent one.
These regions form a partitioning of the view space, which
is typically a sphere of a fixed radius with the object of inter-
est at its center. The aspect graph (or its dual, the view space
partition) defines the minimal number of views required to
represent all the topologically different projections of the ob-
ject. A lot of research has been done since the early papers,

mainly in the field of computer vision, which extended the
ideas to more complex objects. In the case of volume ren-
dering, a similar topology based partitioning can not be con-
structed. Instead, we find a visibility based partitioning by
comparing visibilities of voxels in neighboring views, and
clustering together viewpoints that are similar.

Viewpoint selection has been an active topic of re-
search in many fields. For instance, viewpoint selection
solutions have been proposed for the problem of model-
ing a three-dimensional object from range data [WDA99]
and from images [FCOL00], and also for object recogni-
tion [AF99]. However, the topic has not been well inves-
tigated in the fields of computer graphics and visualiza-
tion, possibly because applications in these domains have
relied heavily on human control. Recently, Vázquez et al.
[VFSH01][VFSH03] have presented an entropy based tech-
nique to find good views of polygonal scenes. They define
an entropy for any given view, which is derived from the
projected area of the faces of the geometric models in the
scene. Their motivation is to achieve a balance between the
number of faces visible and their projection areas. The en-
tropy value is maximized when all the faces project to an
equal area on the screen. The viewpoint measure presented
in this paper is based on the entropy function, but is designed
for volumetric data. Each voxel is assigned a visual signifi-
cance, and the entropy is maximized when the visibilities of
the voxels approach the respective significance values. En-
tropy based methods have been used in a variety of prob-
lems, e.g., for calculating scene complexity for radiosity al-
gorithms [FABS99], for object recognition [AF99] and for
aiding light source placements [Gum02].

3. Viewpoint Evaluation

This essential goal of this paper is to have a computer sug-
gest ‘good’ viewpoint(s) to the user. This naturally leads
us to the question: “what is a good viewpoint?”, or, “what
makes a viewpoint better than another?”. The answer will
depend greatly on the viewing context and the desired out-
come. For example, a photographer will choose the view
which best contributes to the chosen mood and visual ef-
fect. For this paper, the context is the process of volume ren-
dering, which being used to get visual information from the
data. Hence, for our purposes, a viewpoint is better than an-
other if it conveys more information about the dataset. In this
section, we present a method for quantifying the information
contained in a view using properties of the entropy function
from information theory.

The information that is transferred from a volumetric
dataset to the two-dimensional screen is governed by the
optical model which is used for the projection. In this pa-
per, we assume the popular absorption plus emission model
[Max95]. The intensity Y at a pixel D is given by

Y (D) = Y0T (0)+
∫ D

0
g(s)T (s)ds (1)
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where, T (s) is the transparency of the material between the
pixel D and the point s. We will refer to T (s) as the visibil-
ity of the location s. The first term in the equation represents
the contribution of the background light, Y0 being its inten-
sity. The second term adds the contributions of all the voxels
along the viewing ray passing through D. A voxel at point s
has an emission factor of g(s), and its effect on the pixel in-
tensity is scaled by its visibility T (s). If two voxels have the
same emission factor, then the one with a higher visibility
will contribute more towards the final image.

The emission factors of voxels are usually defined by the
users. They set the transfer function to highlight the group of
voxels they want to see, and to make the others more trans-
parent. We use this fact to define a noteworthiness factor
for each voxel (section 3.2), which captures, among other
things, the importance of the voxel as defined by the trans-
fer function. Based on the preceding discussion, we have the
following two (not necessarily disjoint) guidelines for defin-
ing a good viewpoint:

1. A viewpoint is good if voxels with high noteworthiness
factors have high visibilities.

2. A viewpoint is good if the projection of the volumetric
dataset contains a high amount of information.

In the following section, we present the details of our view
information function and its properties.

3.1. Entropy and View Information

Consider any information source X which outputs a ran-
dom sequence of symbols taken from the alphabet set
{a0,a1, . . . ,aJ−1}. Suppose the symbols occur with the
probabilities p = {p0, p1, . . . , pJ−1}. Alternatively, we can
think of it as the random variable X which gets the value
a j with probability p j . The information associated with a
single occurrence of a j is defined in information theory as
I(a j) = − log p j . The logarithm can be taken with base 2 or
e, and the unit of information is bits or nats respectively. In
a sequence of length n, the symbol a j will occur np j times,
and will carry −np j log p j units of information. Then the av-
erage information of the sequence, also called its entropy, is
defined as

H(X) ≡ H(p) = −
J−1

∑
j=0

p j · log2 p j bits/symbol (2)

with 0 · log2 0 defined as zero [Bla87]. Even though the en-
tropy is frequently expressed as a function of the random
variable X , it is actually a function of the probability distri-
bution p of the variable X . We will use the following two
properties of the entropy function in constructing our view-
point evaluation measure:

1. For a given number of symbols J, the maximum entropy
occurs for the distribution peq, where {p0 = p1 = . . . =
pJ−1 = 1/J}. (See figure 1, which gives an example of
the entropy values for a three dimensional distribution.)

Figure 1: Entropy Function for three dimensional proba-
bility vectors p = {p0, p1, p2}. The function is defined only
over the plane p0 + p1 + p2 = 1, within the triangular re-
gion specified by 0 ≤ p1, p2, p3 ≤ 1. The maximum occurs
at the point p0 = p1 = p2 = 1/3, and the value falls as we
move away from that point in any direction. So, increasing
the entropy has the effect of making the probabilities more
uniform.

2. Entropy is a concave function, which implies that the lo-
cal maximum at peq is also the global maximum. It also
implies that as we move away from the equal distribu-
tion peq, along a straight line in any direction, the value
of entropy decreases (or remains the same, but does not
increase).

We will use probability distributions associated with
views to calculate their entropy (average information). For
each voxel j, we define a noteworthiness factor W j , which
indicates the visual significance of the voxel. (More details
about W j are given in section 3.2). Suppose, for a given
view V , the visibility of the voxel is v j(V ). We are using the
term ‘visibility’ to denote the transparency of the material
between the camera and the voxel. It is equivalent to T (s)
in equation (1). Then, for the view V , we define the visual
probability, q j , of the voxel as

q j ≡ q j(V ) =
1
σ
·

v j(V )

W j
where, σ =

J−1

∑
j=0

v j(V )

W j
(3)

where the summation is taken over all voxels in the data.
Thus, for any view V , we have a visual probability distribu-
tion q ≡ {q0,q1, . . . ,qJ−1}, where J is the number of voxels
in the dataset. Then, we define the entropy (average infor-
mation) of the view to be

H(V ) ≡ H(q) = −
J−1

∑
j=0

q j · log2 q j (4)

The view with the highest entropy is then chosen as the best
view. This satisfies the two guidelines presented earlier in
section 3:

1. The best view has the highest information content (aver-
aged over all voxels).

The Ohio State University
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2. The visual probability distribution of the voxels is close
to the equal distribution {q0 = q1 = . . . = qJ−1 = 1/J},
which implies that the voxel visibilities are proportional
to their noteworthiness.

To calculate the view entropy, we need to know the voxel
visibilities and the noteworthiness factors. Visibilities can be
queried through any standard volume rendering technique
such as ray casting. The noteworthiness, described in the
next section, is view independent, and needs to be calculated
only once for a given transfer function.

3.2. Noteworthiness

The noteworthiness factor of each voxel denotes the signifi-
cance of the voxel to the visualization. It should be high for
voxels which are desired to be seen, and vice versa. Con-
sidering the diverse array of situations volume rendering is
used in, it is practically impossible to give a single definition
of noteworthiness that satisfies expectations of all users. In-
stead, we can rely on the user-specified transfer functions to
deliver us a definition which is tailor-made for the particular
situation. The opacity of a voxel, as assigned by the trans-
fer function, is part of the emission factor g(s) in equation
(1), and controls the contribution of the voxel to the final
image. We use opacity as one element of the noteworthiness
of the voxel. Another consideration is that some voxels are
more visually meaningful to the viewer than other voxels.
Consider a simple example: suppose the dataset has a small
region of yellow voxels and the rest of the voxels are blue. In
this case, the visibility of the yellow region is more impor-
tant than that of a similar number of blue voxels. When the
yellow region occludes part of the blue region, Gestalt prin-
ciples [PTN98] suggest that the human mind extrapolates the
larger object (called ground) behind the smaller one (called
figure). If, on the other hand, the yellow region is occluded,
the viewer will have no idea of knowing it even exists.

Based on these observations, we construct the noteworthi-
ness W j of the jth voxel as follows. We assign probabilities
to voxels in our dataset by constructing a histogram of the
data. All the voxels are assigned to bins of the histogram
according to their value, and each voxel gets a probability
from the frequency of its bin. The information I j carried by
the jth voxel is then − log f j , where f j is its probability (bin
frequency). Then, W j for the voxel is α jI j , where α j is its
opacity. We ignore voxels whose opacities are zero or close
to zero. These voxels are not included in the evaluation of
equation (4). Domain specific knowledge can be readily in-
cluded in our framework by adapting the noteworthiness. Ir-
respective of the method used to specify the interestingness
of the voxels, maximizing the entropy serves to give better
visibility to the more interesting voxels.

3.3. A Simple Example

To demonstrate our concept of view information, we con-
structed the test dataset shown in figure 2. The voxel opaci-

ties of the cube dataset increase linearly with distance from
the boundary of the cube. Figure 2(a) shows the volume ren-
dering the dataset when the camera is looking directly at one
of its faces. If we revolve the camera about the vertical axis
of the dataset, (or, equivalently, rotate the dataset in the op-
posite direction about the vertical axis), the view entropy in-
creases (figure 2(b)) as voxels near the side face start be-
coming visible. The entropy reaches a maximum when cam-
era has moved by 45◦, which is the view that shows the two
faces equally (figure 2(c)). Further movement of the camera
results in greater occlusion of voxels near the first face, and
the entropy begins to drop again. Upon evaluating the en-
tropies for all camera positions around the dataset, the view
in figure 2(d) results in the highest entropy. Clearly, this is
one of the more informative views about the cube dataset for
a human observer.

3.4. Finding the Good View

The dataset is placed at the origin, and the camera is re-
stricted to be at suitable fixed distance from the origin. This
spherical set of all possible camera positions defines the
view sphere, and represents all the view directions. The view
space is then sampled by placing the camera at sample points
on this sphere. We create a uniform triangular tessellation of
the sphere and place the viewpoints at the triangle centroids.

Next, the voxel visibilities are calculated for each sample
view position. Our technique is not dependent on any partic-
ular volume rendering method, and both software and hard-
ware renderers can be used as long as the voxel visibilities
can be queried. For the examples presented here, we have
used ray casting. The screen resolution is set high enough
so that at least one ray passes through each voxel. Voxels
with opacities close to zero (defined by a threshold) are clas-
sified as empty space and are not used in the evaluation of
equation (4). This reduces the computational and memory
requirements for the entropy and similarity calculations (sec-
tion 4.1), and also raises the possibility of using empty space
leaping enhancements for ray casting. Early ray termination
is used, and visibilities of voxels not seen (not intersected
by any ray) are set to zero. The entropy for the view direc-
tion can then be calculated by using the visibilities and the
noteworthiness factor.

Figure 3 shows a 128× 128× 80 tooth dataset rendered
using ray-casting. The view sphere was sampled at 128
points, and the screen resolution used was 512× 512. Fig-
ures (a) and (b) have the highest view entropy values. Figures
(c) and (d) have the lowest entropy, and not surprisingly, are
highly occluded views. It is notable that the viewpoints for
(c) and (d) are not very far apart, and that (a) and (b) show
much of the same voxels. This shows that if the user wants a
few (say, N) good views from the algorithm, returning the N
highest entropy views might not be the best option. Instead
we can try to find a set of good views whose view samples
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Figure 2: An illustration of the change in view entropy (equation 4) with camera position for a test dataset. Figure (a) shows the
initial position of the camera. Figure (b) shows the behavior of entropy as the camera revolves around the dataset (around the
vertical axis in the figure). The entropy increases and reaches a maximum for a movement of 45◦ (figure (c)), and then begins
to decrease again. The maximum entropy for the whole view space is obtained for the view in figure (d).

(a) (b) (c) (d)

Figure 3: The two highest entropy views for the tooth dataset are shown in (a) and (b), and the two worst ones in (c) and (d).

are well distributed over the view sphere. The next section
presents such a solution.

4. View Space Partitioning

The goodness measure presented in the previous section can
be used as a yardstick to measure the information captured
by different volume rendering views and select the best view.
But, for most datasets, a single view does not give enough
information to the user. The user will almost certainly want
to look at the dataset from another angle. Instead of a single
view, it is desirable to present to the user a set of views such
that, together, all the views in the set provide a complete
visual description of the dataset. This can also be thought of
as a solution to the best N views problem: given a positive
number N, we want to find the best N views which together
give the best visual representation of the dataset.

We propose to find the N views by partitioning the view
sphere into N disjoint partitions, and selecting a represen-
tative view for each partition. A similar partitioning is de-
fined by aspect graphs [KvD76][KvD79], where each node
(aspect) of the graph represents a set of stable views. Each
set shows the same group of features on the surface of the
object. However, the aspect graph creation methods deal

mostly with algebraic and polygonal models and their topol-
ogy, and cannot be applied in a straightforward manner to
volume rendering. Instead, we compute the partitioning by
grouping similar viewpoints together.

4.1. View Similarity

To find the (dis)similarity of viewpoints, we use the vi-
sual probability distributions associated with each viewpoint
(section 3.1). Popular measures for computing the dissimi-
larity between two distributions p and p′ are the relative en-
tropy (also known as the Kullback-Leibler (KL) distance),
and its symmetric form (known as divergence) which is a
true metric [Bla87]. (Please note that some texts refer to the
KL distance as divergence instead.):

D(p‖p′) =
J−1

∑
j=0

p j log
p j

p′j
(5)

Ds(p,p′) = D(p‖p′)+D(p′‖p) (6)

Although these measures have some nice properties, there
are some issues with these measures that make them less
than ideal. If p′j = 0 and p j 6= 0 for any j, then D(p‖p′) is un-
defined. In our case, any voxel which is fully occluded (zero
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visibility) will get a visual probability q j of zero (equation
(3)). If it is visible in one view but occluded in the other, we
cannot evaluate equation 5 for these views. Also, D(p‖p′)
and Ds(p,p′) do not offer any nice upper-bounds. To over-
come these problems, we instead use the Jensen-Shannon
divergence measure [Lin91]:

JS(p,p′) = JS(p′,p) = K(p,p′)+K(p′,p) (7)

where, K(p,p′) = D(p‖(1
2

p+
1
2

p′)) (8)

The distance between two views V1 and V2, with distribu-
tions q1 and q2, is then defined as JS(q1,q2). This measure
does not have the zero visual probability problem, since the
denominator of the log term is zero iff the numerator is zero.
It is also nicely bounded by 0 < JS(q1,q2) < 2. Moreover,
it can be expressed in terms of entropy [Lin91], which al-
lows us to reuse the view information calculations given in
equation (4):

JS(q1,q2) = 2H(
1
2

q1 +
1
2

q1)−H(q1)−H(q2) (9)

4.2. Partitioning

Once the visual probability functions (q) and their entropies
(H) are calculated as described in section 3, we use the JS-
divergence to find the (dis)similarities between all pairs of
view samples. We then cluster the samples to create a dis-
joint partition of view sphere. The number of desired clusters
can be specified by the user. Each partition represents a set
of similar views, i.e., these views show the voxels at similar
visibilities. If desired, the JS-measure can be weighted using
the physical distance between the view samples to yield tight
regional clusters.

The best (highest entropy) views within each partition are
selected as representatives of the cluster and displayed to the
user. Together, this set of images give a good visualization
of the dataset from many different viewpoints. Sometimes, it
might happen that the selected representatives of two neigh-
boring partitions lie on the common boundary and next to
each other. If the separation between two selected view sam-
ples is less than a threshold, we use a greedy approach and
select the next best sample.

Figure 4 shows the results of a 5-way partitioning of the
view space for the tooth dataset. 128 view samples were used
with a JS-divergence measure. The largest partition contains
39 samples, while the smallest one has 18. The representa-
tive views from four of the partitions are shown. The view
for the fifth partition is figure 3(a). Figures 3(a) and 3(b)
both lie in the same partition. In fact, the top ten high entropy
viewpoints fall in the same partition, illustrating the need for
selecting representative views from different partitions.

5. Time Varying Data

Suggestion of good views becomes all the more useful in the
case of time dependent data. The time required to compute
a volume rendering animation of the dataset grows with the
number of time steps. In an interactive setting, this creates
a large lag between a viewpoint update and the completion
of all the frames. Moreover, it takes more tries by the user
to find the desired viewpoint because the data changes with
time, and the user has to consider not only the current time
step but also the previous and future ones. The user’s job
is made harder by cases where an interesting view in a few
time steps turns out to be a dull view in the rest.

In section 3, we discussed the notion of a good view
and presented a measure of view information for a volume
dataset. For time-dependent data, using equation (4) sepa-
rately for each time-step is not the desired solution– it can
yield viewpoints in adjacent time-steps that are far from each
other, thus resulting abrupt jumps of the camera during the
animation. A natural solution is to constrain the camera, but
it still does not guarantee the most informative viewpoint.
For instance, it can result in a viewpoint which has a high
information value for each individual time-step, but does
not show any time-varying changes. It is contrary to what
is expected from an animation– it should show both the data
at each time-step, and also the changes occurring from one
frame to the next. In the next section, we present an alternate
version of viewpoint information tailored to capture the view
information present in one time-step, taking into account the
information present in the previous step.

5.1. View Information

Consider two random variables X and Y with probability dis-
tributions r and s respectively. If X and Y are related (not in-
dependent), then an observation of X gives us some informa-
tion about Y . As a result, the information carried by Y , con-
ditional on observing X , becomes H(Y |X) ≡ H(s|r). Then
the information carried together by X and Y is H(X ,Y ) =
H(Y,X) = H(X)+H(Y |X), as opposed to H(X)+H(Y ). We
will use this concept to create a modified viewpoint good-
ness measure for time dependent data.

Suppose there are n time-steps {t1, t2, . . . , tn} in the
dataset. For a given view V , we denote the entropy for time-
step ti as H(V, ti)≡HV (ti). The view entropy for all the time-
steps together is HV (t1, t2, . . . , tn). We will assume a Markov
sequence model for the data, i.e., the data in any time-step
ti is dependent on the data of the time-step ti−1, but inde-
pendent of older time-steps. Then the information measure
for the view, for all the time-steps taken together, is given by
equation (11). (10) is a standard relation [Bla87], and (11)
follows from the independence assumption.

H(V ) = HV (t1, t2, . . . , tn)

= H(t1)+H(t2|t1)+ . . .+H(tn|t1, . . . , tn−1)(10)

= H(t1)+H(t2|t1)+ . . .+H(tn|tn−1) (11)
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(a) (b) (c) (d)

Figure 4: Representative views for a 5-way partitioning of the view-sphere for the tooth dataset. The view for the fifth partition
is figure 3(a).

The conditional entropies will be defined following the
same principles outlined in section 3. We consider a view to
be good when the visibilities of the voxels are in proportion
to their noteworthiness. But in the time-varying case, the sig-
nificance of a voxel is derived not only from its opacity, but
also from the change in its opacity from the previous time-
step. For the time-step ti, we then define the noteworthiness
factor of the jth voxel as W j(ti|ti−1) =

{k · |α j(ti)−α j(ti−1)|+(1− k) ·α j(ti)} · I j(ti) (12)

where, 0 < k < 1 is used to weight the effects of voxel opac-
ities and the change in their opacities. A high value of k will
highlight the changes in the dataset. Suppose the visibility
of the voxel for the view V is v j(V, ti). Then, the conditional
visual probability, q j(ti|ti−1), of the voxel is

q j(ti|ti−1) ≡ q j(V, ti|ti−1) =
1
σ
·

v j(V )

W j(ti|ti−1)
(13)

where, σ is the normalizing factor as in equation (3). The
entropy of the view V is then calculated using equations (11)
and (13). Voxels with both low opacities and small changes
(as defined by thresholds) are ignored for these calculations.

6. Results and Discussion

We have implemented our technique using a traditional ray
casting algorithm with early ray termination. 128 sample
views were used for each dataset. The camera positions were
obtained by a regular triangular tessellation of a sphere with
the dataset place at its center. View selection results for the
128× 128× 80 tooth dataset have been shown in figure 3.
Figure 4 shows the results of a 5-way view space partition-
ing for the dataset using the JS divergence measure. The
partitioning helps to avoid selection of a set of good views
which happen to be similar to each other. Even though we
have not considered the physical distance between the view-
points during partitioning, it forces the selected viewpoints
to be well distributed over the view sphere. Figure 5 shows
view evaluation results for a 128-cube vortex dataset. Both

(a) (b)

Figure 5: View Evaluation results for a 128-cube vortex
dataset. Figure (a) shows the recommended view with a high
entropy value, (b) shows a bad view for comparison.

high and low quality views are shown for comparison. This
method can be extended to large datasets by computing the
view entropies at a lower resolution.

For time-varying data, we used the view information mea-
sure presented in section 5. A sequence of 14 time-steps of
the 128-cube vortex data was used. The entropy for each
view was summed over all the time-steps, as given by equa-
tion (11). The conditional entropy for each time-step was
calculated with k = 0.9 in equation (12). A high value of k
gives more weight to the voxels which are changing their
values with time compared to high opacity voxels which re-
main relatively unaltered. Figure 6(a) shows the view with
the best cumulative entropy for the time-series. Although the
summed entropy gives a good overall view for the whole
time-series, there might be other views which are better for
particular segments of the time-series. Figure 6(b) plots the
conditional entropies (H(tn|tn−1)) for four selected views of
the vortex dataset. The best overall view (figure 6(a)), which
is represented by the blue curve (highest curve on the right
boundary), is not the best choice for the first half of the se-
ries. For long time sequences, it might be beneficial to con-
sider different good views for different segments of time.

The Ohio State University
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Figure 6: View Evaluation for time-varying dataset. (a) The
best overall view for 14 time-steps. (b) The conditional en-
tropies of four selected views for each of the 14 time-steps.
The view in (a) is represented by the blue plot (highest curve,
top-right corner).

7. Conclusion and Future Work

We have presented a measure for finding the goodness of a
view for volume rendering. We have used the properties of
the entropy function to satisfy the intuition that good views
show the noteworthy voxels more prominently. The user sets
the noteworthiness of the voxels by specifying the transfer
function. Our algorithm can be used both as an aid for hu-
man interaction in not-so-interactive systems, and also as an
oracle to present multiple good views in less interactive con-
texts. Furthermore, view sampling methods such as IBR can
use the sample similarity information to create a better dis-
tribution of samples.
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