Cache-conscious Frequent Pattern Mining on a Modern Processor

Amol Ghoting\(^1\), Gregory Buehrer\(^1\), Srinivasan Parthasarathy\(^1\)
Daehyun Kim\(^2\), Yen-Kuang Chen\(^2\), Anthony Nguyen\(^2\), and Pradeep Dubey\(^2\)

Dept. of Computer Science and Engineering, The Ohio State University\(^1\)
Columbus, OH 43210, USA.
Architecture Research Laboratory, Intel Research\(^2\)
Santa Clara, CA 95052, USA.

Contact email: \{ghoting,srini\}@cse.ohio-state.edu

Abstract
In this paper we concern ourselves with the performance of frequent pattern mining algorithms on a modern processor. Through the design of a detailed performance study we show that even the best implementations of frequent pattern mining, with highly efficient memory managers, still grossly under-utilize a modern processor. The primary performance bottlenecks are poor data locality and low instruction level parallelism. We propose a tile-able cache conscious prefix tree to address this problem. The resulting tree improves spatial locality and also enhances the benefits from hardware cache line prefetching. Furthermore, the design of this data structure allows the use of a novel tiling strategy to improve temporal locality. The result is an overall speedup of up to 3.2 when compared with state-of-the-art implementations. We then show how these algorithms can be improved further by realizing a non-naive thread-based decomposition that targets simultaneously multi-threaded processors. A key aspect of this decomposition is to ensure cache re-use among co-scheduled threads at a fine granularity. This optimization affords an additional 50% speedup resulting in an overall speedup of up to 4.8. To the best of our knowledge, this effort is the first to target cache conscious data mining.

1 Introduction
Frequent pattern mining [2] is an immensely popular data mining approach which aims to discover groups of items or values that co-occur frequently in a transactional dataset. Following the seminal work by Agrawal and colleagues [2], there have been a proliferation of efficient algorithms developed for frequent itemset mining [21, 35, 30, 17, 10, 6] over the last decade.

During this same time frame processor speeds have increased \(\mathcal{O}\)-fold according to Moore's law. However, DRAM speeds have not kept up. Given the memory intensive nature of such algorithms and the widening gap between memory and processor performance, it is our conjecture that these algorithms are grossly inefficient in terms of CPU utilization. Furthermore, architectural innovations such as prefetching and simultaneous multi-threading (SMT), designed to alleviate this gap, have largely been ignored by the data mining community. We believe that techniques leveraging these architectural innovations can significantly improve performance.

To motivate this study we measure the scaling behavior of the fastest known frequent pattern mining implementation for the algorithm \(FP\text{Growth} \) [21]. We evaluate the performance of this algorithm while we scale CPU frequency from 1300MHz to 2900MHz\(^1\). Ideally, one would want execution to scale linearly with processor frequency. Figure 1 shows both the ideal speedup and the observed speedup in a real experimental setting with increasing CPU frequencies. While the CPU frequency increases by a factor of 2.2, the speedup saturates at 1.35, even though cache hit rates are held constant. This is simply a result of the fact that even though processor speeds have increased memory stall times (measured in terms of CPU cycles) have also increased thus limiting the performance of such algorithms.

The above experiment serves to illustrate an important point. Advanced architectural designs, even those possessing intelligent mechanisms for hiding memory latency, do not necessarily translate to improved application performance. Improving execution time will

\(^{1}\)This experiment was conducted on a specialized Intel Pentium 4 architecture where CPU frequency can be varied. We also note that in reality memory speeds would have increased somewhat (in this experiment it is constant) but the general trend would still hold true.
fine grained level. Our multi-threaded implementations not only benefit from increased instruction level parallelism, but also benefit from increased cache re-use (fewer cache misses).

Our empirical evaluation reveals that cumulatively these strategies result in a speedup of up to 4.8 on a modern-day uniprocessor.

2 Background and Related Work

Frequent pattern mining, also known as frequent itemset mining, plays an important role in a range of data mining tasks. Examples include mining associations [2], correlations [9], causality [32], sequential patterns [3], episodes [24], partial periodicity [20], and emerging patterns [14].

The frequent pattern mining problem was first formulated by Agrawal et al. [1] for association rule mining. Briefly, the problem description is as follows: Let $I = \{i_1, i_2, \ldots, i_n\}$ be a set of n items, and let $D = \{T_1, T_2, \ldots, T_m\}$ be a set of m transactions, where each transaction T_i is a subset of I. An itemset $i \subseteq I$ of size k is known as a k-itemset. The support of i is $\sum_{j=1}^{m} (1 : i \subseteq T_j)$, or informally speaking the number of transactions in D that have i as a subset. The frequent pattern mining problem is to find all $i \in D$ that have support greater than a minimum support value \minsup.

Agrawal et al. [2] present Apriori, the first efficient algorithm to solve this challenge. Apriori traverses the itemset search space in breadth-first order. Its improved efficiency is based on the anti-monotone property: If a size k-itemset is not frequent, then any size $(k+1)$-itemset containing it will not be frequent. The algorithm first finds all frequent 1-itemsets in the data set, and then iteratively finds all frequent i-itemsets, using frequent $(i-1)$-itemsets discovered previously.

This general level-wise algorithm has been extended in several different forms, leading to improvements such as DHP [26] and DIC [9]. We have proposed Eclat [35] and several other algorithms that use equivalence classes to partition the problem into independent subtasks. The use of the vertical data format allows fast support counting by set intersection. The independent nature of subtasks, coupled with the use of the vertical data format, results in improved I/O efficiency because each subtask is able to reuse data in main memory. Savasere et al. present Partition [30], an approach that scans the data set twice; once for generating candidate frequent itemsets, and once for collecting their support. This approach processes the data set into partitions such that each partition fits in memory, improving I/O efficiency on large data sets. Han et al. present FPgrowth [21], an algorithm that effectively combats the above problems. FPgrowth summarizes the data set into a succinct prefix tree or FP-tree. This structure is often significantly smaller than the original dataset, thus it can be stored in main memory in most practical scenarios. Furthermore, the al-

3http://www.intel.com/software/products/vtune
algorithm does not have an explicit candidate generation phase. Rather, frequent itemsets are generated using FP-tree projections in main memory. The payoff is improved search space traversal and very high I/O efficiency. However, as pointed out by Goethals [15], the pointer-based nature of the FP-tree requires costly dereferences. Parthasarathy et al. [27] presented a hash tree-based parallel algorithm for frequent pattern mining on an SMP. This article illustrates the benefits of memory locality in parallel algorithms. The authors attain 2-fold performance improvements, but the implementations use naive memory managers. Another popular approach to frequent pattern mining is to directly find all maximal frequent itemsets without generating all frequent itemsets in the data set. The benefit of this approach is that maximal frequent itemsets can be used to enumerate all frequent itemsets. This strategy is used in Mafia [10], Maxminer [5], and Genmax [17].

Several recent studies have revisited core database algorithms in an effort to improve cache performance [7, 31]. Rao and Ross [28, 29] propose two new types of data structures, Cache-Sensitive Search Trees and Cache-Sensitive B+ Trees. This work builds on the premise that the optimal tree node size is equal to the natural data transfer size. This corresponds to the disk page size for disk-resident databases, and cache-line size for main memory databases. Chen et al. [13] have further improved the index and range search performance of B+ trees using prefetching, a means of reducing materialized cache miss latency. More recently, Chen et al. [12] have improved the performance of Hash-Join operations using prefetching. Ailamaki et al. [4] examine the DBMS performance on modern architectures, noting that poor cache utilization is the primary cause of extended query execution time. They conclude that database programmers must increase the attention given to data layout, to improve cache performance. Lo et al. [23] analyze the performance of database workloads on simultaneous multi-threaded (SMT) processors. They show that while database memory footprints tend to be large, working sets often can fit in cache (when properly organized). They determine that improved cache performance is required to leverage the abilities of multiple threads in an SMT environment. To the best of our knowledge, there has been no work in the area of cache-conscious data mining.

3 Performance Characterization

In the previous section, we present a summary of several frequent pattern mining algorithms. In a broad sense, each algorithm is distinct in the data set representation it uses and the manner in which it traverses the itemset search space. The data set representation that is used is either horizontal [2], vertical [35], or based on a prefix tree [21]. The itemset search space traversal strategy that is used is either depth-first [17], breadth-first [2], or based on the pattern growth methodology [21]. Through several recent independent evaluations [16, 6], it is now well accepted that a prefix tree-based data set representation typically outperforms both the horizontal and the vertical data set representations for support counting. Thus, we design our frequent pattern mining workloads using a prefix tree-based data set representation, to span the three different itemset search space traversal strategies. Specifically, our workloads are prefix tree-based implementations of FP-Growth, Genmax, and Apriori, as representative algorithms for pattern-growth, depth-first using equivalence classes, and breadth-first based search methodologies, respectively. For all three algorithms, we base our study on the fastest known public implementations that are available at the FIMI repository [16, 6].

3.1 FP-Growth

FP-Growth [21] is a frequent pattern mining algorithm that uses an annotated prefix tree known as the FP-tree as a dataset representation. Furthermore, it uses the pattern-growth based search methodology. In summary, the algorithm works as follows: Beginning with frequent 1-items in the dataset, each k-itemset is extended with frequent items that occur in the projected dataset for the k-itemset to create (k+1)-itemsets. The projected dataset for an itemset is the subset of the transactions in the dataset that contains the itemset. This process is carried out recursively in depth-first order of the search space. Each level in the recursion uses the FP-tree as a dataset representation. Several independent evaluations suggest that FP-Growth is the fastest known frequent itemset mining algorithm [16, 6].

3.2 Apriori

Apriori [2] is a frequent itemset mining algorithm that traverses the itemset search space in a breadth-first order. Beginning at size 1, it finds frequent itemsets of size l using a data set scan, and then uses these to generate candidate frequent itemsets of size l + 1. In the next iteration, frequent l + 1 itemsets are discovered by reducing the candidate frequent l + 1 itemsets, and the algorithm then generates itemsets of size l + 2. The process continues iteratively until all frequent itemsets are generated. The original implementation of Apriori uses the horizontal data layout. However, Borgelt [8] showed that the performance of Apriori can be significantly improved using a prefix tree. In each iteration, rather than traverse the entire data set, one can find the frequency count for the candidate itemsets by traversing the prefix tree. We use this version.

3.3 Genmax

Genmax [17] is a maximal frequent itemset mining algorithm that traverses the itemset search space in depth-first order. The algorithm directly enumeration all maximal frequent itemsets. The entire search task is broken down into independent subtasks using equivalence classes. Each subtask consists of a frequent itemset and a combine set, and the associated search space is traversed in depth-first order using a back-tracking
search. The algorithm prunes the search space based on maximal frequent itemsets that are discovered at an earlier point in the search. Although the original Genmax algorithm uses the vertical data format, recently, a variant of Genmax that uses a prefix tree has been proposed by Grahe and Zhu [18]. The sizable improvement stems from their employment of a projected dataset for frequency estimation.

3.4 Memory Managers

It has been well documented that memory allocation requests in C/C++ implementations can be a performance obstruction [19]. Each allocation is a call to the function malloc(), which then requires a subsequent call to the function free(). Both these function calls often involve expensive system calls. Consequently, each of the frequent itemset mining implementations we analyze use custom memory managers designed to eliminate these costs. Oftentimes these custom memory managers malloc() large chunks of contiguous memory, and then distribute portions of the memory as needed. A buffer of memory is generated with one malloc(), which consequently requires only one call to free(). Some managers use multiple buffers to accommodate memory requests of various sizes [18]. These buffers can then serve a large number of memory requests (all in user space) with very little overhead. A potential downfall to this method is that memory allocation and deallocation should be done in near first-in-last-out order. This is not a problem with frequent itemset mining, due to the recursive nature of the algorithms. We inform the reader of these managers to quell reservations regarding the performance of the the implementations we have chosen to profile- they are not naive straw man implementations.

3.5 Performance Benchmarking

To analyze the data mining implementations, we use a system with an Intel Xeon processor and 4GB of physical memory. The processor runs at 2GHz and has a 4-way 8KB L1 data cache, an 8-way 512KB unified L2 cache on chip, and 2MB L3 cache. The cache line sizes are 64 bytes for the L1 and L2 caches, and 128 bytes for the L3 cache. The system bus runs at 100MHz and quadpumps data to deliver a bandwidth of 3.2GB/s.

We use Intel VTune Performance Analyzers to collect performance characteristics of execution, such as clock ticks, instructions retired, cache misses, and branch mispredictions. This tool profiles program execution at the level of source code and provides performance characteristics of each function in the implementation. We performed a workload characterization using a variety of data sets under different support parameters. The prefix tree did not fit in L3 cache. This allows us to capture worst case performance. The following analyses and findings present average performance numbers measured over various datasets. The variation was not significant.

3.6 Analyses and Findings

Table 1 presents the top kernel functions for FP-Growth, Genmax, and Apriori. In FP-Growth, 61% of the execution time is spent in the Count()-FP-Growth routine. This routine finds the set of all viable items in the FP-tree (projected dataset) to be used in extending the frequent itemset at that point in the search space. 31% of the execution time is spent in the Project-FP-Growth() routine, which scans the FP-tree to build a new projected prefix tree for the subsequent step in the recursion. We would like the reader to note that these two routines are very similar, the difference being, Project-FP-Growth() routine is not called as often as the Count-FP-Growth() routine. For Genmax, the count routine Count-GM() scans the prefix tree to evaluate support. Furthermore, it maintains pointers to locations in the tree where the previous search terminates to maintain a projected dataset to ease the burden on subsequent counting steps. This implementation does not have an explicit projection phase and thus the counting routine contributes to 91% of the execution time. Finally, for Apriori, the count routine Count-Apriori() scans the prefix tree, establishing the frequency count for each of the candidate itemsets. CandidateGen() generates candidates of size \(l + 1 \) using frequent itemsets of size \(l \). 70% of the execution time is spent in the counting phase and 25% of the time is spent in the candidate generation phase. We will now examine the operation mix and memory behavior of these kernels.

3.6.1 Operation Mix

Table 2 presents the operation mix\(^3\) for the top kernel functions. The operation mix for Project-FP-Growth() is very similar to that of Count-FP-Growth() and has not been included. There were a negligible number of floating point operations, TLB misses, and branch mispredictions, per instruction, which is why these numbers have not been included. These kernels are memory intensive, with a large number of memory operations per instruction. Moreover, most of these operations are load operations, which are associated with data reads on the prefix tree. This is expected as these kernel functions are associated with prefix tree traversals, which is a read only operation. ALU operations are primarily increment and decrement integer operations (no floating point operations). These are associated with support counting. Please note that there are a negligible number of I/O operations per instruction. This is because all I/O operations take place during the construction of the very first prefix tree, and subsequent operations on the prefix tree are handled in main memory. Prefix tree construction for the first tree takes a negligible amount of time compared to the task of generating frequent patterns.

\(^3\)Please note that the operation mix need not sum to 1, as a single x86 instruction can contribute to both ALU and memory operations.
3.6.2 Memory Access Behavior

Table 3 presents the memory access behavior of the three algorithms. All exhibit a poor L1 hit rate, and even worse L2 and L3 hit rates. As a consequence, over 3% of all instructions miss in L3 cache, and need to access main memory. For a modern processor, such a high fraction of cache misses per instruction becomes the primary performance bottleneck. The Intel Xeon processor is capable of executing 3 instructions per cycle, with an optimum CPI = 0.33. Here, we see a CPI value that is greater than 4, a near 12-fold slowdown from the optimum, due to poor cache utilization. The CPU is grossly under-utilized for this very same reason, with utilization in the 8-9% range across all algorithms.

3.6.3 The Bottleneck

Based on the provided performance characterization, together with an understanding of the kernel functions, we can make the following observations:

First, frequent pattern mining algorithms are memory intensive, and their implementations have a large number of load operations per instruction. This is because, most of the time is spent traversing the prefix tree in search for an item, which is a memory intensive operation. These accesses are bottom up accesses, from the leaves of the tree to the root of the tree, in the general case. Second, the prefix tree being a pointer-based structure, prefix tree traversals result in pointer-chasing. In other words, the address of the next node to be accessed in the prefix tree is only available through a pointer at the node that is currently being accessed. Third, the prefix tree is not accessed just once, but several times. Each of these accesses are largely misses as the prefix tree is typically several times larger that the L3 cache. Fourth, when the prefix tree is created, the memory address of each node in the tree is relatively independent of the addresses of other nodes in the tree. In other words, the address of a child node in the tree need not be any where near the address of its parent node in the tree. Looking back at how the prefix tree is constructed, the transactions in the data set can appear in any order. As a result, child node and parent node addresses are relatively independent.

Based on the above observations, we conclude that prefix tree accesses exhibit poor locality. In other words, given we have accessed a certain node in the tree, its parent node, that will be accessed next, will most likely not be in a following location in the cache line. This results in very poor cache utilization, as once a cache line for a certain node in the tree is fetched, the rest of the line is most likely going to be wasted. These algorithms do not benefit from hardware prefetching because their memory access patterns lack structure. For a large prefix tree that does not fit in cache, we will have a negligible amount of temporal locality. The primary performance bottleneck is that prefix tree traversals leave the processor busy waiting on a data-cache stall for majority of the time. This is exacerbated by the pointer chasing problem that limits instruction level parallelism. Pointer chasing codes do not provide the processor with a large instruction pool to exploit ILP.

4 Cache-conscious Optimizations

In this section, we present several novel techniques for improving the performance of frequent itemset mining using prefix trees. We then follow these descriptions with a performance evaluation for each technique. The details of our optimizations are presented in the context of the FP\textit{Growth} algorithm. We choose FP\textit{Growth} for our case study because it has been shown to be the fastest pattern mining algorithm in several recent independent evaluations [16, 6]. We take the time now to point out that our optimization techniques can be applied to most frequent pattern mining algorithms that use prefix trees. In section 4.6.4, we will summarize the results of using our strategies on Genmax and Apriori. Before we detail these techniques, we will introduce the reader to the prefix tree and the FP\textit{Growth} algorithm.

4.1 Prefix Trees

A prefix tree (or an FP-tree [21]) is a data structure that provides a compact representation of transaction data set. Each node of the tree stores an item label and a count, with the count representing the number of transactions which contain all the items in the path from the root node to the current node. By ordering items in an itemset, a high degree of overlap is established. The compressed nature of this representation allows in-memory frequent pattern mining because in most practical scenarios, this structure fits in main memory. Its design is based on the following observations:

- A transaction data set representation only needs to consist of frequent 1-items in the data set; the remaining items can be pruned away. This is a direct consequence of the anti-monotone property used in Apriori [2].
<table>
<thead>
<tr>
<th>No.</th>
<th>Transaction</th>
<th>Sorted Transaction with Frequent Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f, a, c, d, g, i, m, p</td>
<td>a, c, f, m, p</td>
</tr>
<tr>
<td>2</td>
<td>b, c, f, l, m, o</td>
<td>a, c, f, b, m</td>
</tr>
<tr>
<td>3</td>
<td>b, h, j, l, o</td>
<td>f, b</td>
</tr>
<tr>
<td>4</td>
<td>c, b, k, s, p</td>
<td>c, b, p</td>
</tr>
<tr>
<td>5</td>
<td>a, f, c, l, m, n</td>
<td>a, c, f, m, p</td>
</tr>
<tr>
<td>6</td>
<td>a, k</td>
<td>a</td>
</tr>
</tbody>
</table>

Table 3: Memory Access Behavior

Table 4: A transaction data set with minsupp = 3

- If two transactions share a common prefix, as per some sorted order of frequent items, they can be merged into one, providing a count value indicating this merge is registered. Furthermore, if frequent items in a transaction are sorted in descending order of their frequencies, there is a greater chance that more prefix strings will be shared.

With these observations in mind, a prefix tree is constructed as follows:

1. Scan the data set to produce a list of frequent 1-items.
2. Sort the items in frequency descending order.
3. Sort the transactions based on the order from (2)
4. Prune frequent 1-items.
5. Insert each item of each transaction into a tree in sequential order, generating new nodes when a node with the appropriate label is not found, and incrementing the count of existing nodes otherwise.

Table 4 shows a sample transaction data set, and Figure 3(a) shows the corresponding prefix tree. Each node in the prefix tree consists of an item, count, nodelink ptr, (which points to the next item in the prefix tree with the same item-id) and child ptrs (a list of pointers to all its children). Pointers to the first occurrence of each item in the tree are stored in a header table.

To establish the frequency count for an itemset, say α, using a prefix tree, we proceed as follows: First, we find each occurrence for item c in the tree using the node link pointers. Next, for each occurrence of c, we traverse the tree in a bottom up fashion in search of an occurrence of a. The count for itemset α is then the sum of counts for each node c in the tree that has a as an ancestor.

4.2 FP-Growth Algorithm

The FP-Growth algorithm is presented in Figure 2. As described earlier, FP-Growth is a prefix tree based approach to frequent pattern mining. In Step 1, it builds

![Figure 2: FP-Growth algorithm](image)

Algorithm: FP-Growth

Input: A prefix tree D, minimum support min.
Output: Set of all frequent patterns

Step 1: Construct an FP-tree
1. Scan the transaction database D once, gathering support of - all items.
2. Sort the items based on their frequency.
3. Create a root node, labeled null.
4. Scan the database a second time.
5. For each transaction, remove elements with frequency < min.
6. Sort the transaction, and append it to the root - of the tree, maintaining the prefix property.
7. Each inserted node is linked to a header list of - frequent one items with that label.

Step 2: Mine the FP-Tree by calling FP-Growth(D, null, min)

FP-Growth (tree, suffix, min)

```plaintext
1{ if tree has only one path
2( output 2^path \cup suffix as frequent
3  else
4( for each frequent one item \beta in the header table
5( output the item \cup suffix as frequent
6( use the header list for \beta to find
7( all frequent items in conditional pattern
8( base C for \beta
9( If we find at least one frequent item in the conditional
10( pattern base, use the header list for \beta and C
11( to generate conditional prefix tree \tau
12( If \tau \neq 0 then
13( FP-Growth(\tau, suffix \cup[\beta]
14( )
```

Note: 2^path denotes the power set of the elements in the path.

4.3 Spatial Locality Related Enhancements

Through the detailed characterization presented in the previous section, we concluded that approximately 60% of the execution time is spent finding frequent items in the conditional pattern base for an item, an additional 30% is spent using the results of this step to create a new projected prefix tree. Both these procedures have very poor cache utilization mainly for the following rea-
son’s:

First, the routine that scans the conditional pattern base is a bottom up traversal of the prefix tree. This access pattern also holds true for the routine that builds the projected prefix tree for the subsequent recursion. While we scan the prefix tree, we are only concerned with the item and parentpointer associated with the node. In the prefix tree proposed by Han et al. [21], each node has a list of child pointers, a parent pointer, a nodelink pointer, a count, and an item. Except for item and parentpointer, all other fields in the prefix tree node are not required for the two main routines. Consequently, once we fetch a prefix tree node, only two fields are actually used. This significantly degrades cache line utilization. Second, due to the way a prefix tree is constructed, the chances are that the parent node will not be present in an adjacent location in the cache line. This prefix tree is constructed as the dataset is scanned, and thus sequential accesses in a subsequent traversal of the tree are not contiguous in memory. Due to the lack of temporal locality, this node is not likely to be present on any other cache line either. The result is commonly a cache miss.

We present the cache conscious prefix tree (Figure 3), a data structure designed to significantly improve cache performance through spatial locality. A cache conscious prefix tree is a modified prefix tree which accommodates fast bottom up traversals and improves cache line usage. First, given a prefix tree, our solution to improve spatial locality is to reallocate the tree in main memory, such that the new tree allocation is in depth-first order of the original tree. We malloc() one contiguous block of memory equal to the total size of the prefix tree. Next, we traverse the tree in depth-first order, and (in one pass) copy each node to the next block of memory (in sequential order). This simple reallocation strategy provides significant improvements because all algorithms access the prefix tree several times in a bottom up fashion, which is largely aligned with a depth first order of the tree. Second, our node size is much smaller than the original node size, because we do not include child pointers, next pointers, or counts. These data members are eliminated because in FP-Growth, child pointers, node links pointers, and counts are only used when constructing the tree. This is less than half the original size, which allows at least twice as many nodes to reside on one cache line. This information is no longer required. The node fields node link pointer and count are required at the beginning of each bottom up traversal. Therefore, these fields are stored in a separate structure as node link pointer and count accesses are not along the critical path. We would like the reader to note that once the cache conscious prefix tree is created, the original tree can be purged, and thus memory usage does not increase significantly. The tile-able aspect of cache-conscious prefix trees will be presented in the following section.

In summary, our allocation strategy has the following benefits:

- Prefetching: Cache line prefetching [11] is a popular technique for reducing the effect of cache line misses, particularly when applications do not perform a significant amount of computation per cache line. Frequent pattern mining is one such application. Although we improve the spatial locality of data access in the algorithms, we still spend a significant portion of the execution time waiting on cache misses. These misses are particularly difficult to mask because at each node the algorithm performs only simple ALU operations. This can be alleviated by prefetching nodes of the tree into cache with hardware [11]. The Intel Pentium 4 has a hardware prefetcher that operates without user intervention. It records memory access patterns of the executing application and prefetches best-effort data addresses. Simple patterns such as sequential memory access are easily recognized. Since the accesses to the cache-conscious prefix tree are largely sequential, its use has great benefit. Hardware prefetching outperforms software prefetching for this access pattern, so we do not consider software prefetching in the analysis to follow.

4.4 Temporal Locality related enhancement

Temporal locality states that recently accessed memory locations are likely to be accessed again in the near future. Cache designers assume programs will exhibit good temporal locality, and store recently accessed data in the cache accordingly. Therefore, it is imperative that we find any existing temporal locality in the algorithm and restructure computation to exploit it.

To simplify further discussion we present the core loop for FPGrowth in Figure 4. Through each loop iteration we do the following: First, we scan the conditional pattern base of item i for frequent items. Second, if there are any frequent items in the conditional pattern base of i, we build a conditional prefix tree for item i, again, accessing the conditional pattern base of i. The prefix tree does not typically fit in cache. Even the conditional pattern base does not always fit in cache. As a result, both scans of the conditional pattern base do not reuse portions of the tree in cache. This holds between:

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1 - T40T15D300K</td>
<td>300000</td>
</tr>
<tr>
<td>DS2 - T70T15D300K</td>
<td>300000</td>
</tr>
<tr>
<td>DS3 - T70T15D300K</td>
<td>300000</td>
</tr>
<tr>
<td>DS4 - T100T15D300K</td>
<td>300000</td>
</tr>
<tr>
<td>DS5 - Webdocs.dat</td>
<td>500000</td>
</tr>
</tbody>
</table>

Table 5: Data Sets
Core loop: FP Growth

Input: A prefix tree \(D \), minimum support \(\text{min}_p \)

1. For each frequent item \(i \) in \(D \)
 2.
 3. Find number of items \(j \) in conditional pattern base of \(i \) with support \(\text{min}_p \)
 4.
 5. If \(j > 0 \)
 6.
 7. Build conditional prefix tree \(P \) for item \(i \)
 8.
 9. FP Growth \((P, \text{min}_p) \)
 10.
 11. }
12.

Core loop after path tiling: FP Growth

Input: A prefix tree \(D \), minimum support \(\text{min}_p \)

1. For each path tile \(t \) in the cache conscious prefix tree
 2.
 3. For each frequent item \(i \) in \(D \)
 4.
 5. Find counts \(c_i \) for each item
 6.
 7. } in conditional pattern base of \(i \)
 8.
 9. } with node locations in \(t \)
 10.
11.
12. } Aggregate conditional pattern base counts \(c_i \) collected across all tiles
13.
14. } For each path tile \(t \) in the cache conscious prefix tree
15.
16. } For each frequent item \(i \) in \(D \)
17.
18. } \(j = c_i \) = number of items in conditional pattern base of \(i \)
19.
20. } If \(j > 0 \)
21.
22. } Build conditional prefix tree \(P_i \) for item \(i \) with node location in \(t \)
23.
24. }

4.4.1 Path Tiling

We can restructure computation within the algorithm so as to improve temporal locality. The goal of restructuring the algorithm is to maximize reuse of the prefix tree once it is fetched into cache. We accomplish this by reorganizing computation, and thus, access to the prefix tree, in the algorithm. Our approach, called path tiling, works as follows.

First, we break down the tree into relatively fixed sized blocks of memory, or tiles, along paths of the tree from leaf nodes to the root, as illustrated in Figure 8. This is made possible through the design of our cache conscious prefix tree that is reallocated in depth first order of the original prefix tree. The tiles in the cache conscious prefix tree are identified using their start address and end address within the address space spanned by the cache conscious prefix tree.

Next, we iteratively fetch each tile into cache. Once the tile is fetched, for each iteration of item \(i \) in the tree, we traverse its conditional pattern base provided the address of the node containing item \(i \) in the path lies in the tile. There is a large overlap between the conditional pattern bases of different items. Thus, once a tile is brought into cache, all conditional pattern base accesses that hit the tile are managed in cache. This dramatically improves temporal locality for the algorithm.

The loop that builds the conditional prefix tree, which also accesses the conditional pattern bases as above, is also tiled. This also improves temporal locality through the conditional tree building phase. We note that building several conditional prefix trees at a time can result in increased memory usage. There is a workaround however. We introduce an additional loop that builds a conditional prefix tree for the first \(k \) items, and not all items. These \(k \) trees are processed recursively, after which they are purged, and next we
can build prefix trees for the next \(k \) items, and proceed similarly. We have not included this addition loop in Figure 8 for clarity.

4.5 Improving ILP via Simultaneous Multithreading

Simultaneous Multithreading [33] (SMT) is a processor design that combines hardware multithreading with superscalar processor technology to allow multiple threads to issue instructions each cycle. SMT permits all thread contexts to simultaneously compete for and share processor resources by maintaining several thread contexts on chip. Unlike conventional superscalar processors, which suffer from a lack of per-thread instruction-level parallelism, simultaneous multithreading enables multiple threads to compensate for low single-thread ILP. The performance consequence can be significantly higher instruction throughput and program speedups for workloads such as databases, web servers and scientific applications. SMT has been incorporated into the Intel Pentium 4 processor in the form of HyperThreading technology [22] which supports two thread contexts on chip. For a multithreaded implementation, SMT can provide several benefits.

- First, it can absorb an appreciable portion of the cache miss latency seen by a single threaded implementation by overlapping computation in one thread with a cache miss in another thread.
- Second, data fetched by one thread into the cache can be reused by the second thread. This reuse of data can take place across all cache levels, and serves as another way of reducing materialized cache miss latency.

A natural candidate for a two-thread decomposition of a frequent itemset mining algorithm is to use an extant strategy like those proposed in [27, 34]. These strategies would involve decomposing execution into two independent threads of computation. However, when we evaluate these strategies for FP-Growth running on an SMT, we were not able to gain any benefit from simultaneous multi-threading. A detailed performance evaluation revealed that the first benefit is not materialized in frequent pattern mining implementations when using these extant strategies. This is due to the memory intensive nature of the algorithm. In the future, as more hardware contexts are put on chip, it is likely that the first benefit will materialize because we will have a large instruction pool. Therefore, we leverage the second benefit of SMT for parallel frequent pattern mining.

We devise a novel parallelization strategy in which the two threads follow each other through the same FP-Growth() calls. These threads are not independent, but rather operate on the same tile simultaneously. This is accomplished through fine grained parallel execution of the tiled loops, as shown in Figure 4. The workload for each tile is partitioned across the two threads. By co-scheduling the two threads, when one thread fetches a portion of the tile into the cache, it will be reused by the second thread. This results in significant overlap and thus cache reuse in the data being accessed by the threads.

4.6 Performance Evaluation Revisited

We now evaluate the empirical benefits of our optimizations. We use four synthetic datasets generated by the IBM Quest Dataset Generator and a real dataset called Webdocs, as presented in Table 5. For the synthetic datasets, the naming parameters are the average transaction length \(T \), the average maximal pattern \(I \), the number of transactions \(D \). Webdocs [16] was chosen because most other FIMI datasets are too small. We do realize the limitations of using this synthetic dataset generator [36], but truly large real datasets are not readily available. Although the synthetic datasets only have 300,000 transactions, these datasets are very dense and the FIMI implementations we use are unable to handle a larger number of transactions. The experimental setup is identical to that provided in the workload characterization section. Throughout this section, we compare execution time with respect to the fastest known implementation of FP-Growth from the FIMI repository [18]. Execution times for this implementation are summarized in Figure 6 and we present speedup numbers with respect to these times. Also note that speedup is based on overall execution time, including the time required to create the first tree.

4.6.1 Benefits of improving spatial locality

From Figures 5 through 7, it is evident we receive significant improvement due to improved spatial locality and the effects of hardware prefetching. Most trials provided between 30 and 60% improvement. Because the hardware prefetcher is always turned on in the Pentium
Figure 5: Speedup on DS1 and DS2

Figure 6: Speedup on DS3 and DS4

Figure 7: Speedup on DS5 and Speedup for Apriori and Genmax

<table>
<thead>
<tr>
<th></th>
<th>DS1 (0.2%)</th>
<th>DS2 (0.83%)</th>
<th>DS3 (0.83%)</th>
<th>DS4 (1.33%)</th>
<th>DS5 (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>192 sec</td>
<td>269 sec</td>
<td>627 sec</td>
<td>3798 sec</td>
<td>949 sec</td>
</tr>
<tr>
<td>Cache-conscious</td>
<td>77 sec</td>
<td>80 sec</td>
<td>145 sec</td>
<td>773 sec</td>
<td>220 sec</td>
</tr>
</tbody>
</table>

Table 6: Execution Time Comparison
4, it is not trivial to breakdown the contributions between spatial locality and hardware prefetching. Note that the Pentium 4 processor has a 64 byte cache line size. Therefore, while we traverse the cache conscious prefix tree, we can fit up to 8 prefix tree nodes in one cache line. In the baseline implementation, each node spans at least 20 bytes, and at most 3 nodes would fit on a cache line. Thus the cache conscious prefix tree directly improves cache utilization and also facilitates hardware prefetching, because the prefetcher can easily predict simple serial access patterns. We also note that speedup improves with increasing transaction length and reducing support. Increasing transaction length improves the benefits of spatial locality because the path lengths are greater. Also, lowering supports increase the size of prefix trees, providing ample opportunity to leverage the sequential nature of the path traversals.

4.6.2 Benefits of improving temporal locality
Path tiling provides a significant additional improvement over those from spatial locality and prefetching. Returning to Figures 5 through 7, we see cumulative speedups ranging from 1.9 to 3.2. Some of the benefit of increased spatial locality is tempered due to tiling, but overall, we see significant speedup. By reusing cache content, a large fraction of the misses are eliminated. It can be seen that as we lower support, the impact of tiling greatens. We attribute this to larger prefix tree sizes.

4.6.3 Benefits of SMT
An extant parallelization strategy did not provide more than a 3% improvement on an SMT. Therefore, the benefits we see in Figures 5 through 7 are due to the reuse of cache data between threads and thus improved ILP. The use of SMT gives us an overall speedup of up to 4.8.

4.6.4 Benefits on Apriori and Genmax
We also injected our techniques into publicly available implementations of Genmax and Apriori [16]. Due to space constraints, we are not able to detail the optimizations for these algorithms, other than to express that the methodology was similar. Execution time improvements were comparable with that of our case study, as depicted in Figure 7. Genmax improves up to 4.5-fold, and Apriori improves up to 3.7-fold. Apriori shows slightly less improvement due to its candidate generation phase, which does not use the prefix tree.

4.7 Discussion
It is our contention that a large percentage of data mining algorithms will not glean the benefits of state-of-the-art architectures. We tested this notion with three publicly available frequent mining algorithms, and showed they greatly under-utilize cache and are affected by poor ILP. It is thus natural to believe that many other algorithms for data mining, particularly those which share a common algorithmic structure with frequent pattern mining, suffer from similar bottlenecks.

Algorithms in the areas of tree mining, sequence mining, and graph mining are particularly susceptible to such bottlenecks. Solutions to these problems spend a considerable amount of time estimating support for patterns, often rereading the same blocks of data in a streaming fashion. In all likelihood, the working set will not fit in cache due to the size of the input data. These algorithms do not necessarily use prefix trees, however, as such the community could benefit from an investigation into how their data structures can be made cache-conscious. It is imperative that this investigation includes an evaluation on the use of tileable data structures. Furthermore, the investigation must look at mechanisms to decompose the algorithm into threads of execution that have significant overlap in access would help improve ILP on an SMT. These are required to derive high performance from today’s architectures. Technology trends indicate future architectures will possess more thread contexts on chip, as well as more execution cores per processor. This would motivate a study that targets both inter-thread ILP for SMT and inter-thread data reuse between cores.

5 Conclusion
In this paper, by way of an extensive performance characterization, we show that frequent pattern mining algorithms grossly under-utilize a modern-day CPU due to data-cache stalls and poor instruction level parallelism. This is attributed to poor cache utilization, a byproduct of the lack of spatial and temporal locality in data access. We improve the performance of said algorithms through the design of a tileable cache conscious prefix tree.

This data structure improves spatial locality and facilitates hardware prefetching. Furthermore, it allows the use of path tiling, a means to improve temporal locality. All these optimizations hide a significant percentage of cache miss latency. We also present a multi-threaded decomposition for frequent pattern mining algorithms which coupled with a thread co-scheduling strategy significantly improves ILP as well as cache performance on simultaneous-multiprocessors.

Our results can be summarized as follows:

- Cache-conscious prefix trees improve spatial locality in data access, and coupled with prefetching result in up to 3.2-fold speed-up.
- An intelligent thread-based decomposition on an SMT provides a cumulative speedup up to 4.8-fold
- Overall CPU utilization improves nearly 5-fold

Note that we cannot evaluate path tiling without the improved spatial locality; it is the serial nature of the cache-conscious prefix tree that provides the possibility of path tiling.
From our results, we conclude that the cache performance and ILP of frequent pattern mining algorithms can be greatly improved through the use of a cache conscious prefix tree coupled with processor technologies such as prefetching and SMT. We believe that this work makes an important contribution towards applying cache-conscious techniques to various data mining algorithms.

Our work assumes that the prefix tree fits in main memory. For future work, we are extending our strategies to disk-resident prefix trees. In addition, we are exploring the fruitfulness of cache-conscious strategies in other pattern mining domains, such as graph mining and sequence mining.

References

