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ABSTRACT

In this paper, we present a general framework to discover spatial
associations and spatio-temporal episodes for scientific datasets.
In contrast to previous work in this area, features are modeled as
geometric objects rather than points. We define multiple distance
metrics that take into account objects’ extent and thus are more ro-
bust in capturing the influence of an object on other objects in spa-
tial neighborhood. We have developed algorithms to discover four
different types of spatial object interaction (association) patterns.
We also extend our approach to accommodate temporal informa-
tion and propose a simple algorithm to compute spatio-temporal
episodes. We then develop algorithms to show that such episodes
can be used to reason about critical events. We evaluate our frame-
work on real datasets to demonstrate its efficacy. The datasets orig-
inate from three different areas, namely, Bioinformatics, Compu-
tational Molecular Dynamics and Computational Fluid Flow. We
present results highlighting the importance of discovered patterns
and episodes by using knowledge from the underlying domains.
We also show that the proposed algorithms scale linearly as a func-
tion of dataset size.

1. INTRODUCTION

Analyzing spatial data is an important problem in many applica-
tion domains, including geographical information systems, bioin-
formatics, scientific and engineering informatics, and computer aided
design. The main difference between analyzing such data and data
in a transactional form is that an object can influence the properties
of objects located in the same spatial neighborhood [20] and there-
fore must be modeled in the analysis. Analyzing and reasoning
about relationships among spatial objects is further complicated if
the data is time varying in nature. Data produced from protein fold-
ing or fluid dynamics simulations, or geoinformatics datasets that
track the behavior of intrusions are examples that have this addi-
tional constraint. Mining spatial relationships in these datasets is an
important and interesting problem, since specific relationships may
be indicators or predictors of upcoming events (e.g., vortex (hurri-
cane) dissipation, crack propagation and amalgamation in materi-
als).

Unfortunately, mining relationships among spatial objects is an ex-
tremely challenging task. First, almost all the related work done to
date on this problem models each feature * as a point in a multi-
dimensional space [13, 14, 27]. However, especially in physical

1\We define a feature to be an object or entity of interest. A feature
can have multiple attributes (including non-spatial ones) associated
with it. For example, a vortex is a feature in a fluid flow simulation.
Associated with this feature are spatial attributes such as location
and non-spatial attributes such as velocity, swirl etc.

sciences, the extent and shape of a feature can play an important
role in determining its influence on neighboring objects. Second,
there is a strong need to develop techniques to capture and rea-
son about the interactions among the features. These interactions
if captured properly can help domain experts to understand the un-
derlying processes in very effective manner. Third, one needs to
develop effective techniques to incorporate temporal information
in the overall analysis and reason about them. Finally, recent tech-
nological advances in computational sciences have resulted in huge
amounts of data. Traditional statistical approaches to model such
interactions do not scale very well to large datasets. In this paper we
propose a general-purpose framework to address these challenges.

We have noted that a feature’s geometric properties such as shape
and extent can play an important role in determining neighborhood
relationships. For example as noted by Silver and Wang [19], two
(or more) features can combine to form one new large feature. To
capture and represent this event in a correct fashion, it is impera-
tive that the change in shape and size is accounted for. Commonly
used point based feature representation will not suffice. A straight-
forward solution to this problem would be to represent the feature
by its Minimum Bounding Box (MBB). However MBBs are not
ideal for all situations. For example vortices in fluid flows are very
well represented by ellipsoids [17] but not by minimum bounding
boxes. Alternatively, defect structures in materials may require ir-
regular shape descriptors [12] such as landmarks[15]. Our frame-
work thus supports multiple shape types. Figure 1 shows different
representation schemes supported by out framework.

The interaction among spatially proximate features are important.
An appropriate distance metric must be defined to detect when fea-
tures are close enough to be considered interacting. Simply mea-
suring the distance between centroids of two features is often inad-
equate for discovering such interactions. For example, in fluid flow,
if two vortices are close to each other, they will possibly merge af-
ter a few time steps. However, the distance between their centroids
can be very large. Therefore, using a centroid-based distance met-
ric will miss this interaction and subsequently the merging event.
The distance metric should thus be capable of taking into account
the shape and extent of the features. We evaluate the use of four
distance metrics and demonstrate that for different applications dif-
ferent metrics are appropriate.

In addition to distance metrics, we need a method to capture the
nature of interactions. We define Spatial Object Association Pat-
terns (SOAP) to characterize the interaction among different types
of features (objects) at a given moment. We have identified four
SOAP types, namely, clique, star, sequence, and minLink (Fig-



ure 2). Different SOAP types can characterize different types of
interaction. For example, clique SOAPs in Molecular Dynamics
data indicate the presence of compact defects. Compact defects
are usually more stable and often govern the properties of mate-
rials. Sequence SOAPs on the other hand can indicate the forma-
tion of long extended defects from smaller point defects [16]. In
this paper we propose fast and efficient algorithms for detecting
frequently occurring SOAPs. Our algorithms are scalable and can
handle large out-of-core datasets.

We have also developed a very simple approach to model evolv-
ing SOAPS or sets of features in data produced by scientific sim-
ulations. We define and identify three types of events to describe
SOAPs’ evolutionary behavior: formation, dissipation, and contin-
uation. Formation and dissipation of a SOAP indicate the start and
end of an interaction among involved features. Whereas continua-
tion characterizes the stability of an interaction. The continuation
of a SOAP from its formation to its next dissipation is abstracted
as a spatio-temporal episode. Critical events such as merging can
then be inferred by by analyzing these episodes. Furthermore, by
combining episodes associated with multiple SOAP types, we can
also model how the interactions among features change over time.

In summary we make the following contributions in this work:

1. We present robust techniques for modeling the shape and ex-
tent of features (objects).

2. We have developed fast algorithms for extracting frequent
spatial object interactions through the design of appropriate
distance functions and interaction types.

3. We have developed a simple yet effective approach for min-
ing spatio-temporal episodes of SOAP patterns. We further
demonstrate that an approach that combines information from
multiple SOAP models is capable of reasoning about critical
events.

4. We have empirically evaluated our approaches on real case
study applications and show that the algorithms scale well
and are capable of processing large datasets.

We validate our framework on three case study applications drawn
from the scientific and engineering community. Two of the appli-
cations analyze scientific simulation data, namely, Computational
Fluid Dynamics (CFD) and Computational Molecular Dynamics
(CMD) and the other case study application is drawn from pro-
tein contact map analysis. The main challenges for these applica-
tions include feature detection, classification, and then extracting
and modeling spatio-temporal or spatial interactions. Many tech-
niques have been proposed to detect, extract and classify features
from such data in the past [10, 11, 23, 24]. In this work we limit
our discussion to the last aspect, namely, discovery of spatial or
spatio-temporal patterns.

2. BASIC CONCEPTS

2.1 Spatial Feature Representation

We propose three different representation schemes: parallelepiped
( or parallelogram in 2D), ellipsoid (or ellipse in 2D), and land-
marks based representation, where landmarks are sampled bound-
ary points [15]. These schemes can be used to model features
from a variety of scientific domains. For instance, parallelograms

are suitable to model non-local structures in protein contact maps.
Whereas ellipsoids or ellipses are well-suited for vortices. Finally,
landmarks are very effective to model highly irregular-shaped fea-
tures such as defect structures in materials. The number of land-
marks needed to represent a feature is domain dependent. The
framework also supports elemental shapes such as lines and splines.

As shown in Fig. 1a-b, the shape descriptor of a parallelogram or
an ellipse can be described as a vector Apgsic =< l1,12,0 >. If
landmarks are used (Fig. 1c), the shape descriptor is Aiandmark=<
(s, :):1< i < v >, where (z;,y:) is the position of the #*" land-
mark. These shape descriptors can be easily extended to 3-D cases.
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Figure 1: Shape Representations: (a)Parallelogram (b)Ellipse
(c)Irregular

2.2 Dataset Representation
The dataset D consists of n features extracted from »>1 maps, de-

noted as M={m1, ma, ..., m,}. Intime-varying data, the » maps
correspond to r time frames or snapshots, which are taken at time
t1, t2, ..., tr (t1 < t2,...,t,). For spatial data that involves mul-

tiple maps, one can arbitrarily assign a unique ID to each map.
For example, the set of contact maps from different proteins can
be treated in the same manner as that for time-varying data, where
the arbitrarily assigned map ID is used in place of a snapshot’s as-
sociated time. The n features in D are categorized into ! types,
which are governed by the underlying domain. The [ feature types
are identified by I unique labels, denoted as X={c1, c2,...,ci}. A
feature’s geometric properties such as shape and size are captured
based on one of the three representation schemes described in Sec-
tion 2.1. Thus a feature f appearing at time ¢; can be described
as a vector f=< t;, location, Ageo, type >, where typec X, loca-
tion identifies f’s position at ¢;, and Ageo € {Apasic; Alandmark }
models the geometric properties of f at¢;.

Note that in the rest of the paper, we refer to a feature corresponding
to the above vector as a spatial object. We also assume the exis-
tence of an ordering among the ! feature types: ci<ca2... < ¢.
Furthermore, we refer to a snapshot’s associated time ¢; as its ID.

2.3 Object-based Distance Metrics
The framework uses the following metrics to measure the distance
between two objects o; and o; existing in the same snapshot.

e Point-Point distance: This is simply the Euclidian distance
between object centroids.

e Line-Linedistance: If o; and o; are parallelepipeds (or par-
allelograms), we first identify the line segment between the
midpoints of the upper and lower surfaces (or sides) in each
object, then compute the shortest distance between these two
line segments as the line-line distance between o; and o;. If
o; and o; are ellipsoids (or ellipses), the line-line distance is
the shortest distance between the two major axes.



e Boundary-Boundary distance: This is the shortest pair-
wise distance between the sampled boundary points (land-
marks) of o; and o;.

Notice that the last two metrics take objects” geometric properties
into account. The framework also supports Hausdorff distance [2].
Since this distance is not applicable to the applications described in
this article, we do not discuss it here.

Two objects o; and o; have a closeTo relationship if the distance
between them is <e, where ¢ is a user-specified parameter. Two
objects are neighbors if they have a closeTo relationship. We also
define the isAbove relationship between o; and o;. In a coordinate
system, o; is said to have a isAbove relationship with o;, if the
upper-left corner of 0;’s Minimum Bounding Box (MBB)?, denoted
as (xs,ys,2:), and the upper left corner of o;’s MBB, denoted as
(zj, 5, 2), meets the following condition: (z; > z;) V [(2s =
z) N(yi > ;) V ((yi = y5) A (@i < =;))]] in 3D, or (y; >
i) V[(yi = y;) A (@i < ;)] in2D.

2.4 Spatial Object Association Pattern (SOAP)
A Spatial Object Association Pattern (SOAP) of size &, denoted

as k-SOAP, characterizes the closeTo or isAbove relationships among

k object types. The framework supports the discovery of four SOAP
types: star, clique, sequence, and minLink (Figure 2). They can
be abstracted as undirected graphs, where a node corresponds to
an object-type ¢; € X, and an edge (c;, ¢;) indicates a closeTo or
isAbove relationship between ¢; and ¢;. These SOAP types can
also be represented as lists with different constraints for different
SOAP types. We describe each SOAP type and its corresponding
list representation as follows.

e Star SOAPs (Fig. 2a) have a center object-type, which is re-
quired to have a closeTo relationship with all the other object-
types in the same SOAP. Let cqnt be the center of a star k-
SOAP p, and {c(;: 1€[1,k-1]} be the other k-1 object-types
in p, where ¢;;; < ... < cr—1]- The SOAP p can then
be represented as the list p=(ccntr, cpa], - - - Cle—1] ), Where
closeTo(centr, cpip)=true (i€[1,k-1]).

e Clique SOAPs (Fig. 2b) require a closeTo relationship hold
between every pair of involved object-types in the same SOAP.
Let {cpy:i€[1.k]} (cy £ ... < cpxp) be the & object-types
in a clique SOAP, it can then be described by the following
list (C[i]:iE[l,k‘]): Vi’je[l,k]dOSETO(C[i], Cm).

e Sequence SOAPs (Fig. 2c) of size k, p=(cp;1-i€[1,k]), satisfy
two constraints: (1) closeTo(cy;1, ¢p;417)=trueand (2) isAbove
(ctay, cri+17)=true, where 1<i<k-1.

e minLink SOAPs (Fig. 2d) are a parameterized SOAP type,
where the value of minLink is user-specified. Let minLink=I,
minLink SOAPs include all the SOAPs that have linkage>1.
The linkage of a k-SOAP py, is defined as follows. Let n;
(1< i < k) be the number of neighbors that the i*" object-
type has in py, the linkage of py, is then defined as min{n;:(1<
i < k)}. Thus, we can represent a (minLink=1) k-SOAP
by the following list: (cp;1:¢€[1,5]):V;e[1,5)(#Neighbors Of
cp)>1, where (cr1p < ... < cprp). Note that when min-
Link=1, all star, clique, and sequence SOAPs will be gener-
ated.

2For a 3D MBB, it is defined as the upper-left corner of its top
surface.

A SOAP is said to be autocorrelated if an object-type occurs mul-
tiple times. For example, (c1, c1, c2) is an autocorrelated 3-SOAP,
where ¢1 occurs twice. An instance of a SOAP p is the set of
spatial objects that meet all the requirements specified by p. For
instance, (0;,0;) is an instance of the clique 2-SOAP (c1,c2), where
0;.type=c1, o; .type=cz, and closeTo(o;,0;)=true,
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Figure 2: SOAP Types:(a)Star(b)Clique(c)Sequence(d)minLink=2

We define two measures support and realization to characterize
the importance of a SOAP. The support of a SOAP p is the number
of snapshots in the dataset where p occurs. Assume support(p)=s,
let n; be the number of p’s instances in the i** snapshot where p
appears, realization(p)=min{n; }. A pattern p is frequent if support
(p) > minSupp, and prevalent if realization(p) > minRealization.
Both minSupp and minRealization are user-specified parameters.

It is straightforward to show that frequent star, clique, sequence,
and (minLink=1) SOAPs have the anti-monotone property [1]. This
means that a k-SOAP cannot be frequent if one of its sub-SOAPs
is not frequent. A sub-SOAP of a SOAP p corresponds to a sub-
list of p’s corresponding list. For a star SOAP, its sub-SOAPs also
need to have the same center. However, when minLink>1, minLink
SOAPs will not be anti-monotonic. We illustrate this by an exam-
ple. Let minLink=2, the 2-SOAP (c1,¢2) has linkage of 1, thus is
not a valid minLink SOAP. However, the clique SOAP (c1,¢2,¢3),
which has linkage of 2, might be a valid minLink=2 SOAP. Extra
processing is needed to handle this case. For the first three SOAP
types and minLink=1 SOAPs, we leverage the anti-monotone prop-
erty to efficiently prune the search space.

2.5 Spatio-temporal Episodes

Spatial relationships among objects (or features) evolve over time.
As a result, SOAPs of different types also evolve over time. We
identify the following three evolutionary events for a SOAP p:

e Formation: when the number of p’s instances changes from
zero to non-zero.

e Dissipation: when all p’s instances become invalid. The dis-
sipation of a SOAP can occur due to many reasons. For ex-
ample feature(s) involved in a SOAP may cease to exist or
merge into a new one. Another possible reason is end of in-
teractions among the involved features.

e Continuation from time ¢; to time ¢;41: if there exists at
least one instance of p in each snapshot taken between ¢; and
tit1, including t; and tit1.

Essentially, these events characterize the stability of interactions
among different features. They are useful to model and subse-
quently predict features’ future spatio-temporal behaviors.

Formation and dissipation events can occur to a SOAP many times.
Thus a SOAP can exist in multiple disjoint temporal intervals, where
each interval starts at a formation event and ends at a dissipation
event. We refer to a SOAP’s continuation in each of the above
temporal intervals as a spatio-temporal episode. Let I be the



set of SOAP p’s instances at time ¢, an episode of p in the dis-
crete interval [ts, t] can then be described as: E,[ts,te] = { It:
ts <t < te.}. The framework identifies all the episodes associated
with each frequent SOAP. It also extracts information to abstract
how an interaction changes over time within an episode or across
multiple episodes.

3. FRAMEWORK AND ALGORITHMS

An overview of the framework is given in Figure 3. In this arti-
cle, we focus on four tasks enclosed by the dashed rectangle in the
figure. We will also present solutions to facilitate spatio-temporal
analysis and inferences.

We organize the dataset D in the following manner. The n objects
are first grouped into  partitions, where each partition is composed
of objects of the same type. Within each partition, objects are first
ordered by the time they appeared, then by their locations at a cer-
tain time. This data organization is analogous to the vertical format
used for association rule mining [26].
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Figure 3: Overview of the framework

3.1 Equivalence Classes

Based on the list-based SOAP representation (Section 2.4), we or-
ganize SOAPs as equivalence classes. A k-equivalence class, de-
noted by k-EquiClass, is defined as the set of k-SOAPs that (1) are
of the same SOAP type; and (2) have the same prefix, where the
prefix of a k-SOAP consists of its first k-1 elements. For instance,
star SOAPs < (c1,¢1,c1), < (c1,c¢1,¢2), and < (e1,c2, ca) Will
be organized into the same 3-EquiClass, with < (c1,¢1) > being
the the prefix.

By using equivalence classes, our mining algorithms only need to
compute the closeTo or isAbove relationships among objects once
(,when generating 2-SOAPSs). The equivalence classes also help to
improve locality while generating SOAPS [26]. As a result, our
algorithms can efficiently discover different types of SOAPs from
large amounts of data.

3.2 Mining Star SOAPs

Figure 4 outlines the algorithm that discovers star SOAPs. The first
step, gen1SOAP, generates frequent 1-SOAPs. For each object-
type c;, the procedure counts the number of snapshots that contain
at least one object of type c;. If the count > minSupp, then p1=(c;)
is a frequent 1-SOAP. The set of all frequent 1-SOAPs is denoted
by P1.

The next step, gen2EquiClass, discovers 2-SOAPs and organizes
them into 2-EquiClasses (line 2). The pseudo-code of gen2EquiClass
is described in Fig.5. A 2-EquiClass is generated for each frequent

Algorithm mine_star SOAP(D)

Parameters: minSupp, minRealization, distType, &

1. P; < gen1SOAP(); //freq. and prev. 1-SOAPs

2. ECy + gen2EquiClass(D, P4, star, parList); //parList: parameters
3.k <+ 2;

4. while (1){

5. ECg41 + &, /lthe set of (k+1)-EquiClasses

6. foreach k-EquiClass Ex, € ECk

7 foreach k-SOAP py ; € Ex

8 Ejy11 < @ llthe prefix of Eg 1 1S pg,;

9. foreach k-SOAP (px ; € Ex) A (i < j)

10. Pr+1 < append(pg,;, lastElement(pk ;) );

11. Sl,k_'_1 « {t; : t; contains py ; and px ; };

12. foreach ¢; € S,,k_'_1

13. if ( countStarlnstances(¢;, ps, p;)> 1) occCnt++;

14. if (occCnt > minSupp ) Ex4+1 « Ext+1 U {Pk+1};

15. if (Ex+1 # @)ECk41 «+ ECk41 U Egyq;
16. if (minRealization>>1) markPrevFreqSOAPS(E +1);
17. if (ECk41 = @) break; //terminate

18. k++; /lincrease SOAP size }//while(1)

Figure 4: Mining Star SOAPs

1-SOAP (Fig.5:line 2). The 2-EquiClass of 1-SOAP (c;)€P;, de-
noted by E»;, contains frequent 2-SOAPs in the form of (c;, *).
To generate E» ., , the procedure considers the following 2-SOAPs
as candidates: (c;, ¢;), where (¢;)€ P1 (Fig.5:line 3). For each can-
didate 2-SOAP p2=(c;, c;), the procedure identifies all the snap-
shots where p occurs (Fig.5:lines 7-12). An instance of p2=(c;, ¢;)
is an object pair (o;, 0;), where (0;.type=c;) A(o; .type=c;) A (dis-
tance( o;, 0j,distType) < €). If p2 occurs in >minSupp snapshots,
then it is frequent and added to E ., (Fig.5:line 13).

Algorithm gen2EquiClass( D, P1, soapType )

Parameters: minSupp, minRealization, distType, &

1.EC2 + @, llthe set of 2-EquiClasses

2.foreach (c;)€ Py /I Py :ordered freq. 1-SOAPs

3. Ea.; + @ /l2-EquiClass with prefix of c;;

4. foreach (c;)€ P1

5 if ( (soapType¢ {star or sequence}) A(c; > c;) ) continue;
6. p2 < (ci, c;); /la candidate 2-SOAP

7 Spy + {ti : (t; contains ¢; and c;) };

7 foreach t; € Sp,

9. foreach (0;, 05) € ¢; : (0i.label = ¢;) A (0j.label = c;)
10. if ( (soapType=sequence)A(™ isAbove(o;, 0;)) ) continue;
11. if distance(o;, 05, distType)< ¢) addInstance(pz, (0i, 0;));
12. if (cntinst(pa, t;) > 1) occCnt++;

13.  if (occCnt > minSupp ) Ez,c; <+ Ea2,c; U {p2};
14.if (Ba,o, # ©) EC3 «— ECa U Es .,

Figure 5: 2-EquiClass Generation

The algorithm next discovers SOAPs of size>2 (Fig.4:lines 4-17).
Two k-SOAPs in the same k-EquiClass are combined to construct
a candidate (k+1)-SOAP. For each candidate (k+1)-SOAP py41
derived by appending the last element of py ; to px,; (Fig.4: line
10), the algorithm identifies all the snapshots where py41 occurs
(Fig.4:lines 11-14). The i** k-SOAP in a k-EquiClass is denoted
as px,;. The procedure countStarInstances(t; , px,i, Px.;) (Fig.4:line
13) computes the instances of pg+1 in snapshot ¢; by combining
instances of py ; and pg ;. Two instances from py ; and py,; are
joined to produce a py41 instance if they have the same first k-1
objects and different last object. SOAPs with the same prefix are
organized into one equivalence class as they are being generated
(Fig4:lines 5,8,14,15). The mining process stops when all the fre-
quent SOAPs have been discovered (Fig. 4:line 17).

To discover frequent SOAPs, the algorithm only needs to consider a
SOAP’s presence in a snapshot (Fig.4:line 13). Hence, some of the



Algorithm mine_sequenceSOAP(D} )

Parameters: minSupp, minRealization, distType, &

1. P; < genSOAP_1();//freq. and prev. 1-SOAPs

2. EC2(orPs) <+ gen2EquiClass(D, P, sequence, parList);//parList:parameters
3. k < 2; //Imax. size of SOAPs discovered

4. while (1){

5. Py41 < @; llinitialize the set of (k + 1)-SOAPs;

6.  foreach SOAP py ; =< cg]s - - -, C[k—1] >€ Pk

7 E2=C[k] “— Ez:“[k] EEC2) A (Eg,c[k] prefiz = cx));
8 foreach 2-SOAP pa; €E2,C[k]

9. Pr+1 < append(pg, s, lastElement(ps2, ;) );
10 S < {t; : ¢; contains both py ; and p2 ;};

Pk+1
11. foreach t; € Spp 4
12. if ( countSeqlnstances(t;, p,i, p2,j) > 1) occCnt++;
13. if (occCnt > minSupp ) Pry1 < Prg1 U {pr+1}:

14. if ( Pry1 = @) return; //terminate the process;
15. if (minRealization>1) markPrevFreqSOAPS(Px +1);
16. k++; /fincrease SOAP size}//while(1)

Figure 6: Mining Sequence SOAPs

discovered frequent SOAPs may not be prevalent if minRealization>1.
In this case, the procedure markPrevFreqSOAPs s called to identify
the SOAPs that are both prevalent and frequent (Fig4:line 16). It is
necessary to keep SOAPs that are frequent but not prevalent. We
explain this by one simple example. Let {a1,b1,b2} be the only
objects in a snapshot and they are neighbors. Assume minRealiza-
tion=2, in order to derive the two instances (a1, b1) and (a1, b2) of
the 2-SOAP (a, b), the 1-SOAP (a) must be maintained even if its
realization is 1 (<minRealization) in the snapshot.

Correctness: It is straightforward to show that the algorithm dis-
covers all the frequent 1-SOAPs and 2-SOAPs. Thus to prove the
algorithm is correct, we only need to show that every frequent k-
SOAP (k>2) will be considered as a candidate SOAP. Assume
pe=(cr1]; - - - » Cre—21, Cre—11, Crx)) IS frequent, then the two (k-1)-
SOAPSpk_l,i: (C[l], <oy Clk—2]; C[k—l]) andpk_l,j= (C[l], <o Clk—2])
c[x]) must also be frequent and in the same equivalence class. Thus
the algorithm will consider pg, as a candidate. It is trivial to show
that the procedure countStarInstances identifies all the instances of

a candidate SOAP.

3.3 Mining Cliqgue SOAPs

Clique SOAPs can be discovered by applying two changes to the
algorithm for mining star SOAPs (Fig.4). The first change is ap-
plied to gen2EquiClass (Fig.4:line 2) to eliminates 2-SOAPs in
the form of (c;, ¢;j):ci>c;, as they are not in lexicographic order
(Fig. 5: line 5). The second change takes place at line 13 in Fig.4,
which replaces the procedure countStar Instance(t;, px,i, px,;) With
countCliquel nstance(t; , p.:, px,;).- The procedure identifies the
instances of the candidate (k+1)-SOAP py1 in snapshot ¢;, where
Pr+1 is obtained from combining two k-SOAPS p; and pg,; in
the same equivalence class. Two instances from p ; and pg,; are
joined to produce an instance of pg1 if they have the same first
(k-1) objects and there is a closeTo relationship between the two
instances’ last object.

Correctness: The proof is similar to that for star SOAPs.

3.4 Mining Sequence SOAPs

The pseudo-code is described in Fig.6. Unlike mining star or clique
SOAPs, which uses two k-SOAPs in the same equivalence class to
generate a candidate (k+1)-SOAP (k>2), the algorithm joins one
k-SOAP and one 2-SOAP.

Algorithm mine_minLinkSOAP( D)

Parameters: minLink, minSupp, minRealization, distType,e

1. P; < genSOAP_1();//freq. and prev. size 1 SOAPs

2. ECy(P») +gen2EquiClass(D, Py, minLink, parList); //parList: parameters
3. k < 2; //maximum SOAP size discovered

4. while (1){

5. Pry1 « @, /linitialize the set of (k + 1)-SOAPs;

6. blackList«— &; //infreq. SOAPs;

7. foreach SOAP pr. € Py

8. Cleana < 9enCand( pg ); //class-labels that can potentially grow py
9. foreach ¢ € Ceand

10. Pi+1 < append(px, c) );

11. if ((Pk+1 € Pr4+1) V pr+1 € blackList) ) continue;

12. Mpr41 < {t; : t; contains px and c};

13. foreacht; € M

14. if (countlnstances(t; , px , ¢)> minRealization) occCnt++;
16. if (minLink > 1){//check if px41 meets minLink
17. foreach instance e of pr41

18. if (getLinkage(e)> minLink) cnt++;

19. if (ent > minRealization ) occCntMinLink++;
20. }

21 }

22. if ((minLink>1)A(occCntMinLink>minSupp) ) px+1.flag=true;
23. if (occCnt >minSupp) Pr4+1 < P41 U {pr+1};

24. else blackList «—blackListU{pr+1};

25, if ( Pxy1 = @) return; //terminate the process;

26. empty(blackList); //terminate the process;

27.  if (minRealization>>1) markPrevFreqSOAPS(Py +1);
28.  k++; /lincrease SOAP size }

Figure 7: Algorithm-Mining minLink SOAPs

The first two steps (lines 1-2) discover all frequent 1-SOAPs and
2-SOAPs. The isAbove relationship is checked by the procedure
isAbove(os, 0;) (Fig. 5:line 10). For each k-SOAP pr=(cp1y, - - - » Cfx)s
the algorithm first locates the 2-EquiClass s, ,, in which every 2-
SOAP is in the form (cpz), cpy1)-closeTo(cqxy, cpjp) AisAbove(cp, cfj)
(line 7). A set of candidate (k+1)-SOAPs are then generated by
combining py with each 2-SOAP in Ea,, (lines 8-9). Same as
mining star or clique SOAPs, a candidate (k+1)-SOAP py1 is fre-
quent if it appears in >minSupp snapshots (lines 10-13). The proce-
dure countSeglnstances(t; , pk,i, p2,;) (line 12) identifies instances
of pr+1 in snapshot ¢;, where pi11 is a candidate SOAP based on
Pr,: and pa ;. Instances of p41 are computed by combining the in-
stances of py,; and p2,;. The two instances I ; and I» ;, from py ;
and po_; respectively, can be combined to produce a pg41 instance
if the last object in Iy ; is the same as the first object in I ;. For
the same reason explained before, the algorithm calls the procedure
mar kPrevFreqSOAPs to label SOAPS being both prevalent and fre-
quent if minRealization>1 (line 14). The algorithm stops when no
more SOAPs can be discovered (line 15).

Correctness: For each frequent sequence k-SOAP px, = (1], - - -
Clk—1]» Clx])» the following two SOAPs must also be frequent: py 1
= (0[1], . C[k—l]) and p2:(C[k,1], C[k]). ThUS, Pk will be consid-
ered as a candidate and be discovered. It is trivial to show that the
procedure countSeglnstances identifies all the instances of a candi-
date SOAP.CJ

3.5 Mining minLink SOAPs

The pseudo-code for mining minLink SOAPs is described in Fig-
ure 7. The algorithm starts with identifying all frequent and preva-
lent 1-SOAPs and 2-SOAPs (lines 1-2). All the features in a min-
Link SOAP are required to be in lexicographic order (see Sec-
tion 3.1). Therefore, the procedure gen2EquiClass(), which gen-
erates 2-EquiClasses, prunes away 2-SOAPs that are not in lexico-
graphic order (line 4 in Fig. 5).



To generate a (k+1)-SOAP , the algorithm uses one k-SOAP and
one 1-SOAP. For each k-SOAP py, the procedure genCand(px)
(line 8) is called to collect the set of features (1-SOAPS) that have a
closeTo relationship with at least one feature in pg. These features
can be easily identified from 2-EquiClasses(EC2). Let C be the set
of all such 1-SOAPs. A candidate (k+1)-SOAP pg.1 is then gen-
erated by appending a feature ¢; € C to p, (line 10). However, the
same pg+1 can be generated multiple times. For example, consider
the following 2-SOAPs p1 :< c¢1,c2 > and ps :< c1,¢3 >, p1
can be joined with ¢z to form a 3-SOAP < ¢1, ¢2,c3 >. Similarly
¢2 can be joined with p» to obtain the same 3-SOAP. Therefore,
the SOAP will be considered twice. To avoid redundant computa-
tion, the algorithm checks if a candidate SOAP has been discovered
before processing it. The candidate (k-+1)-SOAP can be either fre-
quent or infrequent. If it is frequent, it can be found in Pj44, the
set of (k+1)-SOAPs discovered so far. The algorithm also main-
tains a blackList to keep all the infrequent candidate (k+1)-SOAPs
that have been processed so far (lines 6, 24, and 26). In Line 11, the
algorithm searches both P, and the blackList to make sure that
a candidate SOAP is not re-processed. It proceeds to process pr+1
if it is not in Py or the blacklist (lines 12-16). The procedure
countlnstances(t;, px, ¢) (line 14) identifies px+1’s valid instance
in snapshot ¢; by combining instances from pg and ¢;. An instance
I}, of py, can be combined with an object of type ¢; to produce an
instance of pg+1 if they meet the following conditions: (1) o; is not
in Ix; (2) o; has a closeTo relationship with at least one object in
Iy; and (3) the linkage of Iy, is >minLink.

Note that when minLink> 1, in order to discover all frequent (k+1)-
SOAPs, the algorithm needs to identify all the frequent £-SOAPs
with linkage > 1. We explain this by an example. Let minLink=2,
to find the clique 3-SOAPs (c1,c2,¢3) (linkage=2), the algorithm
needs to join the 2-SOAP (c1,c2) and c3. Thus, (c1,c2) cannot
be pruned away even though its linkage is 1 (<minLink). As a
result, some of the discovered SOAPs can fail to meet the min-
Link criteria. To address this issue, the algorithm computes a pat-
tern’s linkage value (line 18) and flags those patterns that have
linkage>minLink (line 22). For the same reason stated before,
when minRealization>1, the algorithm calls the procedure markPre-
VFreqSOAPs to label SOAPs being both prevalent and frequent
(line 14). The algorithm stops when no more SOAPs can be dis-
covered.

Correctness: It is straightforward to show that the algorithm dis-
covers all frequent 1-SOAPs and 2-SOAPs. Let pxy1 = (cp1y, - - -
Ck]» Cr+17) e a frequent (k + 1)-SOAP that has linkage> min-
Link. There must exist a k-SOAP pg, of which all elements be-
long to pr+1. Furthermore, it is frequent and has linkage> 1, i.e.,
px Must have been discovered. Assume px=(cp17, - - -, C[x]), Since
C[k+1] Must be a neighbor of at least one element in py, the SOAP
pr+1 thus will be considered as a candidate and subsequently dis-
covered. It is trivial to show that countinstances() identifies all the
instance of pg4+:.00

3.6 Analyzing Spatio-temporal Episodes

For each discovered SOAP, its spatio-temporal episodes can be
constructed by identifying its associated formation and dissipation
events. Such events can be easily derived by checking the the
SOAP’s presence at a given time. Let A be the number of episodes
associated with SOAP p, then its episodes correspond to A disjoint
time intervals {[t2,1¢]: 1 <4 < X }, where t£ and ¢ mark p’s 4t*
formation and dissipation.

We use episodes to address two important issues. First, to make
inferences on critical events such as the merging of multiple fea-
tures. Second, to model how the interactions among a certain set of
features evolve over time.

Algorithm: Spatio-temporal Episode Analysis
Input: E: spatio-temporal episodes of different SOAP types

Analysis 1: Infer critical events

1.1 foreach episode Ep[t?,t1] € E
1.2 Foreach instance I7: ¢ € [t}, t}]
13 A} «sizeofthe MBB of I,

1.4 Fitasimple linear regression model over (A;, 1)t € [th, %]

Analysis2: Model interacting history of F={c1,...,¢i}
2.1 Er <« all episodes in E that are associated with F'
2.2 Sort Ew inincreasing order of e.ts:e € Ep

Figure 8: Spatio-temporal episode analysis

To address the first issue, we analyze episodes individually. The
pseudo-code is described in Figure 8. Let E,[t¢,t¢]be an episode
associated with SOAP p. For each of p’s instance appearing during
[, #], we compute the size of the instance’s minimum bounding
box (MBB) (line 1.3), where the MBB of a SOAP instance en-
compasses every object in the instance. We then apply a simple
linear regression model to model the trend that an instance’s MBB
varies over time (line 1.4). In the model, time is considered to be
an explanatory variable, and the size of an instance’s MBB as a
dependent variable. Inferences can then be drawn based on this
trend. For instance, if the MBB of an instance decreases from t¢
to ¢, it is very possible that the involved objects will merge at its
corresponding SOAP’s dissipation.

To model the interacting behavior among a set of features of in-
terest, denoted as F'={c1,...,c; }, we take the following two step
(See Figure 8). We first find all the episodes that are associated
with F' (line 2.1). These episodes can be associated with different
SOAP types. We then order all these episodes by their formation
time (line 2.2). The resulting ordered episode sequence is then used
to model the interactions among features in F'.

3.7 Optimizations

1. Neighborhood-based pruning: This strategy facilitates fast
identification of an object’s neighbors. To find all the neighbors of
an object o in snapshot ¢;, the algorithm first identifies o’s neigh-
borhood in ¢;, which is a spherical (or circular) area around o with
radius=e (the distance threshold). The algorithm then only consid-
ers the objects in o’s neighborhood to locate its neighbors, as all
objects outside the neighborhood cannot be o’s neighbors. Objects
in 0’s neighborhood can be efficiently located due to the data orga-
nization scheme described earlier.

2. Short-circuiting: This strategy targets at eliminating infrequent
candidate SOAPs at an early stage. For each candidate SOAP pcand
derived from combining two SOAPs of smaller size, p; and p;,
the strategy works as follows. It first intersects the two intervals
[pi-mmin, Pi-Mmaz] aNd [pj . Mmin, Pj . Mmaz], Which correspond
to the range of snapshot IDs that p; and p; are associated with. If
the intersected interval has less than minSupp snapshots, peana iS
infrequent. Otherwise, it proceeds to collect the set of snapshots,
denoted as M, that contain both p; and p;. If ||M]|| <minSupp,
then peand IS infrequent. If peqnq is still a candidate at this point,
the algorithm proceeds to compute its instances in each snapshot



t;€M. However, snapshots in M are processed in increasing or-
der of (#instances of p;)+(#instances of p;). (The more instances
a snapshot has, the more time will be required to generate the in-
stances of pcana.) A counter occCnt is maintained to indicate the
number of snapshots which contain p..nq4 SO far. After some point
(e.g., when 25% of the snapshots have been processed), the algo-
rithm starts to regularly compare minSupp with the sum of occCnt
and the number of snapshots in M to be processed. If the sum is
less than minSupp, peana is infrequent and can be discarded.

3. Efficient Data Structures: Efficient data structures are also
used to make the algorithms more efficient, both in performance
and storage requirement. Specifically, we use bit-sets and fast bit-
set operations [5] to realize fast spatial-join, which is implemented
by the countlinstances procedure in each algorithm.

Also, the SOAP mining algorithms identify frequent £-SOAPs (k >
2) by processing one snapshot (or map) a time. Thus the algorithms
can efficiently handle large out-of-core datasets.

4. EXPERIMENTAL EVALUATION

In this section we evaluate our framework on datasets from three
different scientific domains, namely, Bioinformatics, Computational
Molecular Dynamics and Computational Fluid Flow. We also eval-
uate the performance and scalability of the framework on large
datasets.

4.1 Case Study 1: Protein Datasets

This dataset consists of 8,732 contact maps, corresponding to 8,732
different proteins taken from Protein Data Bank (PDB) [4]. This
dataset contains no temporal information. For a protein with N
amino acids, its contact map C is a Nx N binary matrix. The
position C(z, 7) is set to 1 if the distance between the " and jt"
residues is less than a threshold and 0 otherwise [21]. We use 6A as
the threshold as suggested in the literature [25]. A contact map fea-
ture is composed of a set of matrix positions, where each position
and at least one of its eight neighbors contain a 1 [23] (see Figure 9
for simple example). A simple region growing approach is used to
find the features in contact maps. We then use an entropy-based
clustering algorithm to cluster features into I groups (or classes)
[6]. Please refer to Yang et al. [23] for more details about contact
maps and feature generation.

Figure 9: Features extracted from proteins 1a0i (ID from PDB)

A total of 1,009,755 features are extracted from the 8,732 con-
tact maps. These features are clustered into 28 classes. Many of
these features correspond to well-known protein secondary struc-
tures and have been validated by domain experts. We represent
each feature by its minimum bounding parallelogram and label the

parallelogram by the feature’s class ID. For instance, the three fea-
tures extracted from protein 1a0i (ID from PDB) are classified into
three classes, referred to by their identifiers 5, 21, and 22. Figure 9
shows three features (from one part of a large contact map) repre-
sented as parallelograms. Table 1 describes the characteristics of
the input dataset.

[ #maps [ #objType [ #objects [ Avg. #obj/map |
[ 8732 | 28 | 1,009,755 | 115 |

Table 1: Description of Protein Contact Map Dataset

We used the protein structural hierarchy® described in the database
of Structural Classification of Proteins (SCOP)* to evaluate the
quality of our results. We find that different types of SOAPs can
actually distinguish different protein folding structures. Table 2
lists the B-protein folds that are distinguished by each SOAP type,
where SOAPs are generated based on the L-L distance. The folds
in bold are those that are associated with only one SOAP type.
Whereas other folds in the table are distinguished by two or more
SOAP types. Folds in other protein classes such as a-protein show
a similar trend. For example, the a-protein fold "Cyclin-like” is
primarily associated with sequence SOAPs.

Star Immunoglobulin-like beta-sandwich
Concanavalin A-like lectins/glucanases
Trypsin-like serine proteases
Cupredoxin-like

Acid proteases

Cysteine proteinases

clique Immunoglobulin-like beta-sandwich
Concanavalin A-like lectins/glucanases
Immunoglobulin-like beta-sandwich
Concanavalin A-like lectins/glucanases
Trypsin-like serine proteases
Lipocalins

Nucleoplasmin-like/VP

Sequence

Table 2: List of 3-protein folds associated with each SOAP type,
distType=L-L

4.2 Case Study 2: Molecular Dynamics Sim-

ulation Datasets
The Molecular Dynamics (MD) dataset is generated using the Object-
oriented High-performance Multi-scale Multi-resolution Simulator
for material science (OHMMS) [16]. A slice of Silicon (Si) lat-
tice is simulated to understand the creation of stable structures and
dimer rows. The dataset consists of 4000 Silicon slices, corre-
sponding to 4000 snapshots. There are 94 atoms in each slice.

4.2.1 Creation of stable structures

Figures 10(a) and (b) show the slice of Si lattice at t=0 and at
t=3999 respectively. At t=0, there are no stable structures in the
lattice. However, stable structures are formed at t=3999 and can
be easily spotted from Figure 10(b). These structures corresponds
to the pentagon-like rings formed by five Si atoms. Our frame-
work was able to discover these structures automatically by mining
minLink=1 SOAPs from the dataset. Two atoms are considered as
neighbors if the distance between them < 2.8,&, which is a value
suggested by domain experts. Our framework was able of detect
the formation to these structures. These structures were discovered
by using minLink SOAP type with minlink =1.

3We use the first two levels: I; : class and I3 : fold in our experi-
ments

“http://scop.mrc-Imb.cam.ac.uk/scop/



Figure 10: (a)Si surface at ¢, (b)Si surface at t3g99

4.2.2 Creation of dimer rows

A dimer is defined as a pair of connected atoms. Please note that not
all pairs of bonded atoms qualify as a dimer. The atoms should be
oriented at an angle ( around 45 degrees) to be considered a dimer.
Orientation of features is thus very important here and should be
considered for mining spatial patterns. A dimer row is created when
individual dimers align themselves in a particular fashion. For ex-
ample, Figure 11(c) shows a detected dimer row (enclosed in the
rectangle). The figure also shows other dimer rows, which are at
different stages of evolution. Dimer rows were discovered by min-
ing sequence SOAPs. As suggested by domain experts, 2 dimers
are considered as neighbors if their distance is < 5.0A. This is our
distance threshold.

By discovering different types of spatial association patterns, min-
Link and sequence in this case, we were able to find two very dif-
ferent types of meaningful structures in the same dataset. This val-
idates our belief in characterizing different types of interactions by
different types of association patterns.

SOAP evolution in this dataset is illustrated in Figure 11(b) and
Figure 11(c). Figure 11(b) shows two 2-SOAPs. These SOAPs
have no interaction between them, however after few time steps a
new SOAP is created between them. This new SOAP acts as a link
between the other SOAPs and the whole structure - consisting of
5 dimers- is discovered as a sequence SOAP. This episode points
to amalgamation of two features and creation of a new larger one.
Such events are automatically discovered by our toolkit.

4.3 Case Study 3: Vortex Simulation Datasets
The vortex dataset is generated by implementing a simplistic ver-
sion of the algorithm proposed by Christian [7]. The dataset con-
sists of 1970 snapshots, with around 200 vortices in each snapshot.
The number of vortices in each frame is changing over time, as an
existing vortex can dissipate, new vortex can be created, or two vor-
tices can merge to form a new vortex. Figure 12 shows three sim-
ulation snapshots at different times. Figure 12(a) shows the initial
configuration of the vortices with no SOAPs. Figure 12(b) shows
the creation of a SOAP. This SOAP is formed because the two vor-
tices are moving towards each other and eventually their distance
falls in the the distance threshold.

Figure 12(c) shows a very interesting result. The two vortices in-
volved in the SOAP came closer and eventually merged into a new
vortex. This event is captured by the SOAP’s dissipation (resulting
from an amalgamation of two features within the SOAP). Note that
SOAPs’ dissipation does not necessarily imply dissipation of fea-
tures. We were also able to make inference on such events by iden-
tifying the changing trend of the corresponding instance’s MBB.

Figure 13 shows two different types of SOAPs identified in the
snapshot taken at tg991. One can observe that they capture two very
different interactions that can occur to multiple vortices.

4.3.1 Spatio-temporal Episode Evaluation

As mentioned earlier, combining episodes associated with different
SOAP types can be used to model the evolving nature of interac-
tions among different features. For the same set of features, the
formation of different SOAP types at different time indicates a po-
tential change to their interacting behavior, since different types of
SOAPs characterize different types of interactions.

Figure 14 demonstrates how the interactions among four vortices
evolve over time and are captured by combing multiple episodes
formed at different time. The four vortices form a clique SOAP at
to. This clique SOAP continues for 11 time steps and then evolves
into a star SOAP at time ¢12, which continues for another 15 time
steps (Figure 14(b) ). A clique SOAP points to the presence of
compact spatial patterns, where each feature is interacting with ev-
ery other feature. The transition of a clique SOAP to Star implies
that features are moving way from each other and may cease to
interact after some time. Figure 14(c) demonstrates exactly this
behavior.

Other transitions such as from star to clique are also identified for
different sets of features. In the case that a SOAP evolves from
star to clique, we observe that features are moving towards each
other and thereby increasing the level of interactions. This type of
transition can also point to a critical event, namely the merging of
two individual features.

4.4 Performance Evaluation

In this section we present the results on scalability of our frame-
work. We also present result highlighting the importance of our
optimization schemes. All the experiments were carried out on a
Pentium 1.7GHz machine of 1GB main memory. We applied the
SOAP mining algorithms to a large Molecular Dynamics dataset
produced by OHMMS. The dataset consists of 387,999 slices of
Silicon lattice and is of size 1.5GB. We first identify all the dimers
in each slice and then apply the framework to find different types
of interactions among dimers.

4.4.1 Scalability Results

The fact that we can process the data incrementally allows the ap-
proach to scale well and handle out of core datasets. Figure 15
shows the time taken to discover all types of SOAPs at different
support thresholds for the 1.5GB dataset. First of all, even for a
large dataset we are able to mine all SOAPs in reasonable amount
of time. Time increases as support threshold decreases, because
more SOAPs will be generated at a lower support value. However,
this increase in time is linear. For example, at 20% support we take
180 seconds to discover all the star SOAPS, the time just increases
by 50 seconds when it is at a very low support threshold 0.5%. Fig-
ure 15 shows the performance results on the 1.5GB dataset. Please
note that minLink SOAP subsumes all other SOAP types. As a
result the algorithm can compute all the other SOAP types within
roughly the same time (negligible overhears) it takes to compute
min-link patterns.

4.4.2 Optimization Evaluation
We next present experimental results to show the significance of
using different optimizations. The most time-demanding compo-



[ Creation of Dimer Row |

Figure 11: (a)Dimers on Si surface at 2000 (b)Dimers on Si surface at 2500 (€) Dimer on Si surface at £3999

50 50,
0
5 Start of the Simuiabon 2 ©
k) k]
»
» @ @ = S - 2 @™ @
1 ® ) L ] Y ®
[ 9
L]
®°® a»e [
" | . & : » o =
30 0 H
- W Creation of a SOAP Merge Event
40
% ") 30 20 10 o ] 2 ) 0 50 "] 0 30 20 0 ] 0 20 ¥ @ 50 50
50 -40 30 20 0 ° 0 b 1] 0
Figure 12: (a)Vortices at to (b)SOAP Formation at tgo (c) Vortex Merging at t104
50
40
30 .
20
-® ee o
0
[ J @
’ !
-
30}
O
o AR ,
-50 -40 -30 0 -10 0 10 20 30 40 50
Figure 13: Different Vortex SOAPs are discovered at (¢991).
% - 3| o
L&
= "\\\< " > 4 @
s 385 -
™ - :! — - W / \XT - o 5 .
120 120/ 120
<130 120 1304
¥ TR 140 (R 110 El <180 T T 130 = an T i e ErT) 130 B 0 T
X X X

Figure 14: Evolving SOAP: (7 8 96 99) starts as a Clique (o), evolves into a Star (t20), eventually out of interaction range (SOAP
dissipation)(t2s)



minSupport vs. Time
(data size=1.5GB)

3007 /
250 -

& 200 - /ﬁ
2

20% 10% 5% 1% 0.50%

minSupport

Figure 15: Running Time on 1.5GB Dataset (minDistzSA)

nent in mining frequent SOAPs is to identify valid SOAP instances
for a SOAP candidate in each map (or snapshot). This is especially
true when the dataset involves large number of maps. Thus, the
main target of our optimization strategies is to prune away infre-
quent SOAPs as early as possible. Table 3 summarizes numbers of
SOAP candidates that are pruned away at an early stage, referred
to as Early-Prunes in the table. All results are based on the 1.5GB
MD dataset with minSupp= 5%. The last column in Table 3 lists
the ratio between the number of early-pruned candidates and total
number of candidates. The average ratio is around 40% which is
roughly in line with the savings in computational time.

SOAP Type | #Total | # Early-Prunes | Gain%
STAR 646 221 34.2
CLIQUE 367 165 44.9
SEQUENCE 327 132 40.3

Table 3: Optimization Results

4.5 Impact of Distance Metrics

In order to capture different interactions among evolving objects (
or spatial relationships in spatial data), it is critical to use an ap-
propriate distance metric. In this section we present results demon-
strating the importance of using distance metric that is capable of
taking objects’ shape and extent into account. We compare the
number of SOAPs generated from using an object-based distance
metric and that from the commonly used point-based metric. Due
to space constraint, we only present results generated from the most
informative shape representation scheme, which is parallelogram in
the protein case, and ellipse in the vortex case.

Tables 4-5 show the number of SOAPs discovered based on two dif-
ferent distance metrics on protein datasets, centroid-centroid (C-C)
distance in Table 4 and boundary-boundary (B-B) distance in Table
5. SOAPs are further grouped according to their associated pro-
tein classes. Using B-B distance, we are able to find more SOAPs,
406 in total as compared to only 235 SOAPs when C-C distance is
used. The difference is even more radical in small proteins. With
point-point distance only 42 SOAPs were discovered in small pro-
teins. However, it increases to 142 if boundary-boundary distance
is used. We would like to point out that most of these identified
SOAPs are also verified by domain experts

Similar observations can also be made on vortex datasets. As men-
tioned earlier, the ellipse based shape representation and boundary-
boundary distance make the most sense in this case. To justify
this, we compare the numbers of SOAPs discovered by using B-B
distance and C-C distance. As shown in Table 6, we are able to

Type #(a) | #(B) | #(small) | #(peptide)
2 7

Star 103 19

Clique - 37 11 6
Sequence 4 30 12 4
Total 6 170 42 17

Table 4: SOAPs in major protein groups, dist=C-C

Type #(a) | #(B) | #(small) | #(peptide)
8 13

Star 145 91

Clique 2 39 26 5
Seq. 6 40 25 6
Total 16 224 142 24

Table 5: SOAPs in major protein groups, dist=B-B

get twice as many SOAPs based on Boundary-Boundary distance
compared to Centroid-Centroid distance. Results on MD datasets
were very similar in spirit, however due to lack of space we are not
presenting the results.

Type (C-C) | (B-B)

Star 586 1315
Clique 169 329
Seq. 2166 6240

Total 2921 7885

Table 6: #SOAPs Discovered in Vortex Data

5. RELATED WORK

Spatial object association patterns proposed in this work share some
commonalities with collocation patterns, which identify features
that are frequently located in the same neighborhood. However,
most work on collocation pattern mining is limited to applications
where subjects of interest can be represented as points [18, 13,
14, 27]. Furthermore, all these points are located in a single map,
which correspond to a snapshot in our work. Recently, Xiong et.
al. proposed an approach to discover collocation patterns for ex-
tended spatial objects including line-strings and polygons [22]. For
each object, they identify its neighborhood and then consider ob-
jects that have overlapped neighborhood as candidate collocation
patterns. This is similar to the Clique SOAPs defined in this article.
However, in their approach they only consider objects located in
the same map.

Our research on spatio-temporal association patterns shares some
of the objectives with approaches for spatial reasoning. Bailey-
kellogg and Zhao [3]. propose a methodology for reasoning about
such problems called qualitative spatial reasoning (QSR). Their
work is methodology driven and mainly focuses conceptual topics
such as data representations and manipulations. They also discuss
the use of different spatial primitives to model objects of different
shapes and spatial relationships among objects [3]. Our frame-
work is an efficient realization of their conceptual methodology
for scientific data. In addition we also support the discovery of
spatio-temporal episode patterns that is not explicitly considered in
their work. Fernyhough et al. implemented techniques to detect
events by identifying frequently occurring spatial relationships [9,
8]. However, their proposed technique only considers pair-wise
relationships. Thus interactions involving more than two features
will be missed by only considering pair-wise relationships.

6. CONCLUSION

In this paper, we present a general framework for mining spatial as-
sociations and spatio-temporal episodes for scientific datasets. Fea-
tures are modeled as geometric objects rather than points. We de-



fine multiple distance metrics that take into account objects’ shape
and extent and thus are more robust in capturing the influence of
an object on other objects in its spatial neighborhood. We have de-
veloped algorithms to discover four different types of spatial object
association patterns across multiple maps. We also extend our ap-
proach to mine for spatial temporal episodes and thereby present a
methodology for reasoning about critical events.

Empirical results on three real case study applications, drawn from
the scientific and engineering disciplines serve to validate the frame-
work. We show that the discovered interactions are meaningful and
can be used to uncover important spatial and spatio-temporal pat-
terns in the underlying scientific domain. We further demonstrate
that the different association pattern types our framework when
used in conjunction can provide an effective mechanism to support
qualitative spatio-temporal reasoning. Performance studies carried
out on large out-of-core datasets indicate that the framework is both
efficient and scalable.

We are currently extending the framework to include other types of
association patterns, for example, patterns concerning both topo-
logical and neighborhood relationships. We are also implementing
new approaches towards more robust spatio-temporal inferences
and reasoning. Our framework also currently targets the discov-
ery of important frequent spatial interactions, but in many cases
rare interactions can also be important. We plan to extend our work
to address this limitation.

Acknowledgements: We thank John Wilkins for providing and
helping validate the MD results, and thank R. Machiraju, D. Thomp-
son, K. Marsolo and D. Polshakov for valuable comments, discus-
sion and validation of results pertaining to CFD and Protein data.

7. REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499. Morgan
Kaufmann, 12-15 1994.

[2] M.J. Atallah. A linear time algorithm for the hausdorff distance between
convex polygons. Information Processing Letters, 17:207-209, 1983.

[3] Chris Bailey-Kellogg and Feng Zhao. Qualitative spatial reasoning: extracting
and reasoning with spatial aggregates. Al Mag., 24(4):47-60, 2004.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig,
1. Shindyalov, and P. Bourne. The protein data bank, 2000.

[5] C. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset
algorithm for transactional databases. In ICDM 01, 2001.

[6] C.Cheng, A.W. Fu, and Y. Zhang. Entropy-based subspace clustering for
mining numerical data. In KDD’99, pages 84-93. ACM Press, 1999.

[7] J.P. Christian. Numerical simulation of hydrodynamics by the method of point
vortices. pages 189-197, 1971.

[8] A.G.CohnandS. M. Hazarika. Qualitative spatial representation and
reasoning: an overview. Fundam. Inf., 46(1-2):1-29, 2001.

[9] JH Fernyhough, A G Cohn, and D C. Hogg. Event recognition using qualitative
reasoning on automatically generated spatio-temporal models from visual input.
In 1JCAI97 Workshop on Spatial and Temporal Reasoning, 1997.

[10] C. Henze. Feature detection in linked derived spaces. In In IEEE Conf. on
Visualization, 1998.

[11] M.Jiang, T. Choy, S. Mehta, S. Parthasarathy, R. Machiraju, D. Thompson,
J. Wilkins, and B. Gatlin. Feature mining paradigms for scientific data. In
SIAM, 2003.

[12] S. Mehta, K. Hazzard, R. Machiraju, S. Parthasarathy, and J. Wilkins. Detection
and visualization of anamolous structurs in molecular dynamics simulation
data. In In IEEE Conf. on Visualization, 2004.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Y. Morimoto. Mining frequent neighboring class sets in spatial databases. In
Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 353-358. ACM Press, 2001.

R. Munro, S. Chawla, and P. Sun. Complex spatial relationships. In The Third
IEEE International Conference on Data Mining (ICDM2003), 2003.

C. R. Rao and S. Suryawanshi. Statistical analysis of shape of objects based on
landmark data. 93(22):12132-12136, Oct. 1996.

D.A. Richie, J. Kim, and J.W. Wilkins. Real-time multiresolution analysis for
accelerated molecular dynamics simulations. 2001.

A. Sadarjoen, F.H. Post, and D.C. Banks et al. Selective visualization of
vortices in hydrodynamic flows. In VIS *98: Proceedings of the conference on
Visualization "98, pages 419-422. IEEE Computer Society Press, 1998.

S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A summary
of results. Lecture Notes in Computer Science, 2121:236+, 2001.

D. Silver and X. Wang. Volume tracking. In Roni Yagel and Gregory M.
Nielson, editors, IEEE Visualization "96, pages 157-164, 1996.

Waldo R. Tobler. A computer movie simulating urban growth in the detroit
region. 1970.

M. Vendruscolo and E. Domany. Recovery of protein folding from contact
maps. 1997.

Hui Xiong, Shashi Shekhar, Yan Huang, Vipin Kumar, Xiaobin Ma, and
Jin Soung Yoo. A framework for discovering co-location patterns in data sets
with extended spatial objects. Apr. 2004.

H. Yang, K. Marsolo, S. Parthasarathy, and S. Mehta. Discovering spatial
relationships between approximately equivalent patterns. August 2004.

Kenneth Yip. Structural inferences from massive datasets. In IJCAI (1), pages
534-541, 1997.

M.J. Zaki. Mining protein contact maps. In BIOKDD 2002, 2003.

M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. Technical Report TR651, 1997.

X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou. Fast mining of spatial
collocations. In KDD ’04: Proceedings of the 2004 ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
384-393. ACM Press, 2004.



