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Abstract

Sensor-actuator networks are increasingly being used in distributed control of large scale sys-

tems. Often these applications are mission-critical and are required to maintain satisfactory

performance in the presence of component failures. On the one hand, sensor-actuator network

components are becoming inexpensive but they also tend to be unreliable, especially when deployed

in harsh or unpredictable environments. The various component failures can manifest themselves

in the form of arbitrary actuator behavior in which case their effect on the underlying systems

can be severe. In this paper we focus our attention on applications of sensor networks in control

of linear systems and show how to deal with Byzantine faults of actuators. We first describe a

fault-tolerant control scheme using locally redundant actuators. We then relax the requirement

on actuators to be at the same location and design a fault-tolerant scheme where the actua-

tor redundancies are further reduced as well. We demonstrate our methodologies using a beam

vibration control application as a case study.
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1 Introduction

Fueled in part by recent advances in MEMS and communication technologies, sensor networks

are increasing in popularity. Thus far most of the applications of sensor networks have focussed

on observation. Examples include habitat monitoring and area surveillance applications where

the sensors gather a variety of information and this information is processed centrally or in a

distributed manner. That said, it is widely believed that the number of applications of wireless

sensor networks will increase manifold when they also perform actuation and control.

Some actuation based applications do exist currently. Actuators such as sound and radio are

being used to solve problems such as localization. Mobility is another form of actuation which

is being applied to distributed pursuer-evader applications using sensor networks [18]. Sensor-

actuator networks are being prototyped in the control of distributed parameter systems such as

flexible structures. A specific example is the vibration control of a fairing during payload launch

using embedded MEMS components based sensor-actuator networks [1,20]. Since MEMS based

sensor-actuator devices are potentially cheap, a large number of these devices can be embedded

on flexible structures and combinations of these sensors can be used to obtain the required mode

vibration information and then the output from these combinations can be used to provide

adequate distributed control. Similar applications arise in the control of chemical plants and

nuclear reactors.

It is also important to note that although most of the literature on sensor networks focusses

on wireless networks, many of these control applications are better suited to wired networks.

Wired networks have higher network bandwidth and provide better network reliability compared

to wireless networks and this is crucial to guarantee stability and performance in control systems.

Yet the constraint in most distributed control applications is that of mission critical stability,

and despite the access to more resources in wired networks this is a challenge. Distributed

control systems have applications in space missions and nuclear plants where degradation of

systems performance may even compromise human safety. Hence satisfactory performance in

the presence of faults is a requirement for these systems. But in our experiences with deploying

and using large sensor networks [2], one of the key learnings has been that these networks are

unreliable in many ways. Sensor-actuator network based control systems typically comprise
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of embedded sensors and actuators, microprocessor-based controllers (central or distributed)

and an underlying network that provides information processing services to the controllers such

as controller group synchronization, communication, (re)parameterization, reconfiguration, etc.

Each of the above subsystems are subject to faults: there are hardware faults and these will

increase when subject to harsh and unpredictable environments, there are faults in the underlying

software and middleware services such as information loss, delay and corruption, and there are

configuration faults which given the scale of these networks this will increase even more. Early

experiments conducted on a vibration control system of a fairing show that the effect of faults

on the stability and performance of control systems can be particularly severe [10]. This leads

us to focus on fault-tolerant distributed control systems.

One of the methodologies for the design of fault-tolerant control systems involves real-time fault

detection, isolation and control system reconfiguration [4, 5, 8, 11, 14]. An appropriate action is

taken after the diagnosis of the faults. Another methodology in fault-tolerant system design is to

use redundancy and voting to achieve tolerable performance in the presence of faults. Incorrect

data generated by faults in control software and sensor failures can be tolerated by voting based

schemes which estimate or filter the correct data by using multiple redundant inputs [12,16].

But these methods still leave the following challenges. The hardware can be faulty causing

the actuators to fail-stop and offer no control or debond from their surface causing them to

offer incorrect control. The underlying fault detection service is itself vulnerable to faults in

the middleware. It is sometimes not feasible to integrate the fault detection, diagnosis and

reconfiguration in dynamical systems particularly when the available reaction time is limited.

In the voting based schemes, faults in underlying middleware services can affect each of the

redundant component in the same way and then the voting fails. For example a network error

such as delay or dropping of data is likely to affect each redundant component. Also, the voter

itself is subject to faults [16].

Thus the faults in the hardware and underlying software services can cause the actuator to behave

in a nondeterministic and potentially malicious manner. This suggests a Byzantine model for

the actuator faults. A Byzantine actuator can produce an arbitrary control input to the plant

at all times. The behavior is non-deterministic and it can even be the worst possible value at
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all times. In this paper we focus on designing systems that maintain asymptotic stability in the

presence of Byzantine actuators that apply arbitrary control input to the plant.

Problem statement

Assuming that a bounded number of network actuators can exhibit incorrect (and

potentially arbitrary) behavior, how can distributed control be designed to be provably

stable?

Specifically, in this paper we describe a distributed, local, output feedback control system and

use that to design two control schemes that maintain asymptotic stability in the presence of a

given number of actuators that are Byzantine. We demonstrate our methodologies using a beam

vibration control application [3, 15] as a case study.

Related Work A control system designed to tolerate failures in system components while

maintaining closed loop system stability and performance has been defined as a reliable control

system [19]. Such systems are also called systems possessing integrity against component failures.

Redundancy is a key ingredient in all such reliable control systems. A basic difference between

robust control techniques and reliable control is that the former deals with small parameter

variations and system model uncertainties while the latter handles more drastic changes in the

control system configuration. There exist several reliable control schemes [6,7,17,19,21,22] that

provide stability in the presence of a set of failed actuators and sensors that are non responsive.

However, in this paper we design control schemes that guarantee stability in the presence of

malfunctioning actuators which continuously offer detrimental input and thereby can lead the

system to instability.

Outline of the paper In Section 2 we describe the system and fault model and provide a

sufficient condition for the stability of the system in the absence of faults. In Section 3, we first

design a reliable control scheme using redundant colocated actuators and then design a reliable

control scheme for a second order system, where the redundant actuators are not colocated and

the redundancy is further decreased. In Section 4, we extend our results for the latter scheme

to higher order systems. In Section 5, we demonstrate our methodology using a beam vibration

control application [3, 15] as a case study.
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2 System and Fault Model

In this section we describe the system and fault model and derive sufficient conditions for the

asymptotic stability of the system without faults.

2.1 System Model

Consider a marginally stable linear time-invariant multivariable system S with m sensor-actuator

pairs, described by the following equations and control law.

ẋ = Ax + Bu (1)

y = Cx (2)

where x is an n-dimensional state vector [x1, x2, · · · , xn]T , u is an m-dimensional actuator vector,

B is an n × m dimensional matrix and the individual sensor-actuator pairs are colocated. We

assume that the system is controllable and observable from individual locations. Since S is

marginally stable, A has eigenvalues on the imaginary axis. Since the individual pairs of sensors

and actuators are colocated, we have the following condition.

B = CT (3)

Starting at any state, without any control being applied the system maintains its energy as it is

marginally stable. We apply the following local on-off output feedback control law to stabilize

the system.

ui = α × sign(yi), i = 1....m (4)

where α is less than zero. Further ui equals zero when yi is zero. Thus a correct actuator can

have 3 possible control values 0, −α and α. We choose |α|, the magnitude of the actuator force,

to be the maximum force that an actuator can apply and assume that this is the same across

all actuators.
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2.2 Asymptotic Stability Without Faults

We now analyze and prove the stability properties of S in the absence of faults.

Theorem 2.1 If m ≥ n and the matrix B is of rank n, the system S is asymptotically stable.

Proof We use the Lyapunov approach to prove stability. Now, let us define function V as

V = xT Mx (5)

where M is a symmetric, positive definite n × n matrix. The Lyapunov derivative can then be

written as

V̇ = xT (AT M + MA)x + 2xT MBu (6)

Since A is marginally stable, we can transform A to be skew symmetric and AT +A equals zero.

Thus M can be the identity matrix.

V̇ = 2xT Bu (7)

Let Bi denote the ith column of matrix B. For the system described in Eq. 1, we have

V̇ = 2 × α(
m

∑

i=1

(xT ).(Bi) × sign(yi)) (8)

= 2 × α(
m

∑

i=1

(xT ).(CT
i ) × sign(yi)) (9)

= 2 × α(
m

∑

i=1

(yi) × sign(yi)) (10)

= 2 × α(
m

∑

i=1

|(xT ).(Bi)|) (11)

Note that we can use the magnitude of the dot product (xT ).(Bi) because we see from Eq. 10

that (yi) × sign(yi) is always positive. Since m is at least equal to n and B is of rank n, the

state x can be orthogonal to at most n− 1 actuators. Hence the Lyapunov derivative is strictly

negative. Thus the system is asymptotically stable.
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2.3 Fault Model

We now describe the fault model acting on system S. We start with the definition of a Byzantine

actuator.

Definition A Byzantine actuator q is one that can generate arbitrary value of uq

in the range −α to α at all times.

We note that a Byzantine actuator behavior also captures the case of an actuator fail-stopping

(uq = 0, and an actuator debonding form its surface thereby applying a fraction of the control

force (0 ≤ uq ≤ α). In our fault model, k out of the m actuators are Byzantine in system S.

We will prove that the system remains asymptotically stable even when the Byzantine actuators

behave in the worst possible way at all times. This is described below. Let uci(t) be the correct

actuator value at any time t for actuator i. Let ufi(t) be the corresponding value generated if

the actuator is Byzantine. We then have the following conditions.

W1 : uci(t) 6= 0 ⇒ ufi(t) = −uci(t) (12)

W2 : uci(t) = 0 ⇒ ufi(t) = ±α (13)

Note: If the system S is in equilibrium and is acted upon by a Byzantine actuator, then the

system is subject to perturbation and the energy of the system increases. We do not consider

this case in our fault model. We are interested in maintaining the asymptotic stability of S in

the presence of Byzantine actuators.

3 Reliable Control System Design

In this section, we design two reliable control schemes that maintain asymptotic stability of the

System S in the presence of Byzantine actuators.

3.1 Reliable Control System Using Redundant Colocated Actuators

In this scheme we place multiple actuators at each location. Thus the effect of each redundant

actuator on the control stays the same.
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Theorem 3.1 A sufficient condition to tolerate k Byzantine actuators at each location and

guarantee asymptotic stability in the system S is to have 2k + 1 actuators at each of the m

locations, where m ≥ n and the B matrix formed by the m distinct locations is of rank n.

Proof Since there are 2k + 1 actuators at each location, the Lyapunov derivative in Eq. 11 can

be written as follows

V̇ = 2 × α(
m

∑

i=1

((2k + 1) × |(xT ).(Bi)|)) (14)

First of all, we see from Eq. 14 that if the actuators are not Byzantine, the redundant actuators

still keep the energy derivative negative. We now analyze the effect of Byzantine actuators at

each location. Without loss of generality let us consider the qth location and assume that k

actuators at this location are Byzantine. We consider the 2 conditions W1 and W2, described

in the fault model.

When condition W1 of the fault model applies, the energy derivative term corresponding to the

qth actuator location can be written as follows.

V̇q = 2 × α((k + 1) × |(xT ).(Bq)| − (k) × |(xT ).(Bq)|) (15)

= 2 × α(|(xT ).(Bq)|) (16)

Thus we see that the energy derivative corresponding to the qth location still stays negative.

This can similarly proved for all locations.

Now consider condition W2. If ucq(t) = 0, it implies that yq(t) = 0, i.e the local output is zero.

Thus the current state x(t) is orthogonal to the vector Cq. Since the actuators are colocated,

the current state x(t) is also orthogonal to the vector Bq. Thus, the term xT .(Bq) is equal to

zero no matter what force the Byzantine actuator applies.

Hence the system S with 2k + 1 actuators at each of the m locations, is asymptotically stable

in the presence of k Byzantine actuators at each location.

Note that this scheme tolerates k Byzantine actuators per location. If the expected reliability

ratio of the actuators are known, then we can design for the number of actuators required at

each location.
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Given a reliability ratio for the actuators (greater than 0.5), denoted as ρ, we can choose a k

such that the system is reliable against Byzantine faults.

k

(2k + 1)
> (1 − ρ) (17)

Note However it should be pointed out that placing the redundant actuators at the same

location may not be feasible in all control systems. Moreover the redundancy rapidly increases

as n increases because the actuators are replicated at each location.

We now describe a reliable control scheme where the colocation of redundant actuators is not

required and given that k actuators are Byzantine we add redundant controllers to the system

as a whole thus decreasing the redundancy required.

3.2 Reliable Control System Without Using Colocated Actuators

We first state the minimum number of actuators to be added to the system which ensures that

the energy derivative of Eq. 11 is than zero at all times.

Lemma 3.2 For the energy derivative of Eq. 11 to be less than zero at all times in the presence

of k Byzantine actuators, we require m >= 2k + n

Proof Let the number of actuators in the system be 2k + n− 1. The state x can be orthogonal

to at most n − 1 actuators. Let all of these be non-Byzantine actuators. Thus the energy

derivative terms corresponding to these actuators is zero. There are 2k actuators left. Without

loss of generality assume that in the presence of any k Byzantine actuators belonging to set of

2k actuators, the energy derivative is less than zero. Then for the same state x, if the remaining

set of actuators had been Byzantine the energy derivative would be greater than zero. Thus we

need at least 2k + n actuators for the energy derivative of Eq. 9 to be less than zero at all times

in the presence of k Byzantine actuators.

However, finding an actuator configuration that satisfies such a lower bound for any k and n is

a complex problem. We now focus our attention on second order systems, i.e n = 2 and show

that 3k + 1 is an upper bound on the number of actuators needed.
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Definition An m-uniform configuration of the system is the actuator configuration

of the system in which each of the m columns of the B matrix has the same amplitude

and are uniformly distributed in the state space of n dimensions such that the column

vectors of B are pairwise equi-angular and the angle between consecutive pairs of

vectors is equal to π
m

.

A second order system with 4-uniform and 7-uniform configuration is depicted in Fig. 1. For

simplicity, Let α be equal to 1. Thus given the actuator locations, each actuator vector can

either be equal or opposite to the direction shown depending on the current state of the system.

(b)  7−uniform configuration
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θx 0o

x 45o
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the angles between two vectors are

(a)  4−uniform configuration

U

Fig. 1. 4-uniform and 7-uniform configura-
tions for the second-degree system

Let a unit state vector xθ form an angle θ with the vertical axis as shown in the figure. When

an actuator is behaving correctly, the actuator vector would be such that its dot product with

the state vector is less than or equal to zero. This is because the system is observable from each

location and each actuator applies control in a direction opposite to that of the local output.

The inner product would be equal to zero when the actuator vector is orthogonal to the current

state.

Thus, the 4-uniform configuration shown in the figure is the proper actuator configuration when

θ is between 0◦ and 45◦. Note that the dot product of the state vector with each actuator

vector is less than or equal to zero. If θ is between 45◦ and 90◦, everything would be identical

to the former except that first actuator changes its direction so that Ū1 is the new actuator

vector. In the case of 4-uniform configuration, 4 normal actuators U1, · · · , U4 keep the current

control vector directions for the negative energy derivative if θ between 0◦ and 45◦. Thus the
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whole configuration is rotated by 45◦ in the clockwise direction. Thus in an m − uniform

configuration, if all the actuators are correct, then the actuator vectors remain pairwise equi-

angular at all times.

Therefore while showing that a particular m − uniform configuration is sufficient to guarantee

asymptotic stability in the presence of Byzantine faults, it is enough to consider the case that

the unit state vector xθ is located in the basic range [0.0◦, 45.0◦]. In general, the basic range

of m-uniform configuration system is [0.0, π
m

]. Also note that it is enough to consider unit

state vectors because all the actuator vectors are of same magnitude and the total dot product

depends only on the angle.

Definition In an m-uniform system of second-degree(m = 3k + 1), let S(k, θ)

denote the set of k Byzantine faulty actuators such that, for a unit state vector xθ,

the corresponding energy derivative becomes maximized among all possible k subsets

of actuators. Let ED(k, θ) be the corresponding energy derivative.

For example, for 4-uniform configuration system, S(1, 0◦) and S(1, 45◦) are {U2} and {U3},

respectively.

ED(1, 0◦) = x0θ · (U1 − U2 + U3 + U4)

= (cos 135◦ − cos 180◦ + cos 235◦)

= −0.4142

Likewise, ED(1, 45◦) turns out to be equal to −0.4142. Thus, in the boundary angles of the basic

range [0.0◦, 45.0◦], the system is asymptotically stable due to the negative values of ED(1, 0◦)

and ED(1, 45◦).

It is seen that for any m-uniform configuration, when the state vector is at the boundary of the

basic range, one of the actuator vectors is orthogonal to the state vector and offers no control.

Thus if ED(k, 0◦) and ED(k, π
m

) are both negative, the system is asymptotically stable in the

presence of k Byzantine faults. We now write down the expressions for ED(k, 0◦) and ED(k, π
m

)

in any m-uniform configuration.
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φ = π/m = π/(3k + 1) (18)

ED(k, φ) =

k
∑

i=1

cos(
π

2
+ i · φ) −

2k
∑

i=k+1

cos(
π

2
+ i · φ) +

3k+1
∑

i=2k+1

cos(
π

2
+ i · φ) (19)

ED(k, 0) =

k−1
∑

i=0

cos(
π

2
+ i · φ) −

2k−1
∑

i=k

cos(
π

2
+ i · φ) +

3k
∑

i=2k

cos(
π

2
+ i · φ) (20)

ED(k) = min(ED(k, 0), ED(k.φ)) (21)

Upon numerical analysis of ED(k) for a large spectrum of values for k from 1 to 1000, it turns

out to be that all values of ED(k) are negative as shown in the figure below. Thus an m-uniform

configuration of actuators is sufficient to guarantee asymptotic stability of a second order system

in the presence of k Byzantine actuators when m = 3k + 1.

Fig. 2. The maximum energy derivative
ED(k) in m-uniform configuration system

Remark Note that the case of n = 2 and k = 1, where we need 4 actuators to guarantee

asymptotic stability satisfies the lower bound 2k+n. Further, an upper bound on the redundancy

required to tolerate k faults for higher order systems can be found in a related technical report.
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4 Reliable Control Design for Higher Dimensions

Befor proceeding to derive a sufficient condition to guarantee asymptotic stability in the presence

of faults for higher dimension systems, we first present a useful concept of an (∞,Θ)-uniform

configuration. From now on, let’s assume that angles of vectos are measured counter-clockwise

from the negative x-axis.

Definition (∞,Θ)-uniform configuration is one in which an infinite number of

actuators are uniformly distributed within an angle Θ.

An (∞,Θ)-uniform configuration is depicted in Fig. 3(a). Thus, for an angle θ, the ratio of the

number of actuators between subrange [0, θ] and total range [0,Θ] is θ
Θ

. Note that (∞, 180◦)-

uniform configuration is identical to k-uniform configuration in the previous section for which k

is very large.

(a)

s Us

Ud
Ud

Ud
Us

xφ

xφ

Θ−(φ−Φ)

x’1

x’2

xd

x s

δθ

Φ

Θ

φ

θ
Uθ

x’1

x’2

δθ

Θ
θ

xφ

Uθ

’
’

φ

’

(b)

U

(∞,Θ)-uniform configuration

For a unit state vector xφ, if φ is in [0,Θ], then the correct actuator vectors are distributed in

the range [0,Θ] as shown in Fig. 3(a). If φ is greater than Θ, then the vectors are distributed as

in Fig. 3(b). In both the cases every actuator generates a negative energy derivative with the

state vector.

Then, for a given unit state vector xφ, the energy derivative for the set of actuators distributed

in the range [θ, θ + δθ] is xφ ·Uθ · δθ. If all the actuators are normal, then total energy derivative
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becomes
∫

Θ

θ=0
xφ · Uθ · δθ =

∫

Θ

θ=0
cos(θ + φ + π

2
)δθ.

Definition The Byzantine ratio γ is defined to be the fraction of Byzantine actuators

amongst all actuators.

Given the infinite number of actuators, we enumerate this ratio in terms of the total angle formed

by the set of vectors corresponding to the Byzantine actuators. Thus the Byzantine actuators

cumulatively form an angle γ · Θ.

Let ED(Θ, γ, φ) denote the maximum possible energy derivative formed by a unit

state vector xφ with a set of Byzantine actuators given that the Byzantine ratio γ.

ED(Θ, γ, φ) depends on the distribution of γ within the set of all actuators. For example,

consider the case that φ = 0 and Θ ≥ π
2

+ γΘ

2
. In this case when Byzantine actuators are

distributed in the range [π
2
− γΘ

2
, π

2
+ γΘ

2
], the energy derivative is the maximum.

Let ED(Θ, γ) denote the maximum among all values of ED(Θ, γ, φ) over all the

state vector angles φ.

As the value of γ increases, ED(Θ, γ) increases.

Definition The Byzantine Tolerance Ratio, denoted as γtolerance is defined as the

value of Byzantine Ratio such that ED(Θ, γtolerance) = 0.

Then, for a given value of Θ, the system with (∞,Θ)-uniform configuration is asymptotically

stable in the presence of Byzantine actuators if and only if the Byzantine ratio γ is less than

γtolerance.

Definition The Compensation multiplier τ is the inverse of the Byzantine Tolerance

Ratio, i.e 1
γ

Numerically for a 2-dimesional system S, we compute the Byzantine tolerance ratio γtolerance

and compensation multiplier τ for all angles of Θ in the range [1◦, 180◦]. This is shown in Fig. 4.
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Byzantine tolerance ratio γtolerance and compensation multiplier

From the figure, we can observe several aspects of the fault-tolerant characteristics about second-

degree (∞,Θ)-uniform configuration system.

First, in (∞, 180◦)-uniform configuration, the corresponding compensation multiplier τ is 3.0,

matching with the condition in the previous section in which 3k + 1 was shown as a sufficient

condition to guarantee asymptotic stability in the m − uniform configuration.

Second, in any uniform distribution where 0 ≤ Θ < 180◦, the compensation multiplier increases

as Θ decreases. Thus distribution of the actuator vectors with a smaller angular seperation

results in more redundancy required.

Third, even if the actuators are distributed within a very small angular range, the compensation

multiplier τ does not increases significantly. In particular, in (∞,Θ)-uniform configuration with

Θ = 1◦, it is about 4.0, increasing τ by 33% in comparison with that for the perfectly uniform

contribution.

We now use the infinite uniform distribution to analyze and determine an upper bound on the

compensation multiplier for higher dimension systems.

4.1 Byzantine Tolerance Ratio for Higher Order Systems(n > 2)
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In this section, we develop the compensation multiplier for (∞, 180◦, n)-uniform configuration for

n-th order system. We show the computation details for a third-order system, i.e. n = 3 which

are then generalized for higher dimensions. We also consider only (∞,Θ)-uniform configurations

in which Θ = 180◦.

Let (∞, n)-p-uniform configuration denote the (∞,Θ)-uniform configuration for the

nth dimension system in which Θ = 180◦.

Q

o

Uθ+δθ

Uθ

θradius sin

x’1

x’2
δθ

θ
P

x

(∞, 3)-p-uniform configuration

Fig. 5 depicts an (∞, 3)-p-uniform configuration. Since all the actuator vectors are of the same

magnitude, in our analysis it is sufficient to consider only unit vectors. For a given state vector

xo, the corresponding (∞, 3)-p-uniform configuration is shown in the figure. The angle δθ is

infinitesimally small as typically used in differential and integral calculus. The energy derivative

for the correct actuator vectors distributed between two angles θ and θ+δθ is − cos θ·(2π sin θ)·δθ

where − cos θ is the vector inner product between unit state vector xo and unit actuator vector

Uθ, (2π sin θ), is the circumference of the circle that is generated by rotating the line P̄Q arround

the vertical axis, and δθ is the length of the circumferential piece between two unit actuator

vectors Uθ and Uθ+δθ.

In the (∞, 3)-p-uniform configuration, we see that the actuator vectors are uniformly distributed
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on the surface of a unit hemi-sphere. The area of the sub-surface between angular range [0, α]

is
∫ α
θ=0

(2π sin θ)δθ = 2π(1 − cos α). Let us now calculate the compensation multiplier given the

Byzantine ratio gamma.

In the worst case, the Byzantine actuators are all distributed in such a way that they maximize

the energy derivative. We also see that the area of the subsurface formed by the actuators is

maximised when α is small. Therefore we let the Byzantine actuators to lie in a range starting

from 0. Let αγ = α
π
. Then, the ratio of the surface area formed by Byzantine actuator vectors

and the whole area is given by the following equation.

γ =
2π(1 − cos αγ)

2π
= (1 − cos αγ). (22)

Now, we compute the total energy derivative corresponding to the worst case situation denoted

as ED(3,∞, γ) with Byzantine ratio γ.

ED(3,∞, γ) =

∫ αγ

θ=0

cos θ · (2π sin θ) · δθ −

∫ 180◦

θ=αγ

cos θ · (2π sin θ) · δθ (23)

= −π · cos(2αγ) (24)

The Byzantine tolerance ratio γtolerance, for which ED(3,∞, γtolerance) becomes zero, requires

the condition that cos(2αγtolerance
) = 0, i.e. αγtolerance

= 45◦. By substituting this value into

Eq. 22, the Byzantine tolerance ratio is computed as γtolerance = 1 − cos 45◦ ' 0.2928932.

Therefore, the compensation multiplier for the third-degree system, τ , is 3.4142.

In general, for n-th degree system under (∞, n)-p-uniform configuration, similar computations

are preformed and we get the followign results. Fig. 6 depicts the compensation multipliers for

the higher-degree system under (∞, n)-p-uniform configuration.

The rate of increase of the compensation multiplier decreases as n increases. A 1000 dimensional

system has a compensation multiplier of 4.1815.
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Compensation multipliers for the higher-degree system under (∞, n)-p-uniform con-
figuration

5 Application to Beam Vibration Control System

We now apply our reliable control system designs on a local output feedback control scheme

to a beam vibration control system. Given is a uniform beam of unit length, unit mass, and

unit stiffness factor, that is restricted by pins at both ends and subjected to an initial distur-

bance. The beam has no dampening factor so that it may vibrate endlessly. The beam has

colocated velocity sensors and actuators to reduce the vibration. For simplicity, we consider two

fundamental modes of vibration.

The two fundamental vibration modes, denoted as M1 and M2, are derived [13] as follows:

M1 : 1.4142 sin πz, λ1 = ω2
1 = 97.41 (25)

M2 : 1.4142 sin 2πz, λ2 = ω2
2 = 1558.55 (26)

where z ∈ [0.0, 1.0] denotes the position in the beam spatial axis and λi and ωi, i = 1, 2, represent

the eigenvalues and the frequencies of i-th modes, respectively.
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Since each mode is governed by a second-degree differential equation, the state vector for the

system contains four variables x = [x1, x2, x3, x4]
T . x1(x2) and x3(x4) denote the vertical dis-

placement and velocity of first (second) vibration mode, respectively. Then, the system matrix

A in Eq. ?? is denoted as

A =

















0 0 1 0

0 0 0 1

−97.41 0 0 0

0 −1558.55 0 0

















Note that we use a velocity feedback control. So the control input does not have any effect on

the states x1 and x2. The actuation is used to control the velocity states x3 and x4. We will

assume that the beam cannot be deformed permanently. Thus when the velocity of the beam

comes to zero, the displacement is also zero. Thus in this specific example although the number

of states is 4, the control affects only the 2 velocity states.

We first show that using 2 sensor-actuator pairs that form a B matrix of rank 2, we can asymp-

totically stabilize the system. We choose the following B matrix.

B =



















0 0

0 0

1 1.4142

1.3066 1



















The Fig. 3(a) shows the energy of the system staring from an arbitrray initial state going down

to zero in the absence of faults. The energy of the system at time t is calculated as xT (t)×X(t),

where x(t) is the state of the system.

[Energy of the system with 2 Actuators, No faults] [Energy of the system with 3 actuators at Each Location

Fig. 3. Energy of the Beam Vibration System - 2 Actuator Locations
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We now show that 1 Byzantine actuator at each location can be tolerated and asymptotic

stability can be maintained by having 3 actuators at each location. The Fig. 3(b)shows the

energy of the system staring from an arbitrray initial state when one actuator at each location

is Byzantine.

We now show that when k = 1, we can asymptotically stabilize the system using 4 actuators

that are distributed according to the 4−uniform configuration. We choose 4 pairs of colocated

sensors and actuators such that the columns of B matrix have equal magnitude and successive

column vectors are seperated by an angle π
4
.

B =



















0 0 0 0

0 0 0 0

−0.5754 0.1715 0.8179 0.9852

−0.8179 −0.9852 0.5754 0.1714



















(27)

The following graphs show the states of the 4 − uniform configuration system staying asymp-

totically stable in the presence of no actuator faults and one actuator failing.

[Energy of the 4-uniform configuration - No Faults] [Energy of the 4-uniform configuration - 1 Byzantine Actuator]

Fig. 4. Energy of the 4-Uniform Configuration Beam Vibration System

6 Conclusions and Future Work

In this paper we designed two reliable control schemes using a local output feedback control sys-

tem that maintain asymptotic stability in the presence of Byzantine actuators that continuously

generate erroneous control inputs. The first scheme was designed using redundant actuators

that were colocated. However, it may not be feasible to collocate actuators in all systems. The

second scheme does not require the actuators to be colocated. The other advantage with the

second scheme is that the required redundancy is reduced. But in this scheme the restrictions

in the choice of actuator locations increased. The design of the system becomes more complex

when the number of state dimensions of the system increases. We gave an application of both

the control schemes in stabilizing a beam subjected to an initial perturbation.
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We plan to extend our results on tolerating faulty actuators to systems that use centralized

and decentralized state feedback. An interesting topic for future study is also to design reliable

control schemes based on adaptive control laws using state feedback. Extending some heuristic

studies in this area [9] to sufficient conditions is a subject of ongoing work. We would also like to

work on verification techniques for the fault-tolerance of a system given a set of faulty actuators.
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